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Abstract

Bremsstrahlung of photons from highly relativistic electrons is in-
vestigated. The cross section of the processes, which is suppressed due
to a multiple scattering of an emitting electron in dense media (LPM
effect) and due to photon interaction with electrons of a medium, is
calculated with an accuracy up to "next to leading logarithm” and
with the Coulomb corrections taken into account. Making allowances
for a multiple scattering and a polarization of a medium an analysis of
radiation on a target boundary is carried out. The method of consid-
eration of radiation in a thin target under influence of the LPM effect
is developed. Interrelation with the recent experiment is discussed.
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1 Introduction

When a high-energy electron emits a soft photon via bremsstrahlung, the
process occurs over a rather long distance, known as the formation length.
If anything happens to an electron or a photon while traveling this distance,
the emission can be disrupted. Landau and Pomeranchuk were the first who
showed that if the formation length of bremsstrahlung becomes compara-
ble to the distance over which a multiple scattering becomes important, the
bremsstrahlung will be suppressed [1]. Migdal [2], [3] developed a quantita-
tive theory of this phenomenon. Side by side with the multiple scattering of
emitting electron one has to take into account also an influence of a medium
on radiated electromagnetic field. Since long distances are essential in the
problem under consideration this can be done by introducing dielectric con-
stant £(w). This effect leads also to suppression of the soft photon emission
(Ter-Mikaelian effect, see in [4]). A clear qualitative analysis of different
mechanisms of suppression is presented in [5],[6]. More simple derivation of
the Migdal’s results is given in [7].

The next step in a quantitative theory of LPM effect was made in [8].
This theory is based on the quasiclassical operator method in QED devel-
oped by authors [7], [9]. One of the basic equations (obtained with use of
kinetic equations describing a motion of electron in a medium in the presence
of external field) is the Schrédinger equation in external field with imaginary
potential (Eq.(3.3),[8]). The same equation (without external field) was red-
erived recently in [10]. The last derivation is based on the approach results of
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which is coincide basically with the operator quasiclassical method. In 11] a
new calculation approach is developed where multiple scattering is described
with the path integral treatment.

New activity with the theory of LPM efiect is connected with a very
successful series of experiments [12] - [14] performed at SLAC during last
years {see in this connection [15]). In these experiments the cross section of
bremsstrahlung of soft photons with energy from 200 KeV to 500 MeV from
electrons with energy 8 GeV and 25 GeV is measured with an accuracy of
the order of a few percent. Both LPM and dielectric suppression is observed
and investigated. These experiments are the challenge for the theory since in
all the mentioned papers calculations are performed to logarithmic accuracy
which is not enough for description of the new experiment. The contribu-
tion of the Coulomb corrections (at least for heavy elements) is larger then
experimental errors and these corrections should be taken into account.

In the present paper we calculated the cross section of bremsstrahlung
process with term o 1/L , where L is characteristic logarithm of the prob-
lem, and with the Coulomb corrections taken into account (Section 2 and
Appendix A). This cross section is valid for very high energies when the
LPM effect manifest itself for a photon energy of the order of an energy of
the initial electron. In the photon energy region, where the LPM effect 1s
»turned off’, our cross section gives the exact Bethe-Heitler cross section
(within power accuracy) with Coulomb corrections. This important feature
was absent in the previous calculations. The polarization of a medium is
incorporated into this approach (Section 3). The considerable contribution
into the soft part of the investigated in the experiment spectrum of radiation
gives a photon emission on the boundaries of a target. We calculated this
contribution taking into account the multiple scattering and polarization of a
medium for the case when a target is much thicker than the formation length
of the radiation (Section 4). In Section 5 we considered a case when a target
is much thinner than the formation length. In this case the cross section has
multiplicative form (probability of radiation times cross section of scatter-
ing for the given impact parameter). In Section 6 a case of an intermediate
thickness of a target (between cases of a thick and a thin target) is analyzed,
polarization of a medium is not included. In Section 7 a qualitative picture
of a spectral curve (an effective thickness of a target, position of a minimum)
is discussed. In Section 8 we compare the theoretical curve for the inten-
sity spectrum with the data. Although agreement between experiment and
theory is rather satisfactory, an additional analysis should be done to obtain
information about an accuracy of agreement between experimental data and
theory.

2 The LPM effect in an infinitely thick target

As well known (see, e.g. [16], Sec.93) the formation length of radiation is (in
this paper the system h =c¢=11s used)

2ee’ oo € -
C‘_Wﬂ C“‘j+fﬁ1 £ =&—W, ‘T_E! (21)

!

where ¢ is the energy of the initial electron, w 1s the energy of radiated
photon, ¥ is the angle between momenta of the photon and the initial elec-
tron. We consider first the case when the formation length is much shorter
than thickness of a target I(lc < ). In this case the spectral distribution of
the probability of radiation per unit time is given by expression (2.18), [8]
(see also [9], Section 7.4}

s o]

dW ar, [ ? : g2
s awﬂefdfexp(w-s?} [Tzs;z wol0,7) — ¢ (1 + ;E) V(0, T)] :
0
(2.2)
1
where @ = ¢ = 137" functions ¢, {0, ) satisfy an equation
Opu b - -
o vl —2'-&%‘#(1: ) = n(E(x) — Z(0))eu(x, 7) (2.3)
with the initial conditions
vo(x,0) = 6(x), w(x,0)=-i1Vi(x). (2.4)

Here n is the number density of atoms in the medium, x is the coordinate in
two-dimensional space conjugated to the space (two-dimension al) of radiation
angle ¥, I(x) is the Fourier transform of the scattering cross section:

et
B(x) = | d?9exp(ixd)e(¥ i S il £ .
() = [@oopix)e®), a=Tm b=TF. @9
For a screened Coulomb potential we have
47202 Z%a? ¢
?3 = — g
o (V) 2 1 ) Y(z) =4n = ﬂlfi’l(:t:t?l), (2.6)
where ¥, = ﬁ, a, is the screening radius (a, = G.BlaBZ“UE,aB is the Bohr

5
radius), K is the modified Bessel function. As we will show below, the main
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contribution to the probability is given by

1 A
J-- P ﬂ 2 —_ } ﬂl —_— ; y
r ¥ asy
1 i .
where A, = — = | — | is the electron Compton wavelength. Expanding
m me

K1(z9;) as a power series in z9; and introducing new variables

1
" 3— ;-T’ o= \/%_-x = :T—JL', (27)

we obtain for the spectral distribution of the probability of radiation

- Al el
> = Ehe f dte=* [Rio(0,1) + Rap(0,8)], (2.8)
0
w? " ! .
where Ri = —, Ra=—+ = and the functions ¢, now satisfy an equa-
EE £

tion

¥, | _
? Pu = ([ZI? — IV(Q}) Py pP= —zvp‘ V(g} - _Qgﬂ (lﬂ’f?lﬂ%

2 ZE ZE:
i€ yac-1), @=L

miw

S Fic DY

(2.9)
with the initial conditions @o(g,0) = 8(e), (e, 0) = pd(@), the functions
@0 and ¢ in (2.8) are rescaled according with the initial conditions (factors
1/4? and 1/43, correspondingly). Note, that it is implied that in formulae
(2.2),(2.8) subtraction at V =0 1s made.

The potential V(@) (2.9) corresponds to consideration of scattering in the
Born approximation. The difference of exact as a function of Za potential
V(o) and taken in the Born approximation is computed in Appendix A. The
potential V(@) with the Coulomb corrections taken into account is

o’ _
Vie) = “QQE(_IHTET-?%+1HT + 2C - 1+2f{Zu}) (210}

2
= ~Qg” (]n«-r?ﬂ% +In % + EC),

where 95 = 91 exp(f — 1/2), the function f = f(Za) see in (A.10).

