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Abstract

HQET lagrangian up to 1/m? terms is discussed. Consequences of reparame-
terization invariance are considered. Results for the chromomagnetic interac-
tion coefficient at two loops, and in all orders in the large-3; approximation,

are presented.
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1. HQET lagrangian

QCD problems with a single heavy quark staying approximately at rest can be
conveniently treated in the heavy quark effective field theory (HQET) (see [1]
for review and references). We shift the energy zero level: E = m + w, and
consider the region where residual energies w and momenta p are not large:
w ~ |p| ~ A € m. The effective field theory is constructed to reproduce
QCD on-shell scattering amplitudes expanded to some order (A/m)". This
is achieved by writing down the most general effective Lagrangian consistent
with the required symmetries, and tuning the coefficients to reproduce QCD
on-shell amplitudes. Terms with DyQ can be eliminated by field redefinitions.
The most general lagrangian up to 1/m? is {2]-{6]
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where @ is 2-component heavy—quark field. Here heavy-light contact inter-
actions are omitted, as well as operators involving only light fields.

HQET can be rewritten in relativistic notations. Momenta of all states are
decomposed as p = mv+ k where residual momenta k ~ A. The heavy—quark
field is now Dirac spinor obeying ¢§Q, = @,. The lagrangian is

LU —~ @vit} ) DQU - Ck -Q_I,'D‘J‘!. Qt" = gﬂ@u{;ll”ﬂ#u@v (2)
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where D = D — v(vD). The velocity v may be changed by an amount dv <
A/m without spoiling the applicability of HQET and changing its predictions.
This reparameterization invariance relates coefficients of varying degrees in
1/m [7]-[13].

At the tree level, there are easier ways to find the coefficients C; than
QCD/HQET matching: Foldy-Wouthuysen transformation (14,15}, or using
equations of motion [5] (or integrating out lower components [16,17]) followed
by a field redefinition. The result is

Ch=Cn=Ci=C,=C2=Cn=Ca1=Cp =1, (3)
Cw3=cp-'p:CMZCtlE:CaE:Cmi:CbE:G-

However, these algebraic methods don’t generalize to higher loops.

At 1/m level, the kinetic coefficient Cx = 1 due to the reparameterization
invariance [7]. One~loop matching for the chromomagnetic coefficient C,, was
done in [3]; two-loop anomalous dimension of the chromomagnetic operator
in HQET was obtained in [18,19], and two-loop matching was done in [19];
in [20], all orders of perturbation theory for C,, were summed at large f;.

At 1/m? level, the spin—orbit coefficient Cy = 2C\;, — 1 due to the repa-
rameterization invariance [21]-[24]. The Darwin term reduces to a contact
interaction. One-loop matching for the heavy-light contact interactions was
done in [24]. The one-loop anomalous dimension matrix of dimension 6 terms
in the HQET lagrangian was obtained in [15], [22]-[25].

At 1/m3 level, one-loop matching was done in [6] for the terms involv-
ing the heavy—quark fields twice and the gluon field once. The one-loop
renormalization of dimension 7 terms in the HQET lagrangian was recently

considered [26].

2. Matching quark—quark vertex

Renormalized QCD on-shell quark—quark proper vertex
~u(p — m)u (4)

gets no correction in the on-shell renormalization scheme. QCD spinors are
related to HQET spinors by the Foldy-Wouthuysen transformation

u=(1+—¥—-+-%2—+---)uu Fuy = u, . (5)
2m  4m? : . . :
Expressing QCD proper vertex via HQET spinors, we obtain
1.2
Uy Q_muv i (6)

Let’s denote the sum of bare I-particle-irreducible self-energy diagrams
of the heavy quark in HQET at 1/m? as —z'l';—"E(w), w = kv. At the 1/m
level, self-energy diagrams with a single chromomagnetic vertex vanish. Let
the sum of bare diagrams with a single kinetic vertex be —if—n‘;l?ﬂk (w, k3).
Consider variation of £ at v — v + dv for an infinitesimal dv (vév = 0).
All factors %’i can be combined into a single one, and the variation 64 in
it provides the variation of the y—matrix structure in front of ¥. There are
two sources of the variation of £. Terms from the expansion of denomina-
tors of the propagators produce insertions tkdv. Terms from the vertices
produce igt®dv*. Now consider variation of £; at k;, — k; + dk, for an
infinitesimal ék;. Quark-quark kinetic vertices produce i%k&k 1; quark-
quark-gluon kinetic vertices produce i% gt*dkY ; two—gluon vertices produce

nothing. Therefore,
[3) ax
ok’ Juk
:I‘his 1s the Ward identity of'tl}e reparameterization invariance first derived
in [10]. Taking into account 22k = 225k kY and 22 = 45 1 we obtain
4

