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Abstract

The Coulomb corrections to the helicity amplitudes of high-
energy photon splitting are examined. The consideration is based
on the amplitudes obtained exactly in the parameter Za within
the quasiclassical approach valid for small angles between all
photon momenta. We consider the case when the transverse
momenta of both final photons are much larger than the elec-
tron mass. It is shown that at Za ~ 1 the Coulomb corrections
essentially change the result for the cross section as compared
Fo the Born approximation. The effect of screening is also taken
into account.
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1 Introduction

One of the most interesting nonlinear QED processes at high energy
is splitting of one photon into two in electric fields of atoms. The
total cross section of this process does not decrease with increasing
photon energy. First results on the observation of high-energy photon
splitting on atoms have been obtained recently in the Budker Institute
of Nuclear Physics [1]. Theoretically this process has been investigated
in [2, 3, 4, 5, 6] only in the lowest order in Zo (Born approximation),
Zle| is the nucleus charge, @ = e2/4r = 1/137 is the fine-structure
constant, e is the electron charge. Though the expressions obtained
in [2, 3] are rather cumbersome, some numerical calculations based
on the results of these papers have been carried out in [5, 6] . Using
the Weizsicker-Williams method providing the logarithmic accuracy
the cross section of the process has been obtained in an essentially
simpler form in [4]. The comparison of the exact cross section [5]
with the approximate result [4] has shown that the accuracy is better
than 20%. The Coulomb corrections to the cross section, which can
essentially modify the result as compared to that obtained in the Born
approximation, have been unknown up to now.

Recently we derived in [7] the analytical expressions for the high-
energy photon-splitting amplitudes. The result was obtained exactly in
the parameter Zo at small angles f2 and f3 between the momenta ks,
k4 of the final photons and the momentum k; of the initial one. This
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region of angles gives the main contribution to the total cross section
of the process. Small angles and high energies of photons allow one to
use the quasiclassical approach developed in [8, 9] at the investigation
of coherent photon scattering in a Coulomb field (Delbriick scattering).
This approach gives the transparent picture of the phenomenon and
essentially simplifies the calculation.

In the present paper we start from the analitycal results obtained
in [7] and investigate the role of the Coulomb corrections in the photon
splitting process. We restrict ourselves to the case |kai | = w2 fo > m,
lkai| = wafs > m (wi = |ki|, m is the electron mass) when the
amplitudes can be essentially simplified. A pure Coulomb potential as
well as the influence of screening is considered.

2 Kinematics of the process

Below we use the coordinate system with z-axis directed along k; so
that @, = ak; /w; and a; = a—a,k;/w; for an arbitrary vector a. Ac-
cording to the uncertainty relation the lifetime of the virtual electron-
positron pair is 7 ~ w1/ (m2+A?), where A = max(|kay |, [ksi]) € wr.
The characteristic transverse distance between the vi rtual particles can
be estimated as (m2+ A2)~1/2, which is much smaller than the length
of the electron-positron loop. The characteristic impact parameter is
o~ 1/A , where A = ks + ks - k; is the momentum transfer. At
small ks, and ks (f23 < 1) we have

TPk ? ki Y
a= 2, 1 [Kai 31
A% = (kay + k31 ) "‘4( P + v ) : (1)

The characteristic angular momentum is [ ~ w/A > 1, and the
quasiclassical approximation can be applied.

Let us discuss a screened Coulomb potential. In the Thomas-Fermi
model the screening radius is re ~ (ma)~1Z"13 . HRK 1/AL 1
(R is the nucleus radius), then the screening is inessential and the am-
plitude coincides with that in the pure Coulomb field. At 1/A ~ r. the

screening should be taken into account. Obviously, the impact parame-
ters p 3> r. do not contribute to the total cross section. Due to this fact
we shall concentrate ourselves on the momentum transfer region cor-
responding to the impact parameter g < re. If koy 2/wz +kay 2/ws K
r=1 | then it follows from (1) that the condition p < r. holds only
when |Ay| = |kay + kse| > 7o' Thus, the main contribution to the
amplitude is given by the region of momentum transfer A |, restricted
from below.