In above formulae g is space of the impact parameters measured in the
Compton wavelengths A., which is conjugate to space of the transverse mo-
mentum transfers measured in the electron mass m. An operator form of a
solution of Eq. (2.9) is

co(@,1) = exp(—iH)po(e, 0) =< o|exp(-iH1)[0 >, H =p’—iV(0),
o(p,t) = exp(—iHt)pyo(e,0) =< ¢ exp(—iHt)p|0 >,

(2.11)
where we introduce the Dirac state vectors: |@ > is the state vector of coor-
dinate p, < p|0 >= §(g). Substituting (2.11) into (2.8) and taking integral
over ¢ we obtain for the spectral distribution of the probability of radiation

% = %%Im <O|R: (G - Gg") +Rop (G - G57)pl0>  (212)

where
G=p?>+1-iV, Go=p*+1. (2.13)

Here and below we consider an expression < 0[...[0 > as a limit: lim x — 0,
lim x’ = 0 of < x|...|x" >.

Now we estimate effective impact parameters g. which give the main
contribution into radiation probability. Since characteristic values of g, will
be found straightforwardly at calculation of (2.12), we estimate characteristic
angles ¥, connected with g. by an equality ¢. = 1 /(79:). The mean square
scattering angle of a particle on the formation length of a photon I (2.1) has

the form

R 4Q - ¢
v293 ~ y3( v
When 92 < 1/42 the contribution in the probability of radiation gives a

region where { ~ 1(J, = 1/4), in this case g. = 1. When 9, > 1/v the
characteristic angle of radiation is determined by self-consistency arguments:

G e b AT T
=R Lo In er e In e e 1, 4Qg.In ———-—Tzﬁggg - ]
(2.15)
It should be noted that when characteristic impact parameter g. becomes
smaller than a radius of nucleus R,,, the potential V(o) acquires an oscillator

form (see Appendix B, Eq.(B.3))

5 = AnZ2%a’

nl. In

— (2.14)

i

V(o) = Qo* (111 -E% L 0.041) . (2.16)
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Allowing for estimates (2.15) we present the potential V(g) (2.9) in the
following form

1
V(e)=Ve(e) +v(e), Vel@)=ge", ¢=QL, L=In—prsy,
g0’ o’ ko

(2.17)
The inclusion of the Coulomb corrections f(Za) and -1 into In 9% diminishes

effectively the correction v(g) to the potential V.(g). In accordance with
such division of the potential we present propagators in expression (2.12) as
G - Gil=GT =G ¥6 <Gy (2.18)
where
G.=p’+1-iV,, G=p*+1-iV,— v

This representation of the propagator G~' permits one to expand it over
” perturbation” v». Indeed, with an increase of g the relative value of the

ST TR v . s :
perturbation is diminished (— ~ E) since effective impact parameters di-

[
minish and, correspondingly, the value of logarithm L in (2.17) increases.
The maximal value of L is determined by a size of a nucleus R,

az, a5s
Lmas = In ﬁ_z ~ 21n 7:5— = 214, (2.19)

where a,2 = a, exp{(—f +1/2). So, one can to redefine the parameters a, and
¥ to include the Coulomb corrections. :

The matrix elements of the operator G- ! could be calculated explicitly.
The exponential parametrization of the propagator is

Gl f dte™" exp(—iH.t), He=p* - ige’ (%28
]

Below we will use matrix elements of the operator exp(—iH.1)
< g;|exp(—iH t)|g; >= Kc(04, 02, 1). (2.21)

The function K.(g,, 0,,1) satisfies the Schrédinger equation (2.9) over each of
two (symmetrical) variables g, and g, with V = ¢@? and the initial condition

K.(04,0:,0) = 6(0; — 01)- (2.22)
8

We will seek a solution in the form (see also [8])
Ke(0y, 02,1) = exp [a(t)(e] + €3) + 28(D)er ez + (1]

Substituting this expression into (2.9) we find a set of equations for a, 3,

&=diat—g,  B=diaf; §=4ic (2.23)
The initial conditions for this set follows from definition (2.21):

limu < p,|exp(—iHt)|gy >—< 0.l exp(—iHot)|g, >=

I— ; 9

1 2 . ks o i(fee—e) | (994
(27)2 fd pexp (i(e; — ex)p — 1) = drid T ( A ko

= Kﬂ(ﬂﬂ:ﬁl:ﬂ:

where Ho = p?. From (2.24) one has the initial conditions at ¢ — 0

aft) = EIE B(2) — ﬂ;;#, +(t) = — In(dnit). (2.25)

The solution of the set (2.23) satisfying these initial conditions is

: v
v(t) = — In(sinh vt) + In ypert
(2.26)
where v = 2\/1?. As a result, we obtain the following expression for the
sought function

i w
a(t) = Emth it Bl = T

1 . 2
exp {-} [(9:13 + o3) coth vt — 01 ]} ,
(2.27)

Substituting formulae (2.20) and (2.27) in the expression for the spectral
distribution of the probability of radiation (2.12) we have

K.(e1, 00t) = ey

dW, o
€ = Im ®(v),
dw 2my? i id

— =y — s 1 e 3
it y_/ s [Rll (sinh z z) pali (Ef.inh2 o
0

where z = wt. This formula gives the spectral distribution of the probability
of radiation derived by Migdal [2]. However, here Coulomb corrections are
included into parameter v in contrast to [2].
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We now expand the expression G~! — G- over powers of v
G~ - G;' = G ()G + G —iw)Go (—iv)GS! + ... (2.29)

Substituting this expansion in (2.18) and then in (2.12) we obtain decompo-
sition of the probability of radiation.Let us note that for @ < 1 the sum of

(2.28) and the first term of the expansion
(2.29) gives the Bethe-Heitler spectrum of radiation, see below (2.40). At

the probability of radiation dEc

Q@ > 1 the expansion (2.29) is a series over powers of —. It is important that

variation of the parameter g, by a factor order of 1 has an influence on the
dropped terms in (2.29) only.
In accordance with (2.18) and (2.29) we present the probability of radia-

tion in the form
dWw _ dW. " dW; g dWs
dw ~  dw dw dw

+i. (2.30)

e g e T
The probability of radiation an. is defined by Eq.(2.28). In formula (2.12)

w
with allowance for (2.18) there is expression

-i < 0|G"1 - G0 }:'/ dt; / dtge i (t1tt2) f d?eK.(0, 0,t1)v(0)

0
oo

0
% K2(0,0,t2)+ f dt, ] dt f dige=i(trHtatts) ] do; f 202K+ (0, 01, 1)
] 0 4]

xv(01)Ke(01, 02,12)v(02) Ke(09,0,13) +
(2.31)

where the matrix element K. is defined by (2.27). The term n (2.30)

corresponds to the first term (linear in v) in (2.31). Substituting (2.27) we
have

o0 o0
e ] % = d
o 2 Re f dt jdtge ev(e) m2u2 sinh vt sinh v,

r

21,

2 4 ;

] (2.32)
where v = 2,/ig. Substituting in (2.32) the explicit expression for v(e) and
integrating over d2g and d(t; — t3) we obtain the following formula for the

10

first correction to the probability of radiation

O

dW; " ]
——— ; F e
dw 4#72LIm 4 2 /

filz) = (lngc*l—ln;—lnsmhz—{j’)gz) 2 cosh 2G(2),
= 2 (A ~922) 561 = scouhs—si,

[lel (z) — QIRE.&(*”]]

Binh2

Smh z

G{z}:/(l-ycothy)dy} t =1, +13, z=vt

: (2.33)

As it was said above (see (2.15), (2.19}), ec = 1 at
W =v?=4QL1 <1 (q=QL) (2.34)

If the parameter |v| > 1, the value of g, is defined from t.he equation (2.15),
where ¥; — ¥, up to g = Rp/Ac. Then one has

Ing? +1In E = %ln(g§4QL} — i% = *‘iga 0:4QL = 1. (2.35)
]

It follows from (2.35) that expression (2.15) for o2, which we chose a priori,
corresponds to the mean value of o®. From the above analysis we have that

~ the factor at g(z) in expression for fi(z) in (2.33) can be written in the form