@ dus
0%, _ds
W = A (8)
The right-hand side does not depend on k2, and hence
dX{w .
Zi(w, k1) = d( }*‘fi + Tkolw) . (9)
w
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This result can also be understood in a more direct way. Only diagrams with
a quark—quark kinetic vertex contain k2 ; its coefficient is is i%. The sum of
diagrams with a unit insertion is -1‘;5 Note that diagrams with a quark-
quark-gluon kinetic vertex vanish because there is no preferred transverse

direction.

On the mass shell (w = 0), the rennrmallzed HQET quark—quark proper
vertex is —"-un,,[ k3 + Zk(0, kL]]uu -~ ——LZ [1 - di'] _L“i.rﬂ'tr On
the mass shell, only dlagrams with f‘mte—mass partlcles in locps contribute
(e.g.. c—quark loops in b—quark HQET) (Fig. 1). Taking into account .JQ =

d’F
1 - 42| _, and comparing with (6), we finally obtain

Ck(#} =1. (10]'

This argument works for an arbitrary u; hence, the anomalous dimension of
the kinetic—energy operator in HQET vanishes exactly. In a similar way, it is

not difficult to prove that
Cia=1. [11)
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Figure 1: HQET quark—quark proper vertex on the mass shell

3. Matching quark—quark—gluon vertex

QCD on-shell proper vertex is characterized by 2 form factors:

)i (<) EEEL + w2 i), 12
L qu ' g L .i'q2
() =l+e—+ pl@)=ptp—g+--

The total colour charge of a quark £(0) = 1 due to the gauge invariance.

‘Ward identities in the background field formalism [27] are shown in Fig. 2,

where the large dot means convolution with the gluon incoming momentum g
and colour polarization €?, the second equalities are valid only for an infinites-
imal ¢ (or in the case of an abelian external field), and (¢7)%¢ = if*<® in the
adjoint representation. Therefore, the QCD proper vertex Af(p,q) = A,t°
obeys Afg’e® = —E(p+qe®t®)+X(p) for infinitesimal ¢, or A, (p.0) = -‘%@1.
The form factor is pmjected out by £(0) = Zq[l + % TrAL v#(1+§)]. On the
mass shell, { Tr 22 = (1 - Z5")v,, and hence £(0) = 1.

Let’s denc-te the sum of bare vertex diagrams in HQET at 1/m° as
:'gt“t:“l—;i[l + A(w, A})], where A = gv = w' — w. The Ward identity for
the static quark propagator is the same as for the ordinary one (Fig. 2).
Therefore, Ae®t?A(w, A) = —E(w + Ae?t?) + E(w) for infinitesimal A, or

dE(w)
5

Alw,0) = - (13)

It is interesting, that for an abelian external field A(w, A) = — E{‘”‘E*EM
exactly. The total colour charge of a static quark Zg[l + A(0,0)] = 1, as
expected.

The 1/m HQET bare proper vertex has the form

/ 1+
342:3 P§[1'1'‘h'w"i)p‘l'if'}'u4’“(,“4:[]‘*‘ 'tk1Pl+'tk1P_|_+ ibl-l.:!";"i.} ]
Cm a1+ﬁ 1+
{ ». 1+ A

where all A; depend on w, A; AL, (w,A) = Asi(w + A, =-A); Ae(w,d) =
Ag(w+ A, —A), and similarly ﬂ:ur Ako, Ak2. Similarly to the prewous Section,
we can see that variation of the leading vertex function at v — v+4dv coincides
with that of the kinetic-energy vertex function at p; — py +dp, if v =
%in. This requires

