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Abstract

Application of peripheral cooling for ion-optics grids of diagnostic
neutral beam injector is considered. The injector is designed to oper-
ate with up to 10 s pulse duration and 1 pulse/5 min repetition rate.
The grid deformations under thermoloads during beam-on phase were
determined using appropriate semi-analitical model. Distribution of
thermo-mechanical stresses over grids and thermo-stability limit as a
function of the grids characteristics and heat loads were determinened
as well. The simulation results are compared with those obtained in

the experiment with the grid prototype.
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1 Introduction

It is well known that formation of long pulse ion beams with energy exceeding
a few tens of keVs leads to significant heat load on accelerator electrodes due
to intense bombardment by ions, secondary electrons and charge-exchange
neutrals. Therefore, even if the current density is quite moderate, of the
order of 100 mA /em?, whenever a beam duration exceeds a few seconds, the
temperature rise of the electrodes becomes substantial, requiring their inten-
sive cooling. For this reason, multi-aperture ion-optics systems of powerful
injectors are fitted out with the water cooling channels located around the
apertures. Due to the required high precision of the beamlets geometry and
their relative alignment, fabrication of the inner channels for coolant appears
to be quite difficult and expensive. At the same time, quite often, the aver-
aged loads are moderate (tens of watts) compared with those during beam-on
phase because of the long intervals between the pulses. If this is the case,
rather less expensive and simpler method of edge grid cooling might become
applicable. Additional advantage of the grid cooling from periphery is that
the grid transparency can be then increased thus leading to higher beam lu-
minosity. We used this approach in order to develop the grids for diagnostic
neutral beam injector which will be applied to spectroscopic diagnostics of
impurities in the plasma core of the tokamak TEXTOR-94 [1]. Key parame-
ters of the source are:; the neutral hydrogen beamn current of 1 eq.A incident

on the plasma, and the beam energy of 50 keV. Taking the ion species frac-
tions of 90:5:5 % ( H* : HY : HF ) and neutralization efficiency of ~ 50%
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into account, an output ion current of 2 A is minimally required in the ion
source. An angular divergence of the beam is specified to be less than 1°.
The ion source has to operate in long pulse mode. It has been determined
that such a source should provide ten seconds long beam pulses, which is
consistent with the time of plasma maintenance in TEXTOR- 94. Each indi-
vidual pulse consists of a chain of millisecond pulses with millisecond pauses
between them, so that total duration of the beam-on time amounts to 5 s.

In the injector ion source the emitter plasmais produced by an inductively
excited RF-discharge with a frequency of 5-6 Mhz in a non-homogeneous
magnetic field with a maximum of 60G [2]. The beam is to be extracted and
accelerated by a four-electrode ion-optics system with slightly concave grids
providing beam focusing in TEXTOR plasma at 4 m distance downstream
from the ion source.

Under optimal conditions, when most of the particles avoid striking the
electrodes, heat loads on those are sufficiently small. Taking this into ac-
count, an ion-optics system was developed with grids made of molybdenum
plates of sufficiently large thickness and consequently of large heat capacity.
Therefore, even without any cooling, their estimated temperature rise during
the injector operation remains acceptable. To remove heat from the elec-
trodes between pulses, as well as (partially) during the injection pulse, the
electrodes are mounted on water cooled flanges. The suggested grid design
seems advantageous from technological viewpoint and enables utilization of
the high electric strength of molybdenum. Besides, significantly lower cost of
the suggested grid design looks rather attractive for other applications, such
as the ion-optics system of long pulse technological ion sources, in which
the averaged heat load is moderate due to the small duty factor. Negative
consequence of peripheral grids cooling is that under certain conditions the
central part of the electrode may be overheated so that significant radial
temperature gradients will develop. Corresponding thermal stresses result
in radial and longitudinal displacements of electrodes and changes of gaps.
To find operational limits of the source it is important to know the displace-
ments which allow for accurate beam formation by the ion-optics system as
functions of the thermal loads. The most critical issue here is whether the
thermal gradients exceed critical values, above which a sharp instability can
develop, leading to drastic variations of electrode bending and large inad-
missible changes of gaps between electrodes. Taking this into account, the
thermoelastic stresses in the grids should be subjected to serious study. In
the present paper we discuss results of calculations of the grid deformations
during the beam-on phase and the thermo-mechanical stability of the grids.
The paper is organized as follows. In Sec.2 the heat loads on the grids are
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specified. In order to estimate the stresses in the grids we have used an ide-
alized analytical model described in this Section. Here is also presented the
distribution of the stresses and the corresponding deformations of the grids.
Thermo-mechanical stability of the grids with peripheral cooling is discussed
in Sec.3. Sec.4 summarizes the main results of the work.