According to the Furry theorem the photon-splitting amplitude is
an odd function with respect to the parameter Zo. In the Born ap-
proximation the amplitude is proportional to the Fourier transform
of the Coulomb potential (~ Za/ A?). Therefore, the region of very
small momentum transfers A ~ r;! is essential, and screening should
be taken into account. In next orders of perturbation theory with re-
spect to the parameter Za ( Coulomb corrections ) the integral over all
momenta corresponding to the external field should be taken provided
that their sum is equal to A. Therefore, even at A ~ r-1 each mo-
mentum is not small and the screening can be neglected. In the Born
approximation the screening can be taken into account by multiplying
the amplitude by the factor {1 — F(A?)], where F(A?) is the atomic
electron form factor. Thus, to find the photon-splitting amplitude in
2 screened Coulomb field it is sufficient to solve the problem in a pure

Coulomb field.

3 Amplitudes

Tt is convenient to perform the calculations in terms of the helicity
amplitudes My, x4 (K1, K2, k3). The longitudinal components of the
polarization vectors e; can be eliminated owing to the relation e;k; = 0
which leads to e, = —e ky /w. After that within a small-angle approx-
imation one can neglect the difference between vectors (e23) ) and the
polarization vectors of photons propagating along k; and having the
same helicities. Therefore, the amplitudes My, ;). (ki, ks, k3) are ex-
pressed in terms of the polarization vectors e and e* corresponding to
positive and negative helicities, respectively. It is sufficient to calculate
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three amplitudes, for instance, My__ (ki k2, ks) , M++:|.(k1,k2,k3)
and My4_(ki, ks, ka) . The rest amplitudes can be obtained by sub-

stitutions:

M,y (K1, ko, k3) = My (ki, ks, ko) ,
M_y»s (K1, k2, ka) = Mya,a, (ki ko, ks) (e & e’),
where A denotes the helicity opposite to A Let us introduce two-
dimensional vectors f3 = kg, /wa, f3 = kay /w3 (If23] < 1) and fo3 =
f, — f3. We represent the amplitudes obtained in [7] for k21| > m,
lk31| > m in the following form

Lo
8e3 (|Q+ ﬁ|) :
o dq (TV)Im | —— , (2)
M A 9 [ q( l) lq o ] ﬁ!

kg (€™, kofp — A) wy & Wﬂ) :
Wi =516 f ae 4(e*f3)(e*f23) (e a) g (f2 of;)
1]
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7 wzkgkz (K2 — € (ef23) , 2 ) (""’%““52) ]4_
T e i |25 (2 - T e
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Q
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L

EKa - R2 PR~ ﬁ':zﬁ‘xa]

2w Dy 2w3 Dy

where q is a two-dimensional vector lying in the plane perpendicular
to ki, A denotes A .

]

In eq. (2) the following notation is used:

2 2
woK3za* — w3ksb ,
Ezﬁwgﬂﬁ,ﬁ;g:wg-l—i',l}l: —‘1[}, {3}
e
wgﬁgéz - lebE W]Eaz -+ {:Jgf'i'rgl'.z
‘DQ = 71)3 - ’
Wik2 Wak3

a=q—A+2kfy , b=q+ A —2k3f3

)
C=q+ﬁ-25f23 : E=q—A+2Efg3

Note that vectors e and e* appeared in denominators in (2) owing
to the use of the relation 2(ea)(e*a) = aZ.

As it was mentioned above, the photon-splitting amplitude ob-
tained in the Born approximation [2, 3] for arbitrary energies and
momentum transfers is rather cumbersome. It is interesting to obtain
the Born amplitude from (2). In this approximation

_}za[ i it
(ea+A) (enq-A)]°

It is convenient to rewrite the quantities Dy_3 in (3) as

Ko — K 2 AwownKkek _
plz(q+ zw 3.&) s | I (4)
1

2
4w
K3+ € !) _ Awywakge

DE:(Q_ W3

Ko — € 2 AywaKo€
DSE(‘H L ﬁ) + derwshze gy
2 y

After that we shift the variable of integration q in each term so that
the quantities D;_3 become independent of the angle ¢ of the vector
q. For instance, in the terms containing D; we make the substitution
q = q— F2=Fa A After passing to the variable z = exp(i¢) we
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can easily take the corresponding contour integral. Taking also the
integrals with respect to |q| and ¢, we get for the Born amplitudes

2iZae3(f; x £3),

M. = 5
g ﬂ'.&z (E*fz)(e*f;j) (E*fgg) : ({3}
2(Zea)eduw, (efq) + (ef3), a3
M. — el
LS m A? (ef3)2wows {(e.ﬁ.) {1 ’ (ef23) ln(ﬂ?a) i
(Efz)z 4 (Ef3)2 ?1'2 1 ay 2 2
+ (Efza)z 5 + 51112(;)-{-[&2(1 ~ﬂz}+L12(1 —{13) +
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1
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+
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where