. . ;
(Ing? +1In Z —lInsinhz— C) = (Inved(1 — vo) = g Insinh z — C),
1 (2.36)

where :
8rnZ2a’ee’

=0 Le),  (23D)

vi = vl =40 =4QL(ec) =

J(z) is the Heaviside step function. So, we have two representation of [v|
depending on g.: at g, = 1 it is || = v; while for g < 1 it is v} = wo.
When a scattering is weak (11 < 1), the main contribution in (2.33) gives
a region where z < 1. Then

Low® Do ol C - n(it))
fi(z) = —(Ci‘lﬂ(ﬂ)]“&.— t 52 = aleC -~ o), (2.38)
—Im F(L’) == -gIII'l v? (Hg s Rl}, L— L.
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The corresponding asymptotes of the function ®(v) (2.28) is
2 |
B(v) = % (Ri +2R2), (v|<1) (2.39)
Combining the results obtained (2.38) and (2.39) we obtain the spectral dis-

tribution of the probability of radiation in the case when scatiering is weak
(] «1)

dW dWc dW;
dw dw i dw 211'7 i )_ F(y)

1 1
= 2:72 3 [ 1(“"5)”}22 (L“FE)]

- ‘LE&dﬂ w? (111 (1834’ ”3) - % - f(Zar)) e

3m2w | e2

+2 (1 + j) (111 (1832'”3) + % - f(Z&)) ] ,

where L, is defined in (2.19). This expression coincide with the known Bethe-
Heitler formula for probability of bremsstrahlung from high-energy electrons
in the case of complete screening (if one neglects the contribution of atomic
electrons) written down within power accuracy (omitted terms are of the

Ia

1 ;
order of powers of —) with the Coulomb corrections, see e.g. Eq.(18.30) in

[7], or Eq.(3.83) in ET]

The integral in the function Im F(v) (2.33) which defines the first cor-
rection to the probability of radiation (2.33) can be transformed into the
another form containing the real functions only

1
\/_Vu =

e
d a4
DI(Vﬂ)=] ‘ze [d(z)sinsz +~Z~ (2) mssz , Da(rg) = f

sinh?® z
0

> { [d(z) L % g(z)] (sin sz + cos sz) + 79(2) (cos sz — sin sz)},

1
~Im F(v) = Dy(vo)R1 + EDQ(VU)RQ; 5=

5_111]:13

d(z) = (Invd(1 — vy) — Insinh 2z — C)g(z) — 2 cosh 2G(z),

" (2.41)
where the functions g(z) and G(z) are defined in (2.33). The form (2.41)
is convenient for numerical calculations. Note, that parameter s in (2.41) is
two times larger than used by Migdal [2].
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At v 3> 1 the function F(v) (see (2.33) and (2.36)) can be written in the

form
= %)

] o [Rufi(2) - 2iRafo(z)] (2.42)

0

Integrating over z we obtain

~Im F(v) = TR+ — 2 (n2-C+ ) Ra. (2.43)

\/_
Under the same conditions (vp 3> 1) the function Im ®(v) (2.28) is

T Vo
Im ®(v) = — —R. 2.44
m (U} 4 Rl + v/.j 2 ( )
dW;
Thus, at vy 3> 1 the relative contribution of the first correction e is
defined by
s IR 7 0.451
“TaW, - 3L(p.) (1“2 4 ) L(2.)’ 2453
a;, '
where L{g.) = In = g

In the above analysm we did not consider an inelastic scattering of a pro-
jectile on atomic electrons. The potential V,(g) connected with this process
can be found from formula (2.10) by substitution 2% 3 7,9, - 9. = 0.1539,
(an analysis of an inelastic scattering on atomic electrons as well as the pa-
rameter ¥, can be found in [17]). The summary potential including both an
elastic and an inelastic scattering 1s

2

V(o) + Vi(o) = —Q(l+ [ir172192+]n - +2C

1 2 ?
b (111 5~ f) ] : (2.46)
- *nggg(ln'}fzﬂgf + 111— +20),

where

1 1 1
Qe,f =Q (1 + ";Z) y ﬂe_f = 'y exp [l_fk_.f {Zf(ct:Z) - 1.88} ot E]
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3 An influence of the polarization of a medium

When one considers bremsstrahlung of enough soft photons w < wgv, one has
to take into account the effect of a polarization of the medium. In a dense
 medium the velocity of a photon propagation differs from the light velocity
in the vacuum since the index of refraction n(w) # 1

= 5—“‘“. {3.1)

Because of this the formation length diminishes as well as the probability
of radiation (see [4], the qualitative discussion may be found in [6]). For
analysis we use the general expression for the probability of radiation, see
Eq.(2.1), [8]. The factor in front of exponent in this expression (see Eq.(2.2),
[8]) contains two terms A and B, the term A is not changed and the term B
contains combination

k K3 wo |
V-—;E‘ﬂ*f‘ﬂm, H[}=—w"‘", {3.2)

and its dependence on ko (term of the order 1 /4*) may be neglected also.
With tegard for the polarization of a medium the formation length (2.1)

acquires a form
it 2y’ 2,92 ywo\?] ™
y= 2 e ()] auAEE

So, the dependence on wq manifests itself in the exponent of Eq.(2.1), [8] and
respectively in the exponent of (2.2) only:

w k .
a—2 2 (lﬁ—v)zumzu, £=14x3. (3.4)
E—w o

Performing the substitution a — @ in formula (2.7) we obtain for the potential
(2.17)

V(e) - V(&) = 0% (L (2—\%) o zc) = VD) +i@), 3= lal=ovE

hc{é) - &ézl q‘- =2 Qi(é-ﬂ)? f:} -~ ;EE!' f‘{éfﬁ] = hl ‘}“El?%ﬁ.;z!
~e? =2
e o
v(0) = ——= (26'-{—111 - )
) 49(_‘,2

(3.5)
14

The substitution (3.4) in the expression for the probability of radiation (2.8)
gives 3
Ry — R, Ry — Rok = Rs. (36]

The value of the parameter g in (3.5) is determined by equation {compare
with Eq.(2.35))

45.20L(5,) =1, for 4QL(1) > 1. (3.7)

In the opposite case g, = 1 and this is possible in two intervals of the photon
energy w:

1. for kg < 1 when the multiple scattering and effects of the polarization
of a medium are weak;

9. for ko > 1 when effects of the polarization of a medium become stronger
then effects of the multiple scattering (o < &)

In an intermediate region we substitute 6.2 = ok in Eq.(3.7). After it we
obtain the equation for g, which coincides with Eq.(2.35), see also (2.37):

1 ’
2 = v5(ec), vg(ee) = 4QL(ec)- (3.8)
c
Thus, for . < 1 we have

R 1 1 v - :
Vo =\4QL(¢) = 3= 5. = —, L(é) = L(ec), (3.9)
Qe ki K

while for ¥y < 1 we have

[12
o = \/4QL(1) = %f@ln ( ff) . (3.10)

c

The spectral distribution of the probability of radiation (2.40) with allowance
for polarization of a medium have the form

dW o & , il
— = ) — ——— (D)1, 3.11
T Im [@(v} (L’)] (3.11)

where S i 3 3
&(R1, R2) = ®(R1, Re), F(Ry, Re) = F(Ry, Ra),

We consider now the case when an influence the polarization of a mcdium
manifests itself in the conditions of the strong LPM effect (v > 1). This
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influence becomes essential for low energy photons, when the mean square
angle of the multiple scattering (2.15) on the formation length of a photon

.. V :
becomes smaller than w3 /w? (p-g = :ﬁ < 1. ot 1). Indeed, in the case

Do > 1(vg >> &2) one can use asymptotes of functions ®(r) and F(v) at
v > 1 (see (2.42), (2.44)), we have

dW  «a w(l+7) o Vo
dw — 2mey? G V2 2792 sz@{l ),
- E‘(é{:)i Qe) = L\Le) = HAEQE.