2 Assessment of thermo-mechanical stresses
and deformations of the electrodes

In the case of optimal beam formation most of the accelerated ions avoid
the electrodes and the main load to electrodes is carried by the secondary
particles. Significant fraction of the beam particles can only reach the elec-
trodes in the transitional, quite non-optimal operation modes which take
place at the initial application of voltage to the electrodes or after the opera-
tion start after break-down. Generally the total duration of such modes (for
a few-seconds beams) is not large (less than 1 ms) and the heating by initial
particles is not essential. The numerical analysis of the secondary particle
trajectories for typical four electrode system was performed in paper [3]. It
was shown that the fraction of beam power deposited to electrode is directly
proportional to the hydrogen pressure on the beamlet exit and is equal to
~ 0.8% of the ion beam power, if the pressure in the electrode gaps is in
the range of ~ 3 — 5 x 10=2 Torr. The calculated pressure of hydrogen for
the planned plasma emitter is close to the given value and thus, the beam
power fraction deposited on electrodes can be estimated as 0.8% . The power
density at the electrode can be then estimated as 8 x 10~°n;jU =~ 24W /em?.
Taking into account the beam duty factor of 0.5, the average power density
at the electrodes is ~ 12W/em?.

In contrast to other electrodes, the plasma electrode is heated mainly by
the primary plasma. If one assumes that each ion-electron pair deposits an
energy of 10 eV, at the selected current density of 0.12 A/em? the power
density released at the surface will be ~ 1.2W/cm?. This value is much less
than the power density at the surface of extracting and accelerating grids.
Of course, we do not take into account the heat loads carried to the electrode
by radiation from the discharge, energetic neutrals, etc., which could be sig-
nificant. Nevertheless, we assume for estimates of thermo-stability limit and
deformation of the plates that the maximum heat load is 12W//em?, as it was
estimated for extracting and accelerating electrodes.

Thermal loads to the electrodes may cause significant mechanical stresses



and deformations. In this case, angular spread of the beam will be increased
with accompanied increase of the thermal loads on the eletrodes. This makes
it necessary to perform numerical calculation of the deformations to select
optimal design solutions. In the calculations of the heating and mechanical
loads we have used simplified model of the electrodes that in many respects
is sufficient to reveal the most critical points of the design. It was taken that
in the region occupied by the beam output holes the electrode thickness is
the same as in the periphery, but its local heat counductivity x*, specific
heat capacity C, and the Young modulus E are effectively 2 times less than
those on the periphery. This assumption is justified by a 59% transparency
of the electrodes. The electrode thickness was initially selected to be 2 mm,
the electrode material to be the vacuum melted molibdenum. It was assumed
that the thermal load is homogeneously distributed in the region of the holes
location on the electrode. The characteristics of molibdenum which were
used in the calculations together with the electrode dimensions are given in
Table 1.

Table 1: Characteristics of the electrode

Parameter Value
Electrode radius, a 5 cm
Beam radius, b 3.25 cm
Thermal load on the electrode

within r< b 12 W/cm?