A? A A?
3 a2 = 3 dz =

a =

2 2

Ligpeh s —-fiifln(l —¢)
0
It follows from (3) that In(—ay) should be interpreted as In(—a; +
i0) = In(a,) + iw. Besides,

2
” 4 . w ; g
Lig(14+a;) = Liz(14a; —10) = o In(1+ay)[ln(ay) + ix] — Liz(—a,)

The result (5) is obtained for |A | > |A.|. One can show that it
remains valid in the case |A | ~ |A,] if the expression (1) for A? is
used in (5). Actually, in eq. (5) the difference between A? and A?
is essential only in the overall factor 1/A?. For a screened Coulomb
potential the amplitudes (5) should be multiplied by the atomic form
factor (1 — F(A?)). For the case of Moliére potential [10] it reads

3
g

1- F(A%) =A%y ——— (6)
AR
where
a; = 0.1 oy =086 , ag=0.35" , " f; = fab; ", (7)
by=6 , by=12 , b3=03 , fo=m2ZY3/121

Remind, that the representation (5) is valid when |ka, |, |k3i| > m.

Let us consider the asymptotics of the amplitudes (2) at |A;| <
|p|, where A | = wafy+wsfs and p = (wafy —wsf3)/2. It is this region
of variables which gives the main contribution to the cross section in
the Weizsicker-Williams approximation. To get this asymptotics we
multiply T in (2) by

- il

1=19(q— a*) + 9’ - ¢3) ¥




where |A| < go < |p|. Then, for the term in (2) proportional to
9(g5 — q*) one can put g =0 and A =0 in T and integrate by parts
over q. After that, using the relation Vo9(¢3 — q?) = —2q§(¢ — q?)
one can easily take the integral over q since at |q| = go >> |A| one has

2i 8
A
Im (Iq+&|) mleﬂfg—?
lq — A q

As a result, in the region |g| < go the term proportional to Ze« is
independent of gg and the terms of next orders in Zo are small in the
parameter |A|/qq.

For the term proportional to 9(q? — ¢2) we get

lq + &I)ziz" < 170 A —24(qd)
= lq|*

We put A =0 in T and perform the integration first over the angles
of q and then over [q|. As a result, the main in go/|p| contribution
is independent of go and proportional to Za. Taking the sum of the
contributions from these two regions and performing the integration
over the energy ¢, we get

41N (ep)® 47 cePwows
=5 Ly 8
Hipo= =R Rl ) Thee i (8)

M = N|e"A + 2(eA) (e*p)” Jop 2T By +
o+ = - 5 s
2 2
witw3, w3 2
¥ 77 (In p + 7 ))]

+ im) +

2 i
o 1

p2

2 2 )
+w1 +2w3 (In? k. + 2i7 In ﬁ})] .
2w; C Wy Wy

In the small-angle approximation (|f3|,|f3] < 1) the cross section of
the process reads:
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L .
do = ES#IMF z(1 — z)dz dfy dfs (9)
where z = wy/wy, so that wy = w; (1 — z). In terms of the variables p

and A the cross section has the form

T
Br5%wiz(l—2z) '

do = |M|?

(10)

Substituting (8) into (10) and performing the elementary integration
over the angles of vectors A and p, we come to the expression

472%a® dp? dA? dx

where the function g(z) for different polarizations has the form

1—=z
I

PG e (1220

14 (2/z - 1)(in(1 —z) +ir) +
1+ (1-2)?

2
23:2 } 1

gi-(E)=a(l=2) , grile) = grp{bms)

g+++tm)=§x(1—.:c.)[1+(_1_+(2z—_1)tn( )+ (2

g+-(2) = ';;x(l — z) [1 g

+ (In*(1 - 2) + 2ixIn(1 — z))

Formulae (11) and (12) are in agreement with the corresponding results
of [4], obtained in the Weizsicker-Williams approximation. However,
this approach does not allow to obtain the amplitudes (8) themselves.
The large logarithm appears after the integration of (11) over A? from
A2 .. up to p? where A, ~ ro! for the screened Coulomb potential
and A,,;n ~ p*/w; for the pure Coulomb case. It is interésting to
compare the contributions of different helicity amplitudes to the cross

T
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section at A — 0. In Fig. 1 the function g(:c) is shown for different
helicities as well as the quantity - 1t

glz) = §+—-(ﬂ’)+9+++($)+§++ (2) + 94-+(2) (13)

which corresponds to the summa,t_ion over the final photon polariza—
tions. It is seen that g(z) has a wide plateau.