OA(w. A)
A
(and hence Ag1(w,A) = (& — ;%) A{w,A)). The Ward identities of Fig. 2

result in

Ap(w, A) = Aw, A), A, d)= (15)

d¥po{w
e | L ;i{ b D (16)
(in an abelian external field, Axo(w, A) = —E*“"Iw*":‘i_g‘"{“'}. Apotui, &) = 0)

=]



p 2 P+yq pP+q p
=4 e =g " o —
p -+ ge?t? P
=g[—> — e—p
P P+q p+q P
3 m_—_g (12)™"  |aannasnn — aananan
p+ ge?t® 4
= § | AMAAAAA — AAAAAAAS
+q
( ~vv§~v~— wzzww)(f”)‘ﬂ
{ z r
+

+qet

LR N e
" P B

Figure 2: Ward identities in the background field formalism

Reparameterization invariance relates the spin—orbit vertex function to
the chromomagnetic one, but we shall not discuss details here.
The on—shell HQET vertex at the tree level is

ﬁu(ki)( C“Ug—ﬁ:_ Cm[dTﬂ]+C q *‘+G[¥ﬂ "')uu(kJ
(17)

As we have demonstrated above, there are no corrections to the first two
terms. Other terms have corrections starting from two loops, if there is a
finite-mass flavour (such as ¢ in b-quark HQET). Expressing the on-shell
QCD vertex via HQET spinors, we obtain

o 2
m(k‘)[s(qf*] {uu““ ) ;,,Eﬁ’ﬂv“r--) (18)

2 H:‘T“] 2 .5 [E ﬂ yH
+ pl(g”) ( o + = + - uy (k).
Therefore, the coefficients in the HQET lagrangian are
Ck=1, Ca=py, Ca=8'4+2u-1, C,=2u-1. (19)

The first one has no corrections (10). The coefficients (19) are not indepen-
dent:
Cs =2C, - 1. (20)

Probably, reparameterization-invariance Ward identities yield relations
among corrections from finite-mass loops in HQET which ensure the absence
of corrections to (20). However, we shall not trace details here.

Similarly, at the 1/m? level, the coefficients in the HQET lagrangian are

Cor=4p'+3p+3, Cur=4p'+3u-%, Cpp=p-1, Cy=-4'-lp+l
{21}
They are not independent:

Cw?:Cwl_"]-m Cp'pzcm_ls C‘- :%( "(HTE") (22)

Calculation of C,, Cj requires matching amplitudes with two gluons. Calcu-
lation of contact terms requires matching amplitudes with light quarks.




4. Chromomagnetic interaction at two loops

As we know. the kinetic coefficient Ci(u) = 1, and the only coefficient in
the HQET lagrangian up to 1/m level which is not known exactly is the
chromomagnetic coefficient Cy,(u). It is natural to find it from QCD/HQET
matching at gy ~ m where no large logarithms appear. Renormalization group
can be used to obtain (', at g < m:

ay(p)
m(a) d
Cmlp) = Cn(m)exp | — / ;3((:})-5 , (23)
a,(m)

:
where Cm(m) = 1+ G124 + C2(§2)" + - 1m = G = mir +

dlog u
5
42 ($%)” + - - - is the anomalous dimension of the chromomagnetlc operator in
\ e 1 dl
HQET. and the J-function is 3 = — i"iﬁ% B2 + B ( ) + -+« (where

3y = Y Cq— 3Tpng). If L =logm/u is not very large, it is better to retain
all two-loop terms and neglect higher loops:

Qs

i -
Conlp) = 14(Cy = L) %l !)+[Cz —(Cim +72) L+ 7 (1 = 1) L] (_)

4
(24)

This approximation holds up to relatively large L because C is numerically
large. If L is parametrically large. then it is better to sum leading and
subleading logarithms:

4

-

. 4
; as(u) | a,(m)  Bi1y2 — Bami as(p) — as(m)
ki) i 1+ C = 5
a.(m) ix 20 4
(25)
In this case. we cannot utilize C» without knowing +3. In general, the solution
of (23) can bhe written as

Conltt) = Crh(g), Cm= as{m}%(l + dc),
2
Jr—clﬁz{flqtc-_:(“"{m)) s (26)

n 47

where ', 1s scale- and scheme-independent.
As a simple application, we consider B-B* mass splitting [28,29]}