Thermal lengthening, o
Thermal conductivity, x
Specific heat capacity, C

5.1 x 10-5 °C~1 (500°C)
1.3 W/(cm °C) (500°C)
3.18 J/(cm® °C) (475°C)

Poisson coefficient, p 0.324
Young modulus, E _ 3.3x10% kG/cm? (20°C)
Averaged power on electrode, P | 400W

2..1 Temperature profile

The radial distribution of electrode temperature was found from the solution
of the thermal conductivity equation:

z i ;
et s = x2 L (st gr) +a(r) (1)
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together with the boundary conditions

oTft,r=10). .
or -

AT, F2a) NI -1;)

b or lié il 5

where y*,h* and L - are the heat counductivity, thickness and length of the
electrode holder respectively, T, = 300°K is the temperature of the cooled
part of the holder, h=2mm is the plate thickness, f=1 at r< 3.25 cm and =2
at 3.25 cm<r<5 cm.

In this case, it was assumed that there was enough time for the tempera-
ture to be equalized over the electrode thickness. Equation (1) was integrated
numerically using the real differential scheme. In the calculations of heating
and tensions which appear during the heating we took the initial temperature
of the electrode to be 300°K. According to the calculation results, the heat
sink through the holders appeared to be negligeble compared to the power
deposited on the grid. The maximum temperature rise of the electrode was
found to be 230°K at 400 W of total deposited power. The calculated radial
profile of temperature on the 10th second of heating is given in Fig.1.
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Figure 1: Electrode temperature vs. radius.



9.2 Estimates of thermomechanical tensions

A flat, independent of z (0,; = 02z = 0y =0 ) deformation of a plate can
be described in terms of the thermoelastic potential ¥, which satisfies the
following equation:

A¥ = (14 p)a’ﬁ

Here « is the thermal expansion coefficient, T = T'—T;, where T; is the initial
temperature, and g is the Poisson coeflicient. The 2D vector of dislacements
is given in terms of ¥ by the relationship

o= ‘F(‘I’ e ‘I’:}),
where W, describes the effect of boundary conditions and satisfies
52
dedy

In the case when the temperature distribution and the boundary condi-
tions are axisymmetric, the above expressions reduce to

Uy = 0.

18, 0¥ . e
< (r7=) = a(l+p)T(r), | (2)
and .
Up = Ta-‘;:' - Cr.

The constant C, originating from ¥g, also enters into expressions for the
tension components
E 10¥ E
1+pr dr 1—p
e E 0°Y C E
o R T L 1—p
Thus, C is responsible for any homogeneous stretching that may be imposed
on the plate by the boundary conditions.
Solving Eq.(2) for 8¥/dr and assuming u,(0) = 0, we find

Trp =

U= (14 p)%] T(»")r'dr' — C'r,
0
aE {74 ; E
Tpr = _ﬁ' /;} T(T")?" dr’ — c'l_:__';r (3)
a o
J-:pgp = ﬁ{ra‘ff)*
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As an approximation, let’s use the following formulation of the boundary
problem: the round grid plate of radius a is fixed in an elastic holder, that
is an infinite flat plate of the same thickness as the grid, but with different
Young modulus E' and Poisson coefficient p'. Introducing

_ B 14
T E 14y

we note that 3 — oo corresponds to the fixed-boundary problem, while § =0
represents the free-boundary one.

A holder deformation u, = &/r causes radial stress o, = —E'6/(1 +u')r?,
so that the equivalent boundary condition for the grid is - -

SRR 10 | 4)

1+p a

Using solution (3) with this boundary condition we find
A} 4
- P Yol ah
C—-'}’a—z'./.ﬂ T(T‘)T‘dr}

where v = (8 - 1)(8/(1 + p) + 1/(1 - 1))t v =14 p > 0 for the fixed
boundary, while ¥ = u—1 < 0 for the free boundary problem. Radial stresses
and deformations of the grid plate in terms of + look like

LL aFE S AN i ! ak i T
the Eapsgery T(r")r'dr Py T(r')r'dr, (5)
d
Tpp = E}T-(""'rr}: | (6)
up = (14 ;,.-,]E-f T(r')r'dr' — "fa—;— T(r')r'dr.
T Jo a% Jo

The radial profiles for tensions and displacements are shown at the end
of a beam current pulse for t=10 s and 4 = p — 1 in Figs.2-3.