In the opposite case vy < k2, the characteristic momentum transfer in the
used units ((.) are defined by value x3(g? = 1), one can use asymptotic
expansions (2.38) and (2.39) and we have for the spectral distribution of the
probability of radiation

dW 16 Z2%a®n 1 4 Z2au 1
& e (Lr 1 “f(z‘*}) g 7 (LP 15k i f(zﬂ))=
(3.13)

where f(Za) is defined in (A.10), L, = In (1332-”%{,). The results ob-

tained agree with given in [4] where calculations are fulfilled within logarith-
mic accuracy and without Coulomb corrections. It is seen that a dependence
of spectral distribution on photon energy (wdw) differs essentially from the
Bethe-Heitler one (dw/w), the probability is independent on density n.

The formula (3.13) is applicable only up to value kg = A\ /R, or if w > wy,
where

3 %0
i

W
wp = —wpy ~ aZ3ywg; S >azl/ (3.14)

Ae
For example, for electrons with energy ¢ = 25 GeV and gold target (wg =
80 eV') one has wp ~ 125 KeV. For w < wp one has take into account the
form factor of a nucleus (see Appendix B). In this case the argument of the
logarithm in (3.14) ceases its dependence on photon energy w. In the limit
w & wp the spectral distribution of the probability of radiation is

dW 4 Z720%w a,
EQT - ‘?;r' ?ﬂ-'}':‘} (ln Rn —UU?) [31;})
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4 A target of a finite thickness

In the case when a finiteness of a target is essential the probability of radiation
is defined not only by the relative time 7 = t2 —t1 as in Section 2. The used
radiation theory is formulated in terms of two times (see eqs.(2.1) - (2.31 of
[8]). Proceeding from this formulation we can obtain more general expression
which takes into account boundary effects. With allowance for polarization of
a medium we have for the spectral distribution of the probability of radiation

o La
A S [ dty exp (—ip(ta)tz + in(t1)t) L)
dw w (4.
—_ -0
% [r190(0, ta, 1) — ir2Vp(0, t2,11)),
where
la  lwm?
wg /2 .
T]_:_E-E_J T2=1+'é_2“! E=]‘+Eﬁ’

here [ is the thickness of a target, : &
ko is defined in (3.2). So, we split time interval (in the used units) into

three parts: before target (t < 0), after target (t > 7') and i.nside target (U <
t < T). The functions p,(e,t2,t1), ¥ = wu(po, ) satisfy the equation
(2.9), but now the potential V' depends on time

208~ 3(ps, M) =07 - V(a0 9() = IONT 1) (45)
po(o:t1, 1) = 8(0), wle.t1,t1) =pd(e).

Using an operator form of a solution of Eq. (4.3) (compare with (2.11)) we
can present the probability (4.1) in the form '

dw ~ w

00 32
dw = 4—aﬂe f dﬁg / dtl exp (—i,u(t;-)tg . iﬂ('ﬁl}h)
— R

x (0|r1S(t2,t1) + rapS(te, t1)pl0), S(t2,t1) = Texp [—i
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where the symbol T means the chronological product. Note, that in (4.1)
and (4.4) it is implied that subtraction is made at V =0, u(t) = 1 (k = 1).
Integrals over time in (4.4) we present as integrals over four domains:

1.4, <0, 0<t, < T,

2. 08 2T, 05t < T},
3 U< ST t3 5T

4 1< 0> 1

in two more domains ¢; 5 < 0 and ¢;2 > T an electron is moving entirely
free and there is no radiation. We consider in this Section the case, when
the thickness of a target L is much larger than formation length I, (3.3) or
(vo + k)T > 1. In this case domain 4) doesn’t contribute. The contributions
of other domains are

] o0

; . 1 1
| dty | dtoexp (i(ty — kita))exp (—iH1 i Hot) = -
= iﬂj 2 exp (i(ts — Kt2)) exp (~iHtz) exp (iMots) = = g7,
%‘c ta oo
Jo = fdtg_/dtl exp(—i(H + k)(t2 — t1)) ~ de*rexp (—i(H + K)7)
0 0
= T i T
— | rdrexp(—i(H + k)7) = —1t + , Iz~ —
Df i L s Tt s A L Gl
(4.5)

where Ho = p®. The term in Iy: —iT'/(H + &) describes the probability of ra-
diation considered in previous Sections. All other terms define the probability
of radiation of boundary photons !. So, making mentioned subtraction we
have for the spectral distribution of the probability of radiation of boundary

photons
% = %ERE(NT';[M—F TgPM‘piU), M= M’E’” + ME} + M{);
(1) 2 2
Y= (p? + &)(p? + 1) o (H + x)(p? +1)’
M® = — 2 3t (4.6)
(H+x)?  (p?+m)
M, 1 2 1

T F)2 T PPHRe+]) " (p? + k)%’

1Radiation of boundary photons in an inhomogeneous electromagnetic field was con-
sidered in [18].
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For a convenience here we made the subtraction in two stages: first

(in M,ffl}, 1(,2}) we subtracted terms with V = 0 and second (in Mp) we

subtracted terms with both V =0 and & = 1.
We consider important case when both the LPM effect and the polar-

ization of a medium are essential. We will calculate the main term with
V(g) = Ve(o), see (2.17). Needed combinations are

gy
0
<04H+ﬂ]}3+1 >
(s n] (n w]
=—fdt1jd£2exp (ui(tl+mtg))fd'?gﬁ’c(ﬂ,g,tg)Kg(g,D,tl),
$ g c0 (4.7)

(o'rﬁ%ﬂ—z 0> . —ftdtexp(-iﬁi)Kc{U,ﬂ,t),

mﬂ
- 1 2
T 2 9 o o
(0lpMop|0) = VL ]dp p M=o [(1 F = 1) Ink 2],
0

where the functions Kg(@,, 1,1) and Kc(0g, 01,1) are defined in (‘2*.24) and
(2.27). Substituting into (4.7) the explicit expressions for these functmps, c.al-
culating the vector derivatives as indicated in (4.6) we have for contribution

of the first term in (4.7)

dw W

(1) Frf
s TP B PEL / di; f dty exp (—i(t1 + kt2))
0 0

1 1 ]
X - R p)
[{_sinh vis + viy cosh L't;r) {I/ti - Vﬁz)

2ax 2 I - : — :
= ——Ty Im v dtl iﬂg exXp ("‘3(f1 o+ t?)) tanh vls + vty via + viy j
0

Tw J
(4.8)
where # = v/k, the second term in the square brackets is the subtraction term

in accordance with (4.6) (the term M 5-1)). For practical use it is convenient to
write the probability (4.8) using real variables. After some transformations
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il
f

it can be written as

dwg” 2a r . ; 1
P rzfdt exp(—t) (cost +sint) ]dy
0

t — y+ stanh (y/xs)

1
t-y+y/ ﬁ?] '
(4.9)
1
where s = ———, parameter vy is defined in (2.37). Repeating the same
V2ug

operations with the second term in (4.7) (this is the contribution of the term
ME} in (4.6)) we have

s

dwf} o 1 1
 wog e Re v ftdi exp {—ikt) v o (yt)?]

1
=2rRe |d B :
?‘2 e-/ zexp Lmh 3 z] (4.10)
a

= __rz-/dzexp(—sz)cossz[ : zz S l]-"
0

TW ginh“z =z

1 e ;
where z = vi, § = = vo = vo/k. The contribution of the term My in

Yy
(4.6) is calculated in (4.7)

dwl®  a R 2
e ppkng rq 1+E—mﬂllnm + 749 l+,¢,.,,1 Ink -2} ».
(4.11)
The complete expression for the spectral distribution of the probability of

radiation of boundary photons, in the case when both the LPM effect and
the polarization of a medium are taken into account, is

dwy 2 ::l"u,ﬂék:1

dw k=1 duw

(4.12)

We consider now the limiting case when LPM effect is very strong

20

e

(#p > 1). In this case we find for probabilities in formulae {4.9) and (4.10)

(1) r 2
dwy, 20 lnh: s
= — Inw +1-C+ ]
dT) mo'” _11”"0 . 3\/_1’5 \/_Un( 0 )
dw2 Q ]

= 1 —-1n20g+C —
dw ﬂwrz s Bx/-un

(4.13)
Substituting asymptotes obtained and (4.11) into (4.12) we have

d il %
%=}%{f1+?‘2 ]:Inuﬂ—l—c-lﬂ2+4~—-(Eﬁ-i—]nlfﬂ'l'l—f;*}‘ ):l}
(4.14)

As one can expect, the probability of radiation at vg > 1+ k2 depends on
the polarization of a medium in the term o 1/vp only.