The Coulomb corrections to the photon-splitting amplitude at A —

0 are small compared to the Born term (8). We consider the asymp-
totics of the Coulomb corrections at A — 0 in the next Section.

4 Coulomb corrections

To analyze the Coulomb corrections we make the further transforma-
tion of the expression (2). Let us multiply right side of (2) by

1
@+ 2 [ Di(a- o/ - A%/ -1)

and make the substitution q — q + A/y. After that the integral over
|q| becomes trivial, and the integral over the angle of g can be easily
taken by means of the residue technique. Finally, we get

131 A8 g iZal' -
Mo de [ausgly [Re(—-+—1+y) ]-R; (14)

WHIWEW3¢3_1 1-— y2 1- Yy

Ko (€*, kafz — A) 9(r® — %) (‘*’2 \F. ‘-‘-’3) R
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(E*fa)[ﬂﬂ(er) (e*f3) — ka(1+1/y)(e"A)(ef2)]
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+9(¢* — ¢

” (E.Hg -+ Ko s B(E*fgg)ﬁg(ﬁz -+ £ ) +
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- I
gk +¢€ 1
$0(ri <~ ¢ (K2 )(HE

2wa(e*ry) [e"‘rl)(efg)‘ —-53(1/y ~ 1){eA)(e*f3) £

1
+E(E*T1)(Efz3) — k3(1/y — 1)(eA)(e*f3) )] ‘

Here we use the following notation:

uiA(}-—1+~2—ﬂ), ulmﬁ(l—l-{r@),

Y W9 i W
u2:&(l;-1_2_5) ’
Y et
qz?_&Z(l/y?_i], r:&(l/y“l)‘l‘?fiii’?a
r1 = A(1/y+1) - 2%afs, )
4w £ 4w
s=u’+ QE G lug—_ﬁz f% y 81 = Uf 2 ‘}‘2 oo 2¢d3;12a“53 f%a — 10,
Wy w1
4dwiwyKaE
sy=ul+¢’ - ———f3.

Since the function R in (14) is independent of the parameter Za the
Coulomb corrections M{®) can be obtained from (14) by the substitu-

tion i : -
1 [ ¥ Aed 1 Tt
RB(—*Ly) Yy (_—-”) -1
1= L=§

The asymptotics of M(9) at A — 0 depends on the photon helicities.
The most simple way to get this asymptotics is to start directly from
- (2). For M_E_C_]__ the main contribution is determined by the region
. g~ p> A (remind that p = (wof; — wsf3)/2), while for M_ﬁ_ + and
M_E_c_f__ it comes from the region ¢ ~ A < p. After the corresponding
expansion and integration over the energy we get at A — 0

14
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e Tw; (e*p)? Sengy | )
3
fidhici o te” Z sty
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e>Zawiws
272wt (e p) (€B)

258 cx
<[ (e*jjq_ % {R ({g{%}) p 1] ’

la—-A] . e(qd- ﬂ\)]
X []n = + targ =t :

MY} = x

It follows from (16} that in this limiting case the Coulomb correction
M) _ is small, while M{), and MJ{F':J]F_. depend only on the direction
of vector A, but not on its module (it becomes obvious after the
substitution g — qA). We discuss the role of Coulomb corrections in
the next Section.

5 Cross section

As it was suggested in [11], to overcome the problems of background
in the measurement of photon splitting one has to register the events
with |f33] > fo where fo < 1 is determined by the experimental
conditions. Let us consider the cross section integrated over f3 for
[f5| > fo- It is interesting to compare the exact ( in Za ) cross section
do [dx df, with that obtained in the Born approximation (dog/dz df;)
and also with the cross section in the Weizsacker-Williams approxima-
tion (dow /dz df;). Remind that dow /dx df, is in fact the Born cross
section calculated within logarithmic accuracy. Large logarithm cor-
responds to the contribution of the region A € p = |w,f; — wsf3) /2|,
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where fs & 2 f3/(1 — ). Taking the integral over A? in eq. (11) from
AZ. upto A?,, where (see [4])

min ef f1
Afiin = A% = (W f32/2(1 - 7)), Alsp = p* = (a2 f2)?,

and summing over the final phatfm pﬂ]arizafions we get for a pure
Coulomb potential |

dow  8Z%c° g(z) 2(1 —z) .
== | Ty

For the case of a screened Coulomb potential the approximate cross
section is o

~f2 —Jo) . .. (17)