'zctm{ﬂ:r 2 g
s |

Vin (28], g3, is missing; in [29), the leading logarithmic running of Cr, (1) has a wrong
sign.

mp= — Mg =

10

+ 5 [Con (1) 1) + (1) (1) = C W3]

where p2 (u) and p2(p) are local matrix elements of chromomagnetic interac-

tion and spin-orbit one, while p? (u) and p2, (1) are kinetic—chromomagnetic
and chromomagnetic—chromomagnetic bilocal matrix elements (in the later

case, there are two y—matrix structures, 1 and o, ; the coefficient of the

second one is implied here). Introducing renormalization group invariants

pi o= K2 (1), Pim = K(p)pim (1) + [1 = K(u)] p3(n) ,
B = RO Wy P L) (28)

we can rewrite it as
55 [Cm (o = 269) + Coam + 4] - (29

In order to obtain Cy,, we should calculatie the heavy—quark chromomag-
netic moment u (Fig. 3). All on-shell massive integrals can be reduced to 3
basis ones

(30)
using integration by parts [30]-[32]. I and I; are expressed via I'-functions
of d; I5 is expressed via I?, I, and one difficult convergent integral [32]

T=7"log2 - g({3}+0{6}. (31)
The result has the structure
2. =2 4 e 13
gﬂm !'T.! o
— e (C'p, C [ e 32
H 1+(4:,T)d;‘2( F,Ca) x ﬂ+ (4) (32)

x (C&,CpCa,C, CrTrm, CaTeny, CrTp, CaTr) x (I, 11, I2) .

Now we express it via a,(u) and expand in €. The coefficient of 1/¢ gives the
anomalous dimension

" L | e\ 2
2+ A (110, - 18Temy) (72) 4+ (33)

Tm =

i1
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Figure 3: Diagrams for the QCD proper vertex
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The chromomagnetic interaction coefficient at y = m is

Cm(m) = 143(Cr + Ca) 222
2
+|C¢ (—BI e 31) + CpCa (i; AT
3 . 9
4% 17 L) RO
+C3 (ﬁf-g.?-wﬁ-) (34)
+CpTemy __1?_0_ + C4Trn —irz—gg—{g
9 9 27
16 , 476 , 208\ | /a,\2
i o ? ("?’ } *9’") Tk ( 5 ?ﬁ)] (&)
13 a,(m)

+(21.79 - 1.91ny) (f;—)z

The coefficient of (a,/r)? is about 11 for n; = 4 light flavours. It is 40% less
than the expectation based on naive nonabelianization [33]. The contribution
of the heavy quark loop to this coefficient is merely —0.1.

5. Chromomagnetic interaction at higher loops

Perturbation series for (', can be rewritten via 8; instead of ny:

‘ oo L-1
Calif=14 Y Y auafial =1+ Gif(_slu,) +0 (lg) . (35)
~ L=1n=0 1 fi

There is no sensible limit of QCD in which 3, may be considered a large pa-
rameter (except, may be, ny — —o0). However, retaining only the leading 3,
terms often gives a good approximation to exact multi-loop results [33). This
limit is believed to provide information about summability of perturbation
series [34]. At the first order in 1/3,, multiplicative renormalization amounts
to subtraction of 1/¢™ terms;

(4m)2 143/’ 47 2logu/Ags

The perturbation series (35) can be rewritten as

e i F(E,LE}( 8 )L_ | 1)
Crm(p) =1+ 5 E : = (subFractmns]+O(E . (37)

(36)
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Knowledge of the function F(e,u) allows one to obtain the anomalous
dimension

23 1
m — -—F e :0 T
= 2F(-5,0+0 ) (38)
and the finite term
0 o0
o 1 /d Fie F(0,0) 4 ifdue*“fﬂF(G’u)_F(U’U)
Z Bh J u

+0($,) ' @)

(this method was used in [33]; see references in this paper). Renormalization
group invariant (26) is

1 e 1
(sczafﬂ dii i 5(u)+0(ﬁ2), (40)

Slu) = et 1 F(0,u) ; F(0,0)

H=m

(here a, is taken at g = m in the V-scheme, EXP(_,& u,“) = (%)‘2“)_

:

l L—1-1 l L-2-1

I-1
a b c

Figure 4: L-loop diagrams with the maximum number of quark loops.