In the opposite case iy < 1(vo > 1), the probabilities dw'V dwf)
73 and probability of radiation of boundary photons is determmed by the
polarization of a medium. Just in this case radiation of boundary photons is
known as the transition radiation:

dwy, duwl® @ PR ] [( 2 ) ]}
~ — s 1 14— tlng =2
dv = dw Tw 4 1+.ﬁ: £—1 i B + -1

. (4.15)
In the case of weak LPM effect vy < 1 (see (2.34), w < ¢) we have
dwy « 2 4)
— o~ —ry | == | 4.16
dw ~ Tw ? ( 21 —

In this case what we calculated as the boundary photons contribution is

S, e S el o ;
actually correction (very small) to the probability oy (2.40) which in this
16

case has additional (suppression) factor 1 — ﬁpf which . follows from the

decomposition of the function Im &,

The LPM effect for the case of structured targets (with many boundaries)
was analyzed recently in [19]. The radiation of the boundary photons with
regard for the multiple scattering was considered in [20] (for w < ¢), the
polarization of a medium was added in [21] and [22]. Our results, which
are consistent with obtained [21], are presented in more convenient for ap-
plication form and the Coulomb corrections are included. In these papers
the probability of radiation of boundary photons (under condition of appli-
cability of Eq.(4.14)) was analyzed also to within the logarithmic accuracy
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(see Eq.(20) in [21] and Eq.(15 in [22])). This accuracy is insufficient for pa-
rameters connected with experiment [12]-[14]. For example, for ¢ = 25 GeV
and heavy elements the value vy equates K for vg ~ 20. One can see from
Eq.(4.14) that in this case In vy is nearly completely compensated by constant
terms.

5 A thin target

Finally we consider a situation when the formation length of radiation is
much larger than the thickness [ of a target (a thin target, lc > 1). In this
case the radiated photon is propagating in the vacuum and one can neglect
the polarization of a medium.

Operator S(t1,t3) (4.4) we present in the form

Ly
S(tz,t1) = Texp [if%(t)dt:l = exp (—iHotz) L(t2,11) exp (iHot1);
t

1

i:(fg, tl} = exp {!:Hufg] S{f;’g, tl) exp {—-iH[}fl).

(5.1)
Differentiating the operator L(f2,%1) over the first of arguments we obtain
_rn—'—--"-—t -
313{:&,#1} = —exp (iHot) V(g,t)S(t, 11) exp (—iHot1) = ~V(o+2pt, )L, 11),

(5.2)
where V(g,t) = V(o)g(t) (see (2.9), (4.3)). The formal solution of this
equation with the initial condition £(t1,%1) = 1 has the form

Llta,t1) = Texp I:-/dtV(g-k th,t):l ,' (5.3)

where T means the chronological product. This solution is exact. Now we
take into account that we are considering a short characteristic time con-

tributing into integral (5.3), or more precisely

la 2 1
LT = — =, T XK=, : ;
t<T=7, I<l=g T<; (5.4)

where I, ¢ are defined in (2.1). Since the main contribution give p ~ V<,
o~ 1//C, pt € 1//C ~ g ,where p is characteristic mean value of operator
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Ipl, one can neglect by the term 2pt in (5.3}, so that

L(ta,t1) >~ exp l:—/dt‘if"{g, t)jl : (5.5)

In the probability of radiation enters the expression (cp
(0 lexp (—iHot2) (£ — 1) exp (iHot1)|0)
= j d2g (£ — 1) (0 lexp (~iHota)| o) (e lexp (iHot1)[0).  (5:6)

(2.12), (4.4))

Using an explicit form (2.24) of the matrix element (0 [exp (—iHot2)| ¢) and
neglecting terms of the order ~ T'(I/l.) one obtains starting from (4.4) for
the spectral distribution of the probability of radiation

0 oo
T f i f T /d o(ri + r2p1p2)
— 0
. 0 1 1
xexp | —i(tz —t1) +i— (— — —) ] (exp(=VT) - 1) (5.7)
5 85 1
a

= i | d¥p [ﬁffg(g) g i Tzf{f(.{)‘)} (1 —exp(-VT)),

2w

where p; (p2) is the operator p = —iV acting on the function of o [ty (82 /t2),
K, is the modified Bessel function. Here we took into account that in our
case contribute domain |¢;],|t2] > T and #; < 0,t2 > 0 since in domains
t12 < 0 and 32 > T an electron is moving entirely free and there is no
radiation. In implicit form the factorization contained in (5.7) is presented
in [23]. If

V(e = 1)T <« 1 one can expand the exponent (the contribution of the region
0> 1 is exponentially damped because in this region Kg ;(g) o exp(=g)). In
the first order over VT using the explicit expression for the potential (2.10)
we have to calculate following integrals:

e 00
" 1 :
fﬁg(é‘)@ad@' g ]K{?{g) In oo°dp = % (in? ~C + %),
0_ ; 0_ 2 (5:8)
K2(g)e®de= = : o o & P 4
Gf i(e)e"de= 3, ]Kl(@') Inge"de= 3 (lni! C 12)
0
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Substituting these mtegra]s one obtains in this case the Bethe-Heitler formula

with the Coulomb corrections {2.40).
We analyze now the Dppos1te case when the multiple scattering of a par-

ticle traversing a target is strong (V{g = )T > 1, the meanvsqu;re :i'
multiple scattering angle 97 3> 1/v ). We present the function ()T (s

(2.9), (2.10) and (2.19)) as

2
rZ20%nl A s e TR S (m B i)
V()T = - gﬂ (ln 32 g2 =30 = Ap"In g Y E’t -'?.*:
4 4a?
1 QE ) v, o Xt B TR et 32
P R iy e mnes =1, Li=lh=sz=
= ko (1 I In QE) £ AD ng? ¢ Q? ;\2

(5.9
where g; is the lower boundary of values contributing into the integral over
0. Substituting this expression into (5.7) we have the integral

o

& )| = 5.10
21rfgdgKf(g){l — exp [—ukgg (l*L—tlng—E)]} = 7J. (5.10)
0

In this integral we expand the exponent in the integrand over 1/L; keeping
the first term of the expansion. We find

J=Ji+J2, J1=2 ] K2(g) [1 — exp (—ko?)] ede
0

o
. ) .
= Qkfdgf [Ko(0)K2(e) - K?(o)] exp (—ke?), (5.11)
0
Jz = *—-/Kf{e )exp (—ke )ln?r; dg

0

In the integral J; we performed an mtegratmn by parts. In the integrals in

(5.11) it is convenient to substitute z = kg? then

: i e 3 K3 il § 7 (—z)zdz
=E][I{u % Ko o o i p !
; .
L [ g2 (]2 exp(—2)Inzzdz.
Jg = *Ejjll (\/;) exp(—2)
0
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(5.12)

Expanding the modified Bessel functions K,(z) at £ <« 1 and taking the
integrals in the last expression we have

J:J1+J2=( 1)(1n4k C]-|-i_1+c
rZ%a’ e “ Le’ (5.13)
k= 3 nl(Ls +1—2C).

m i

In the term with K§ in (5.7) the region ¢ ~ 1 contributes. So we have
Jg = 2]1'(3(9) (1 —exp(=VT)) pdo ~ fofg(g)gdg g o (5.14)

Substituting found J and J3 into (5.7) we obtain for the spectral distribution
of the probability of radiation in a thin target at conditions of the strong
multiple scattering
dwth
dw

The logarithmic term in this fnrmula 1s well known in theory of the collinear
photons radiation at scattering of a radiating particle on angle much larger
than characteristic angles of radiation ~ 1/+. It is described with logarithmic
accuracy in a quasi-real electron approximation (see [24], Appendix B2).