3 Transverse bending and thermo-stability of
electrode |

In the previous Section we assumed that the temperature is homogeneous over
the plate thickness. This requires the momentum caused by the temperature
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Figure 3: Electrode displacement vs. radius.
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inhomogeneity My = urEf _hya T(2)zdz ~ aE§Th%/12 to be small enough
compared to the moment of forces acting in the plane of the electrode:

18 .rc,, aESTh?
h— e

rﬂr( R )™ 12a2
Here R = 400cm is the designed curvature radius. Using expressions for the
thermomechanical tensions (5) this condition can be rewritten as

. .
0T & —— 124* ( (l _2? f T(r’)r’dr’) :

In our case a?/Rh ~ 0.3, and this condition is well satisfied.

For a heated spherical electrode of radius R one can find its bending (i.e.
displacements along the Z axis ) using equations (14.4) from [4] and the
equation (7.9) from [5](see also [6])

dT'(z,y, 138 3,
—(%—z)}} h;g}*(fﬂrrr 85')’ (7)

D {V“&* + a1 4+ p)V¥(

where D = 5 Eh3 /(1 — p?) - is the flextural rigidity of a plate, §(r) describes
the vertical grid position as

ﬂﬂ-"?‘z

Sy

so that £* is the displacement and £* < £ is assumed below the stability
threshold; the components of the tension tensor o,p are defined in the plate
surface by expressions (5),(6).

Let us find solution of equation (7) neglecting tensions caused by an in-
homogeneous heating over the plate thickness. Since £* < £, we have

13 o€ h1d
b3 0 ) S~ g 0w,

+&,

and, assuming cylindrical symmetry, Eq.(7) takes the form:

14 0o h.l 8
{Fa‘;"ar} C AR ) )

To obtain a simple approximation we shall use the parabollc temper-
ature distribution over the electrode radius T' = Ty(1 — r?/a?). Then,
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[ T(r)yr'dr’ = $Tor?(1 — r?/2a?), and we get the following expression for
the radial tension

-1 bxt .
Tpp — EEEET{} (E—ﬁ*m)

In this approximation equation (8) becomes
15, 617 2ee1/8 . \oiuuss
{Eaﬁ'gg} &— Ea(uﬂl - ), (9)

where z = r/a, u =2+ v/(1 — p), and £ is the normalized displacement, so

that
CIET{] -‘:I-Ji o

RD . i
The general solution of the equation (9) is:

f*-:h

ik 1.5” ¥ 4 2 -

§= 5?6;': + 1232: + Az 4+ Bz’lnz+ Chnz 4+ CC.
The central boundary conditions £, V2 < oo at z = 0 leads to B,C = 0.
The constants A and CC are determined by the edge boundary conditions at
z = 1. For the inflexible edge mounting these conditions are

£8(z)=0 at z=1,
and we get the bending amplitude

" ; 1 :

f(ﬂ) =20C= i—ﬁ(gu o 4}, : : (].D)
or £* = 0.14mm in the heating maximum for h=0.2cm and rigidly fixed
boundary of the grid.

It follows that the designed curvature can be neglected because it does
not change much with heating and its bending height is much less than the

electrode thickness ;

a

fo=3p
while deformations due to the instability will be of the order of a. For the
same reason the effects of the nonuniform heating (over the thickness) are also
neglected in the following calculations. However, a flat equilibrium state of
the electrode with large tensions would become unstable against spontaneous

12

< h,

bending which results in drastic changes of the gaps and misalignments of
the beamlets. _

To find the lower stability boundary, let us first rewrite Eq.(7) for § = {+
and 87/8z = 0, with assumed cylindrical symmetry:

1 4 DX ok 1 d€ '
(122} e=—5ra (i) s

For finite bending ¢ the radial tension o, depends on §. However, the lin-
ear stability boundary corresponds to such distribution of parameters, when
the linearized equation (11) has a non-zero solution, satisfying all boundary
conditions. Linearizing Eq.(11) simply means substituting expression (5),
found for the flat equilibrim, in place of op,.

