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Abstract

The non-resonant (seagull) contribution to the nuclear Comp-
ton amplitude at low energies is strongly influenced by nucleon
correlations grising from meson exchange. We study this prob-
lem in a modified Fermi gas model, where nuclear correlation
functions are obtained with the help of perturbation theory. The
dependence of the mesonic seagull amplitude on the nuclear ra-
dius is investigated and the influence of a realistic nuclear density
on this amplitude is dicussed. We found that different form fac-
tors appear for the static part (proportional to the enhancement
constant x) of the mesonic seagull amplitude and for the parts,
which contain the contribution from electromagnetic polarizabil-
ities.
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1 Introduction

Nuclear Compton scattering below pion threshold is sensitive to low-
energy nucleon parameters (e.g. electromagnetic polarizabilities) as
well as nucleon correlations inside the nucleus. At present no quan-
titative consistent description for all parts of the nuclear Compton
amplitude below pion threshold exists. Therefore, phenomenologi-
cal models have been developed for the different contributions and
in the last few years several important pieces of information have been
extracted from the experimental data. At low energies the relative
strengths of electromagnetic multipoles were analyzed [1, 2, 3, 4] for
comparison with predictions from multipole sum rules. The interesting
question, whether the electromagnetic polarizabilities of the nucleon
inside the nucleus essentially differ from those of the free nucleon, has
been theoretically addressed [5, 6, 7, 8] and experimentally studied
with reasonable accuracy [3, 9, 10].

In [7] it was suggested to write the total nuclear Compton ampli-
tude T4 as a sum of three contributions provided by different physical
mechanisms (see also [11, 12]): the collective nuclear excitations (Gi-
ant Resonances), Rgg(w,#), the scattering by quasi-deuteron clusters,
Rgp(w, 6), and the so-called seagull amplitude, S(w, #), where w is the
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photon energy and @ is the scattering angle. The physical background
of this separation is the following: Via the optical theorem and a sub-
tracted dispersion relation the scattering amplitude in the forward di-
rection is determined up to an additive constant by the total photoab-
sorption cross section. This cross section contains resonant structures,
which at different energies correspond to different excitation mecha-
nisms. At low energies (up to 30 MeV) absorption is dominated by
giant resonances, which can be classified due to their electromagnetic
multipolarity. At higher energies, but still below pion threshold the
photon is mainly absorbed by two-nucleon clusters, which is known as
the quasi-deuteron mechanism. : '

The seagull amplitude S, which has no imaginary part below pion
threshold, contains contributions from two fundamentally different
physical sources, the scattering on individual nucleons inside the nu-
cleus (AM(w,8)) and the scattering on correlated nucleon pairs
(M (w, 8)). Such correlations occur as a result of the nucleon-nucleon
interaction, which can be well described in terms of meson exchange
between the nucleons. Meson exchange leads to specific observable
phenomena in Compton scattering. Best known is the modification of
the Thomas-Reiche-Kuhn (TRK) sum rule [13], i.e. the appearance of

the so-called enhancement constant k. Also, meson exchange currents

can imitate a modification of the nucleon polarizabilities [14, 8]. This
contribution, coming from the polarizabilities of a correlated nucleon
pair, has to be subtracted in order to single out a change of the bound
nucleon’s polarizabilities from its free values. The effect of meson ex-
change currents on the different electromagnetic properties of nuclei is
thoroughly discussed in e.g. [15, 16, 17, 18]. A wide variety of model
calculations has been carried out for the enhancement constant x as
well as for the different contributions to x,, which are theoretically or
experimentally accessible [19, 20, 21], see also [11]. Parts of k could
be related to parameters of Fermi liquid theory and to the notion of
quasi-particle masses [22]. A compilation of results can be found in
[17]. The contributions to x have also been studied in a diagrammatic
form [5, 23], similar to the approach considered here.

At low energies the dependence of the amplitude M on momentum
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transfer A = ky —k, is determined by the distribution of nucleon pairs
inside the nucleus. Here k; and k, are the momenta of the incoming
and outgoing photons, respectively. In the case of heavy nuclei the
scale of nucleon correlations is essentially smaller than the nuclear
radius K. Thus, one can expect that the A-dependence of M is similar
to the nuclear charge form factor F;(A). However, experimental data
clearly indicate [24, 25, 2] that this A-dependence cannot fully be
identified with the form factor Fy. In [26, 27] it was suggested to use
for the amplitude M another form factor F; instead of Fj. It has
been proposed to apply F3(A)=F;7(A/2), which corresponds to the
distribution of uncorrelated nucleon pairs [18, 4]. A first attempt to
quantitatively discuss the function F; within a model calculation has
been made in [28].