The formula (5.7) presents the probability of radiation in the case when
the formation length I, >»> l. It is known,see e.g. [7], that in this case a
process of scattering of a particle is independent of a radiation process and a
differential probability of radiation at scattering with the momentum transfer
q can be presented in the form

(f'1+r‘gJ) (5.15)

dWy = dw,(q)dwr(q, k), (5.16)

where dw,(q) is the differential probability of scattering with the momentum
transfer q which depends on properties of a target. The function dw,(q, k) is

the probability of radiation of a photon with a momentum k when an emitting
electron acquires the momentum transfer q. This probability has a universal
form which is independent of properties of a target. For an electron traversing
an amorphous medium this fact is reflected in formula (5.7). Indeed, passing
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on to a momentum space we have

dwr(q,k) = e f d?¢ [r1 K3 (0) + r2K3 (0)] (1 — exp(—iqe))

miw

- 2 i () o ()]
Fi(z) =1- - (::::'/-lj—%m , Fa(z)= W in (m + V1 +a:3) - L.
(5.17)

Remind that g is measured in electron mass. The probability of radiation in
this form was found in [21]. For a differential probability of scattering (here
we consider the multiple scattering) there is a known formula (cp (2.5), (2.6)
and (2.9))

Fy(q) = (2:()2 [ #eexp (-iae) exp (Vi (o),

dwa(‘l) = F, (Q}dzq:

Vi(e) = n f d%q (1 — exp(~iqe)) o(a),

(5.18)
where o(q) is the cross section of single scattering.

Using the formula (5.17) one can easily obtain to within logarithmic ac-
curacy expressions (5.15),(4.14). Both a radiation of boundary photons and
a radiation in a thin target may be considered as a radiation of collinear
photons (see e.g. [24]) in the case when an emitting particle deviates at large
angle (9, > 1/v,q > 1). Using (5.17) at z 3> 1 we find

diot i adw

= [rl 4 r2 (In g’ -1)];

jdzﬁ'dwr(?]ﬂ (q) = % [7‘1 + r2 (ln?—- 1)} 13:19)

For a thin target value of ¢2 is defined by mean square of multiple scattering
angle on a thickness of a target I, and for boundary photons is the same but
on the formation length I;. However, if we one intends to perform compu-
tation beyond a logarithmic accuracy, the method given in this Section has
advantage since there is no necessity to calculate F,(q) and in our approach a
problem of calculation of the Coulomb corrections is solved in a rather simple

way.
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6 A target of an intermediate thickness [ ~ I,

It appears that used in Section 4 approach permits one to consider an im-
portant case when { ~ ;.

A(%curding to the partition of integrals over time in formula (4.4) into four
domains we can write the probability of radiation as

dw . dw dw 4o
n T 1
_f — 2 ; T —Re (rlfi ) + rgif}). (5.1)

The integrals in 15 we compute on the assumption: vy > 1, T < 1, vgT ~

i = 1. Sim;.e integrals in I,::;” don’t contain the logarithmic divergence,
only the domain 4 contributes. In the domains 1-3 one of the integrals in

1 . i ; :
I,(, ) contains an integration over an interval 0 < ¢ < T and due to this reason

dwy 33 xT & 1. So, we consider Iﬁ”

0 oo
I‘EI) = f dtlfﬂfig exp(—i(t, + tg]](ﬂ’ E!Kp(—i(ffg(tz - TY))) exp[—iHT)
- 00 T
x exp(iHoty) — exp(iHo(ts — tl))ll}} — fdt;/dtg exp(=i(t; + 12+ T))
0 a

2 2 o
X f‘f é‘l/d szm(D:Ql:fl)[Kc(£’1:921T) _Kﬂ(ﬂl:QE:T}]Kﬂ(QzaﬁstE)-

E : | (6.2)
ere a calculation of integrals over g, and g, may be performed e.g. in a
such way:

e an integral over relative angle between g, and @2 gives Jo(B01 p2) where
Jo(z) is the Bessel function, 8 = 4, = ﬁ-iw and 8 = Gy = ~l- for
tl;e( ﬁﬁl.-;.]t and second terms in the square lfggfi{zts in the right-haﬁg side

of (6.2),

e the remaining integrals over g; and g3 can be found in tables.
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So, we have

1
i +ta b T}

(4] oo :
1
Ii” = r/dt;]dtgexp —i(ty + 12+ T)) | N(t1,12) =
0 0

N(tll tﬂ

i (1 + v2t1t5) sinh vT + v(ty + t2) coshvT

(6.3)
For vy > 1 the contribution into integral the term with N (f1,13) is of the
order of 1/vp and this term may be neglected. With allowance for T' < 1 we
find

¢ STREL. ¥
1= P dtlfdigexp (—i(ty +12)) e
oo : (6.4)
--m ks 1
g Sm B /dy _m ~ 4r’

0
where # = 1; + 9, y =1, — {2.

The contribution of the domain 4 into the term with 7o (I(E) n (6.1))

contains two additional operators p (see (4.4)) which result additional factor
_ 02 .
4t112
0, gives here J;(Bp102) and subsequent evaluation of integrals is similar to
those for (6.3). We find

in the integrand. Integration over the relative angle between g; and

1
{t; + 19 + T)i
(6.5)

o0 o0

.

jf) — —E;jdtljdtg exp(—i(ti +12+7T)) [Nz(hgfz} -
0 0

The contribution into the integral with N2%(¢;,12) gives a domain
t1,t2 ~ 1/vg € 1. Since T' <« 1 as well, we can put an exponent in this
integral equal to 1. So the integral is

dt 2(t t i d :
0 a 0 o !

= 21lncoth uT

where z = vt;, y = viy, a = sinhvT, b = cosh vT". The second term in (6.5)
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is calculated as (see (6.4))

:::'-.,____.8

= s]
1 ; 1
dtifdfz exp (—i(t1 +t2 + T)) ~ fdte“‘_
) (ty +t2 4+ T)2 J (t +T)2

- i
~ | dte™** —1l~=-C~-InT-1 T
D] (t+7T) tig

6.7
where ¢ = t; + ;. Putting together (6.6) and (6.7) we have i
I,EEJ :2IntanhuT—C'—-lnT—l+i; (6.8)
For computation of I( ) = .(2) we will use Eq.(4.8)
Do r
v
IF) . ;-1—-/ fdtz exp l(tl +32)] : 2
. _(L’il -+ Utg)
1
(sinh vt4 + vi; cosh utg)z_ ' W9

Integrating by parts over ¢; with regard for exp(—its) ~ 1 we have

’ 1
;;ﬂzifdh[ A
4n vis  cosh vissinh vis

oo T

: 1
dty f dts exp(—it; [ i
4“ 2 J ) v(t1 +12) coshviy(sinh vty + vty cosh wty) |

(6.10)
The second of these integrals is proportional to T' and can be neglected. The
first integral gives

gy o o, ¥
L =% = 4 " tanhoT

(6.11)
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For a calculation of Iéz) we use formulae (4.5) and (4.10)

T
# 1 1
I(E}zy—]dtt——T[ - ]
: 4 { ) sinh?uvt  (vt)?
0

P SO e a )
w1'.rf sk Y v Ty
o

Combining all the contributions of four domains we obtain finally

(6.12)

|-I=-|.:

dw

dw

ERE (?'1 Y4 rgff)) oo B [r1 + (In(vsinhvT) = 1 = C) ra].
W i Y%

(6.13)
In the used units (T = al/2) the formation length (2.1) is (see also (2.5) and

(2.15))

L

-
Il
[

al 1 9 1
S e Iy B . 6.14
t(’- 2 C.: QC Vo + 1 ( }
In the case of thick target (T 3> tc, voT > 1) we have from (6.13)
dw « aT vy ol «al a €
e — — — Ee —_— = -""I.
dw ~ mw L e rw V2 i mw T 2mw o 2wy e

(6.15)

This formula gives the probability of radiation at vo 2> 1 (see (2.28), (2.44))
where the contribution of boundary photons (4.14) is included.