T
l—=z

dow _ 47%° g(z) TN ¥
dzdf, ~ mow] 2ff [2n(*57) +9] 065850 09

I~ 2
The function 7 in eq. (18}15
T:lmZ&f{ln‘ﬂi-{-l)e.?E [ % - nﬂtha‘_} _ﬂﬂj i (19)
i=1 A L :
a; = B} +A2:,. /6

and the coefficients «;, b; and g are defined in eq. (7). it ,ﬁf}ﬁn/ﬁ% > 1

then v = —In(A%,;,/63) and eq. (18) turns toeq. (17). If A2 . /B2 <
1 then v = —0.158. |

For the case of a pure Coulomb potential the dependence of o5 'do/dzdf;

on f3/fo is shown in Figs. 2-4 for fo = 1073, Z = 92 and different
values of z, ' |
e-ian b 47Z%a’
. G s - mwify

In these figures the solid curves represent the exact cross sections
the dashed ones are Botn results (dop/dz dfs) and the dash-dotted :Iaa.rie1
obtained in the Weizsacker-Williams approximation. At z = 0.7 (Fig.
2) the difference between dopg/dz dfy and daw.'fd;r_dfg is small. At
z = 0.3 (Fig. 3) dog/dz df, differs noticeably from dow /dz dfy. Note
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that within a good accuracy the cross section dog/dz at z = 0.3 agrees
with that obtained from eq. (17) after the integration over f;. It should
be so, since do/dz is invariant with respect to the substitution z —
1—z and at = = 0.7, as we pointed out above, the approximate result
(17) is in accordance with the exact one. At z = 0.5 a big difference
between dog/dz dfy and dow /dz df; (see Fig. 4) in the region f; ~
fo can be explained as follows. The large logarithm appears as a
result of integration with respect to f3 over the range |(1 — z)f3 +
zfy| € zf,. After the integration over the azimuth angle ¢ between
vectors £, and —f5 we should integrate over fs from fo up to zf2/(1 -
z) and from zf,/(1 — z) to infinity. If zf2/(1 - z) ~ fo then the
contribution of the first region vanishes and the cross section becomes
approximately two times smaller (in accordance with Fig. 4). In all
cases the exact cross section at Zo ~ 1 is noticeably smaller than the
Born one. The magnitude of this effect depends on kinematics. For
instance, at z = 0.3 (Fig. 3) and f, < fo(1 — z)/z when A ~ p the
exact cross section is several times smaller than the Born one, while
for fo > fo(1—2)/z the difference of these cross sections is about 15%.
For z = 0.5 and 0.7 (Figs. 3,4) this difference is about 20% and almost
independent of fa/fo. All indicated relations between cross sections
take place also when screening is taken into account. Emphasize that
at A ~ p and Za ~ 1 the exact cross section differential over all
variables (do/dz df2dfs) is much smaller than the Born one. In Fig.
5 this differential cross section is shown for the case of a screened
Coulomb potential. The peak for azimuth angle ¢ = = corresponds
to small A. There is a narrow notch at f3 = zfa/(1 — ) which
corresponds to the condition & = 0. The width & f3 of the notch is
about max(A,/ws, fo/ws). For the parameters used in Fig. 5, df5 is
about 1074. ' .

Let us discuss now the cross section do/dz. In the Weizsdcker-
Williams approximation for a pure Coulomb potential the cross section
dow /dz obtained from (17) is

d(z - 1/2) (21“ _{(17;_{1 % 1) YRR

do -
T:i = ﬂfg JGQ(I} {

2
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+(z & 1- :r:}] §

If wi f§/(1 - z) < Bo, then the corresponding cross section in a
screened potential has the form

%"‘i = 7 f3 30§ (%) [ﬂ(m ;f/ 2 (m :”E;f %+ {].842) + ~=(21)

+{z < ].mzr)}.