The order of Eq.(11) can be effectively reduced by integrating it in r and
renaming (9€/0r) = v:

a1lad h

B‘;;g(rv) Wi Y- 0. -(12)

The integration constant is set to zero because of requirement § V2 < o0
at r = 0. The boundary condition for v at r = a can be taken as v(a) = 0
for the fixed edge.

Equation (12) can be solved analytically for the uniform distribution of
temperature. In this case it becomes the Bessel equation, indeed, for T = Tp

O = w%crETg(l + T{_,u.) = const,
and the equation for bending looks like
o' 4+ fr+ (k2= 1/rP)u =0, (13)
where : e : .
K2 = harrI/D =65 (1L—p")(1+ 1—:—!;).

The instability threshold can be found as a solution of J; (xa) = 0, or x*a® <

14.7 for the fixed edge.
The instability threshold can be also expressed as the limitation on the
Young modulus ratio :
8 < 1+ u
—2Q-1+p’
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where Q = 6aTy(1 — p2)/(h%p), and p = 14.7. Note that for Q < 0.5(1 — )

there is no limitation on @, meaning that the system is stable even with a
rigid holder.

This analysis shows that for Tp < 750°C the model system 1is stable.
However, one should have in mind that the above model does not account
for nonuniform stresses present in the real system.

4 Summary

From the considerations given in the previous Sections the following conclu-
sions can be drawn,

First, according to numerical simulations, the given heat load to the grids,
which are cooled from periphery, causes insignificant changes in the gaps. In
fact, their predicted values appear to be small enough so that the beam for-
mation is altered insignificantly. This conclusion was also supported by the
testing results. For experimental study of grid deformation a special grid
prototype was fabricated. The prototype consists of a vacuum-melted molib-
denium grid and a copper holder. Tight thermoconductive joint between the
grid and its holder is obtained by rolling an edge of the copper holder to the
grid.

The grid prototype was heated by radiation of an ohmically heated tung-
sten wire. Pulse duration of heating was determined by opening the gating
" diaphragm installed between the grid and the heater. The heater power was
varied up to 1.5kW. The measured temperature rise at the center of the
grid for a heating cycle was 250°C. The maximum axial displacement of the
grid centre was measured to be 75 pm with reasonable reproducibility from
pulse to pulse. The observed value of displacement is remarkably smaller in
comparison to the theoretical estimate (140 pm) for the grid rigidly fixed
at periphery. The observed difference can be attributed to favorable elas-
tic properties of the holder, which apparently allows some edge expansion
while inhibiting flexibility. This shows that the proposed design of the grid
is characterized by a good quality mounting. However, it may also reflect
uncertainties in the definition of the radius of the heated zone a, which can
strongly alter the value of the displacement. The amplitude of the displace-
ment is much smaller in comparison with the gap and, therefore, practically
does not change characteristics of the ion beam.

Secondly, in accordance with the model prediction, it was observed that
the threshold of the dangerous bending instability driven by thermal stresses
_ is not reached.
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At the same time, under real conditions of the beam formation, the heat
loads may be increased due to higher gas pressures in the gaps and/or non-
optimal beam formation. Besides, producing longer beam pulses may become
desirable. These problems can be, of course, avoided by increasing the grid
thickness. However, this will significantly affect the formation of the elemen-
tary beams in the ion-optical system. Since the focusing electric fields inside
the deeper beamlets are then diminished, the formation of the beam may
deteriorate. This problem was numerically studied in [7], where it is shown
that the beam divergence of less than 1° can be obtained for the electrode
thickness up to 4 mm.
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