In the case of thin target 1T < 1 but when »3T" >> 1 we have from (6.13)
the probability (5.15) without term o< 1/L¢. So we have (V51 = 4k)

w
%w. o~ % [r + (In(v§T) — 1 - C) ra). (6.16)
Note, that when the value of the parameter vy is not very large, the accuracy
of the formulae (6.15) and (6.16) may be insufficient. In this case one have
to compute the next terms of the expansion, as it was done in Sections 4 and
5 (see (4.14) and (5.15)). The same is true for (6.13). A detailed analysis of
the probability of radiation in the targets of an intermediate thickness will

be carry out elsewhere.
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7 A qualitative behavior of the spectral
intensity of radiation

We consider the spectral intensity of radiation for the energy of the initial
electrons when the LPM suppression of the intensity of radiation takes place
for relatively soft energies of photons: w < w, < &:

volwe) =1, we ~v*nln i (7.1)
see Eqgs.(2.9), (2.14), (2.15) and (2.37). This situation corresponds to the
experimental conditions.

A ratio of a thickness of a target and the formation length of radiation
(2.1) is an important characteristics of the process. If we take into account
the multiple scattering and the polarization of a medium then the formation
length (3.3) has the form

2v? - Bl
{,:% 1+73ﬁ3+(7—:—“)] : (7.2)

this ratio may be written as

2
Bw)=T(w+r) =T, [i.;. a8 ],

lw e e 'L;:" l Soiil
T= —¢ o Gl Te=T ~ ——
L et L Wl & Eoie’

where we put that v 2 4 f'%:-, Below we assume that w, > w, which is true

under the experimental conditions.
If flwe) = 2T, <« 1 then at w = w, a target is thin and the Bethe-

dw

will be also valid at w < w. in accordance with Eqs.(5.7) and (5.8) since
4k = viT = T. < 1. This behavior of the spectral curve will continue
with w decrease until photon energies where a contribution of the {ransition
radiation become essential.

If B(we) > 1 (Te >> 1) then at w > w, a target is thick and one has the
LPM suppression for w < w,. There are two opportunities depending on the
minimal value of the parameter 3.

3 e 4.\ /3 W\ 273
ﬂm:ETMw—i, w1=up(w:ﬂ) | ﬂmgm(w—i) TR 5 )

J1

: o S ; dI(w)
Heitler spectrum of radiation, which is valid at w > w, ( () o c.c-nst)




If 8,, < 1 then for photon energies w > w; it will be w9 such that

We
Blwa) =1, ws~~ 7
and for w < ws the thickness of a target becomes smaller than the formation
length of radiation so that for w <« wa the spectral distribution of the radia-
tion intensity is described by formulae of Section 5. Under these conditions
for 4k = 12T = T, > 1 the spectral curve has a platean
di 2aJ

- Wi = const (7.6)

(7.5)

in accordance with (5.13). Such behavior of the spectral curve (first discussed
in [21]) will continue until photon energies where one has to take into account
the polarization of a medium and connected with it a contribution of the
transition radiation.

At B, > 1 a target remains thick for all photon energies and radiation is
described by formulae of Sections 2 and 3. In this case at w € w (v > 1)
and w > (wP/uc}”‘r"_wp (1o > k) the spectral intensity of radiation formed
inside a target is given by Exp.(2.40) and (2.44) and the contribution of the
boundary photons is given by (4.14).

Since a contribution into the spectral intensity of radiation from a passage
of an electron inside of a target (o< T') is diminishing and a contribution of
the boundary photons is increasing with w decrease, the spectral curve has a

minimum at w = w,,. The value of w,, may be estimated from equation (see
(2.44) and (4.14))

d [ T 2 & v m(x—1)

* (B sl e ] 0, e o e
dW(\/-ﬁ+nyﬂ+ 24 pﬂ) \/E 4\/§Vﬂ (77)

‘ 1/2 2
2w T W
ﬂﬁ(w:) \/E+—41'2, z=-£,

When a value of T}, is high enough, the solution of Eq.(7.7) doesn’t satisfy the
condition ¥g 3> & and in this case the equation (7.7) ceases to be valid. For
determination of w,, in this case we use the behavior of the spectral intensity
of radiation at & 3> vq. In this case a contribution into radiation from inside
passage of a target is described by (3.13) whilst the radiation of the boundary
photons reduces to the transition radiation and its contribution is given by
(4.11). Leaving the dominant terms (v3T is w-independent) we have

d {viT vl Te /3
— rmgm——— — — YL sy _"_j 1 : o ¥ . T-S
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Since the value m2/12 ~ 0.8 is of the order of unity, the solution of (7.7) at
Km > v differs only slightly from w,,. Because of this, if the condition
ZTL.I:I:..,ri!,,/m,_:)g"f 3> 1 is fulfilled, the position of the minimum is defined by
Eq.(7.7).

8 Discussion and conclusions

Now we consider the experimental data [12]-[14] from a point of view of the
above analysis. It is shown that the mechanism of radiation depends strongly
on the thickness of a target. So, we start with an estimate of thickness of
used targets in terms of the formation length of radiation. From Eq.(7.3) we

have that

27l {
- > 20 at aw > 2%.

The minimum value of the ratio of a thickness of a target to the formation

length of radiation is given by Eq.(7.4) (Bm =~ 2Te(wp/we)*/3). For defined

value of T, this ratio is least of all for the heavy elements. Indeed, the

value of w, = wg-y depends weakly on nucleus charge Z (wo = 30 = 80 V),
47y

while w, = 7 % Z*. Furthermore, the ratio wp/w, decreases with energy
& Lprad

increase. Thus, among all targets with thickness | > 2%L,,q the minimal
value of §,, is attained for the heavy elements (W, Au, U) at the initial
electron energy € = 25 GeV. In this case one has w, ~ 250 MeV, Wy =
4 MeV, B > 2.5. Since the parameter T; is energy independent and the
ratio wy /w. oc 1/e, the minimal value §,, > 5 is attained at the initial electron
energy € = 8 GeV for all targets with thickness | > 2%L,4.4 which can be
considered as thick targets.

As an example of obtained results we calculated the spectrum of the in-
tensity of radiation in the tungsten target with thickness | = 2%L,.4 at
the initial electron energy ¢ = 8 GeV and ¢ = 25 GeV. The character-
istic parameters of the radiation process for this case are given in the Ta-
ble. We calculated the main (Migdal) term (Eq.(2.28)), the correction term
(Eqs.(2.33),(2.41)) taking into account an influence of the polarization of a
medium according to (Eq.(3.11)), as well as Coulomb corrections entering
the parameters vy (Eq.(2.10)) and L(g.) (Eq.(2.36}). The contribution of an
inelastic scattering of a projectile on atomic electrons {quite small for the
heavy elements) is not included although this could be done using Eq.(2.46).
We calculated also the contribution of the boundary photons Eq.(4.12). Here

in the soft part of the spectrum w < wy(wg =~ 2 MeV for € = 25 GeV} the

e —
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transition radiation term (4.11) dominates in (4.12), whilst in the harder part
of the boundary photon spectrum w > wq the terms depending on both the
multiple scattering and the polarization of a medium (4.9) and (4.10) give
the main contribution; for ¢ = 8 GeV we have wq ~ 700 KeV. It is seen that
we have for the boundary photons spectrum a smooth curve which eliminate
difficulties mentioned in [14].