The inequality A < p which provides the applicability of the
Weizsacker-Williams approximation corresponds tc a small angle ¢
between the vectors fy and —f; ( when the vectors f3 and fs: have
almost opposite directions). So, it is interesting to consider the quan-
tity do(@Ymaz)/dz which is the Born cross section integrated over the
angle ¢ from —@,,,; 10 @mas. In the case of a pure Coulomb potential
the dependence of {rf&ag)‘tdag(gamm)/dx On Ymaz is shown in Fig,.
6 for different z and fy = 10~3. One can see that the cross section
is saturated at relatively large ¢,,4,. The same conclusion is valid for
the case of a screened Coulomb potential. | i

Let us represent the exact cross section as 2 sum do /dz = dog /dz+
doc/dz. As it was mentioned above, the region of small momentum
transfers A is not important for the Coulomb corrections doc/dz.
Therefore, one can neglect the effects of screening in the calculation
of doc/dz. The quantity F = (7 flog)~'doc/dz is independent of
fo and w; and is the functior of Z& and z. The dependence of F on
z for different Z is shown in Fig. 7. On can see that the Coulomb
corrections diminish the cross section of the process. To realize the
magnitude of this effect we plot in Fig. 8 the cross sections do/dz,
dog/dz and dow /dz for Z = 83 and fo = 1673, It is seen that the
Coulomb corrections are important. This is the consequence of the
fact that at Za ~ 1 the constant added to the logarithm, ie. the
quantity @? F/j(z), is large enough in a wide range of z. Although
this quantity is independent of fy and wy, the relative contribution of
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the Coulomb corrections to the exact cross section depends on these
parameters since the large logarithm contains them.

Due to the gauge invariance the cross section do/dz should be
equal to zero at # = 1 if the electron mass is not neglected. This is
not the case for massless particles as it has been noted in [12]. That
is why the cross section do/dz calculated in zero-mass limit does not
vanish at x — 1 (see Fig. 8) . When z — 1 the main contribution to
the cross section comes from the range of angles f3 ~ f5/4/1 — z and
fa~ fo, A = wyfs, where the Weizsicker-Williams approximation
is not applicable. Since f; < 1, the relation 1 — z > fZ should be
fulfilled. Besides, the condition k3 ; > m means that (1 — z)w; f3 ~
V1—zwy fo> morl—z> (mfw fo)

If we represent the amplitude M of the process as a sum of Born
amplitude Mg and Coulomb corrections M¢, then [1’1»if|2 = |Mpg|? +
2Re(MiMc) + |Mc|*. Taking into account in Mg only the lowest in
Za term (proportional to (Za)®), we get dag]/(Zﬂf)“ = ¢1+¢3(Za)?,
where ¢; and ¢; are independent of Za and ¢ > 0. The dependence
of (Za)~*(x féoo) 1 doc /dx on Za is shown in Fig. 9 for different z.
One can see that starting from Z ~ 30 the contribution of the next
order Coulomb corrections essentially modifies the behavior of doc.

Thus, the Coulomb corrections are very important for the adequate
description of high-energy photon splitting and must be taken into
account at the comparison of theory and experiment.

We are grateful to V.S. Fadin and E.A. Kuraev for useful discus-

SIons.
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Figure 1: Function g(z) from eq. (12) for different polarizations: g, __(z)
(dotted curve),gy4- (z) (dashed curve),g;i+(z) (dash-dotted curve), and
g(z) (solid curve), eq. (13).
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Figure 2: o5 'do/dzdfy versus fy/fy for a pure Coulomb potential, Ino=
1073, z = 0.7, Z = 92, oy is given in the text. The dash-dotted curve cor-
responds to the Weizsiacker-Williams approximation, the dashed curve gives
the Born approximation, the solid curve is the exact result.
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Figure 4: Same as Fig. 4 but for z = 0.5 .
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Figure 5: Differential cross section do/dzdfsdfs versus fa in a screened
Coulomb potential for different azimuth angle ¢ between vectors f; and f3;
Z =83,z =0.7,w; = 1GeV, f; = bmrad. The dashed curve (Born approxi-
mation) and the solid curve (exact cross section) correspond to ¢ = m. The
dash-dotted curve (Born approximation) and the dotted curve (exact cross

section) correspond to ¢ = /2.
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Figure 7: The dependence of (7wfioo) 'doc/dx on z for Z=32 (dotted
curve), 47 (dash-dotted curve), 64 (dashed curve) and 83 (solid curve).
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Figure 8: The dependence of (wfioo) 'do/dz on = for Z=83, fo = 1073,
The dotted curve corresponds to the Weizsacker-Williams approximation, the
dashed curve gives the Born approximation and the solid one shows the result
exact in Zea.
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