The function F(e, u) is determined by the coefficient of the highest degree

of ny in the L-loop term, which is given by the diagramsin Fig. 4. Calculating
them, we obtain

Fle,u)= (E) e e”* L Qu]D(E}""f‘"lN[E, u)

m '3 —u—e¢)

D(e) = 6e™T(1--€)B(2—¢,2-¢€) =1+ Ze 4. (41)

14

N{g,u) = Crdu(l + u — 2¢u)
2—u-—c¢
21-¢)
This gives the anomalous dimension
_ .0 BL+20)0(5+26)
Tm = AT 21+ T3 (2 + A)T(1 - B)

2
e 13 B1a, 1 { fa,
_Cﬂzﬂ'l:1+ﬁ4?f_2(4ﬂ Sl
This perturbation series is convergent with the radius 5 |aes| < 4w, The Borel
image of de

C{u)T(1 - 2u)
['(3 — u)

+C4 (2 + 3u — 5e — 6eu + 267 + 4e?u).

(42)

tuCa

Huy= [4u(1+u}[?p+%(2—1&)[2-{-31&)(3’,4] — e 3

u
(43)
has infrared renormalon poles at u = 2. They produce ambiguities in the
sum of the perturbation series for de, which are of order of the residues

~ (Ay /m)*. The leading ambiguity (u = -11;) 1s

s TCx} Am
‘é'c”"'( Bm)'}?’ 35

where Am is the ambiguity of the heavy—quark pole mass [35,36].

Physical quantities, such as the mass splitting (27), are factorized into
short—distance coefficients and long-distance hadronic matrix elements. In
regularization schemes without a hard momentum cut-off, such as MS, Wil-
son coefficients also contain large—distance contributions which produce in-
frared renormalon ambiguities. Likewise, hadronic matrix elements contain
small—distance contributions which produce ultraviolet renormalon ambigui-
ties. In other words, the separation into short- and long-distance contribu-
tions is ambiguous; only when they are combined to form a physical quantity,
an unambiguous result is obtained. Cancellations between infrared and ul-
traviolet renormalon ambiguities in HQET were traced in [37].

Ultraviolet renormalon ambiguities in matrix elements p} don’t depend
on external states, and may be calculated at the level of quarks and gluons
(Fig. 5). Note that there is an ultraviolet renormalon ambiguity in the wave

[=

function renormalization AZg = 382 (Fig. 5d). The result is
2Ca 19 C4 i 1C4
&Pﬁm e i Cr vu’m"j'rﬂ ﬁp?nm o _ﬁa;ﬂfn"ﬁm1 &P? k3 2 Ep an‘ﬁ
(45)
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Figure 5: Diagrams for p?: quark loops are inserted in all possible ways,

The sum of ultraviolet ambiguities of the 1/m? contributions to (27) cancels
the infrared ambiguity of the leading term.

The requirement of cancellation of renormalon ambiguities in the mass
splitting (28) for all m allows us to establish the structure of the leading
infrared renormalon singularity in S(u) at u = 5 beyond the large 3, limit.

The ultraviolet ambiguity of the square bracket in (28) should be equal to
,u,*u times
L

Ix __25
A= me"HB g, PRI 4 Ofay)]. (46)

In order to reproduce the correct fractional powers of a,, S{u) in (40) should

have the branch point at u = :1,- instead of a pole:

1
S(u]: 3 145 ,-'25’ QCFﬁl ——C_q,ﬁg {4?]
(3 —u)
19 CAI{E CAI‘!.4

+

1
+ 19 — ) y
12 (%“H) Y1/28, 2 ( u},lﬁﬁr
where omitted terms are suppressed as % — u compared to the displayed
ones. Normalization constants are known in the large 3, limit only: K; =
1+ O(1/B). The large—order behaviour of the perturbation series for dc is

Cns1 = n!(26,)" nP2/26% [4Cpf{1 ~- 2C4K, (48)
E 3 %Cﬁﬁsn—ﬂf?ﬁt $E€y K4n7”“2’5‘]

where omitted terms are suppressed as 1/n compared to the displayed ones.
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