Table: Characteristic parameters of the radiation process
in tungsten with the thickness | = 2% L4

e (GeV) |we (MeV) [wp (MeV) | T, |wi (MeV) | fm | wm (MeV)

25 228 3.93 21.25 1.6 2.7 2

8 23.35 1.26 21.25 0.76 5.7 0.5

All these results presented separately in Fig.2 as well as their sum (curve
5). Note, that for energy e = 25 GeV in the region of the minimum of the
spectral curve 5 where the ratio of the target thickness to the formation length
is minimal (B, ~ 2.7, see Table) it may be that the target is not thick enough
to use the formulae for a thick target. For a comparison with experiment we
extract some data froin Fig.7 of [14]. The theoretical curve gives the spectral
distribution of the intensity of radiation (in units 2a/x) without adjusting
parameters. Data from [14] were recalculated according with procedure given
in it. One can see that agreement between the experiment and theory is rather
satisfactory but far from being perfect. However, one has to take into account
that the theory of LPM effect in all previous papers had the logarithmic
accuracy and did not contain Coulomb corrections. These shortcomings did
not permit to pass to the Bethe-Heitler formula with acceptable accuracy
and led to some difficulties in data processing. Both these shortcomings are
overcome in the present paper. So, in our opinion, it is quite desirable to
handle the experimental data using the formulae of this paper.

The measurements in [14] were made also using gold target with thickness
| = 0.7%L,.q. For this case one has T, ~ 6, [,(25) = 0.7, By (8) =715,
so we have here a target of an intermediate thickness (see Section 6). We
want to stress once more that for estimation of an effective thickness one
have to use the formation length with regard for the multiple scattering and
the polarization of a medium (see (3.3) and (7.2)). A detailed calculation for
this case will be published elsewhere,
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Figure 1: The functions D 2(w) (Eq.(2.41)) vs parameter vyp.
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Figure 2: The intensity of radiation w% in tungsten with thickness { = 0.088 mm
2o

in units - ((a) is for the initial electrons energy € = 25 GeV and (b) is for
e = 8 GeV). The Coulomb corrections and the polarization of a medium are
included:

— curve 1 is the contribution of the main term (2.28);

— curve 2 is the correction (2.33), (2.41);

— curve 3 is the sum of the previous contributions;

— curve 4 is the contribution of the boundary photons (4.12);

~ curve 5 is the total prediction for the intensity of radiation.
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A Appendix
A potential V() with the Coulomb corrections

It is well known, that for heavy elements the Coulomb correction to the
cross section of bremsstrahlung of high energy particles (correction to the
Born approximation) is quite sizable, see e.g. Eq.(18.30) in [7]. The Coulomb
correction (order of one for heavy elements) is subtracted from the "large”
logarithm and if an accuracy of calculation goes beyond logarithmic one, one
has to take into account this correction. For tungsten (Z = 74), gold (Z = 79)
and uranium (Z = 92) in the case of complete screening the relative Coulomb
corrections to the standard Bethe-Heitler cross section are respectively -7.5%
. -8.3% and -10.7%.

We consider the problem using eikonal approximation (see e.g. Appendix
E in [7]). An amplitude f(q) and a cross section of scattering in this approx-

imation have the form:

fla) = 5}1;; d*pexp(—iqe)S(e), S(e) =exp(-ix(e)) -1,
o (A.1)
Xo)= [ Ules)dz, do(a) = /@,

where (z,g) are the longitudinal and transverse coordinates respectively,
U(o, z) is the potential. Repeating a derivation made in Section 2 (egs.
(2.3)-(2.9)) but with the cross section (A.1) we find for the potential V(@)

V(e)=n [ (1-expliae)) If(@)dg
(A.2)
- nfdz:r (S(x)S* (x) — S(x + @)S™(x))-

Since the potential V(@) was calculated above in the Born approximation,
we can calculate here the difference of the potentials calculated in the Born
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approximation Vg (g) and in the eikonal approximation V(o)
AV(e) = Va(e)-V(e)=n]J d”r{exp lix(e +x) — ix(z)] - 1
1 - 2 1.
+Hix(e+x) —x@l e
x({z) = f dz?exp (—E—) = 2ZaKy (-:5) , r=vz22422

as

where Ky(z) is the modified Bessel function. Because the eikonal phase enters
(A.3) only in the combination x(@+x) — x(z) in the interesting for us region

z ~ p. Since Ko ; is large only if z/a, < 1 it is evident that main

contribution into integral (A.3) gives the region z ~ ¢ < a,. In this region

one has .

x(e+x) = x(z) =¢&In Tk

So, in the expression for AV(g) enters only one dimensional parameter p =
1g, where 1 is the unit vector. After substitution of variables x — gx we have

AV(g)

e 20 (A.4)

4 = ?“’E"Eng(f)a
o Fa AN % e I (4:5)
f(E)uzmszfdr[( 3 1+21n - :
Changing variables y = fi- and then z = y +1 we have
: 1 d*z 2 & 3 2
,;'{{-‘)_%_JEE @1y [z —1+—2—in z]. - {AB)
Integration over azimuthal angle gives
2x
d¢ _ 2x(1+2%)
_/ (22 —2zcos¢+1)2 |21 W)
0

Changing the variable z? = u, splitting the integration interval into two parts:
(0,1) and (1, 00) changing in the second interval v =1 /u we obtain

1

f(§) = iﬂef %[%{)i; (u‘f ~14 §;1u2 u) (A;B)
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Integrating by parts and changing once more variable u = e™¥ we find
f(g RERG/ -—y)? “f&g-‘ey +€2y] ) (A-g)

Integrating once more by parts and using the standard (Gauss) representation
of the Euler ¥-function we have finally

-4{ ) = 2710*(Za)?*f(Za),

F(€) = Re[p(1 + i€) — p(1)] = € Z

(A.10)

o)

The obtained function f(£) is the known Coulomb correction to the Bethe-
Heitler cross section of bremsstrahlung, see e.g. [7], Sections 17,18.

B Appendix

An allowance for a form factor of a nucleus

When g. € R,, (see (2.15), (2.16)) one cannot consider the potential of a
nucleus as a potential of a point charge. A contribution into the multiple scat-
tering gives a momentum transfer ¢ < 1/R,,. Because of the same reason the
phase qo in expression (A.2) for the potential V(g) is small g¢ < g./Rn € 1
and one can expand the potential. As a result we obtain

no® 2
Vie) = Tg-/qu(Q)Izdﬂq = %/lVS(x)Pd%
(B.1)
f (Vx(x))’ d?z = — (Q(X))zdz-’c,_

where q(x) is the classical momentum transfer on a straight-line trajectory
with an impact parameter x. As one can see from (B.1), the mean square
of the momentum transfer is the same the in eikonal approximation, in the
Born approximation and in the classical theory. The Coulomb correction in
this case vanishes.
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Considering a nucleus as an uniformly charged sphere with the radius Ry,
we have

?

q(e) = -2-539* [f:f'f:. (i) J(e—Rn)+¢ (RE) 9 (Rp ~ )]: (B.2)
ple) =1-V1—-z+2/1—z.

Substituting the expression obtained into (B.1) we find the potential V()
under conditions considered

oo

1
: 2 dr .,
f g*(0)d*o = 4x¢® [F f K (f) odo + f f&(ﬂ]
0

(o)) (0] e

= 472%" |In == Rﬂ ~+~g—2(C+1n2)

V(o) = m€?ng’ [;11 (;:2) --0. 0407]

If one uses standard representation of nuclear form factor (see e.g. [17])

1 R: ~13 41/3
Flo) = G5 aar 6= Rn=12:10"24"3m,  (B.49)

then one obtains

2 2
]q?(g)dﬂg A [ln % 4in8 < 2] ~ Ax 7% a? [ln % s 02:}3].

(B.5)
2
Taking into account that In }?ﬁ ~ 20 we see that the difference between dif-
ferent models of nucleus is lcss than 1 % .
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