In [8] the amplitude M was considered within a modified Fermi gas
model, in which the deviation of the nucleon wave functions from plane
waves was taken into account in a perturbative way. It was shown that
M is given by the convolution of a two-body spin-isospin correlation
function with matrix elements corresponding to the amputated irre-
ducible Feynman diagrams for meson exchange. If the nuclear radius
tends to infinity the correlation function becomes proportional to the
form factor F;.

Among the current experimental data for various nuclei contradic-
tions at large angles occur [9, 29, 3]. As any modification of the energy-
dependent part of the mesonic seagull amplitude essentially modifies
the angular dependence, a reliable calculation of M may help to clarify
this situation. Therefore, a thorough discussion of the effect of finite
nuclear size, as well as of a realistic nuclear density is highly due. The
present article is devoted to this problem.

2 Low-energy behaviour of the nuclear
Compton amplitude

Experimentally, the total photoabsorption cross section . 4(w) below
pion threshold can be seperated into a giant resonance (GR) part and



a quasi-deuteron (Q D) part:

oyAlw) = oGgrl(w) + aqﬂ(w) y w<m,

where m is the pion mass. This serves as a means of identifying the
resonance parts of the scattering amplitude Rgr and Rgp as

Re (Rgr(w,0) — Rgr(0,0)) = v p f IGR(W) du (1)

22 w? — W
0

and

ImRGR(“-’_'s 0)= :_1:‘ ogr(w). (2)

The same is valid for Rgp. The seagull amplitude S has an imaginary
part only above pion threshold.

In addition to the fulfillment of a dispersion relation, the main con-
straint on the nuclear Compton amplitude is the low-energy theorem.
It states that the Compton scattering amplitude at w = 0 is equal to
the (coherent) Thomson limit

Z%e?

Here €; and €3 are the polarisation vectors of the incoming and outgo-
ing photons, respectively, M is the nucleon mass and e is the proton
charge, 2 = 1/137. The quantities A and Z are the nuclear mass num-
ber and proton number, respectively. We define the giant resonance
part kgp of the enhancement constant x via the following relation

TA(0,0) = —€; - €

% fUGR (W)dw = Ei{l + !’i(;ﬂ) (4)

A M
0
Then, taking into accnunt the fact that Rgr(co, 0) = 0, one obtains the

low-energy limit of the giant resonance part of the Compton amplitude
from the dispersion relation (1):

e? ZN
R{_‘,’R(U 9) = II:T]-l €2 ﬁ e (1 + HGR} (5)
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Similarly, we write

oD

1 NZ é?
307 | oap@)do = 7= 7o, (6)
0

for the quasi-deuterun amplitude, which leads to the relation

: 2 ZN
Rop(0,8) =€ - € HT"‘QD (7)
From (3), together with (5) and (7), one obtains
Ze* (- N
S(ﬂ, 6] = —€3 €3 —ﬁ' (1 + ‘;IH) (8)

for the low-energy limit of the seagull amplitude, where k = Kgr +
kgp. The first term in brackets in eq. (8) is the low-energy limit
of the so-called kinetic seagull amplitude, which corresponds to the
scattering by individual nucleons. The term in (8) proportional to s is
the low-energy limit of the mesonic seagull amplitude M. Note that
our notations for the seagull amplitude differ slightly from [7].

The parameter kgg in eq. (4) is related to the enhancement con-

stant .v?.:, which appears in the modified Thomas-Reiche-Kuhn (TRK)
sum rule: .

[ oE (W) dw = 27° ;:, Nz(l 1K), (9)

where 0F1(w) is the unretarded (i.e. obtained in the long-wavelength
approximation) electric dipole cross section for nuclear photoabsorp-

tion. In order to clarify the relation between kgr and % let us briefly
discuss the effect of retardation. In an expansion [30] of the plane
wave for the incoming photon into terms with definite total angular
momentum [ and parity A = £1,

€), exp(iwr cosf) = (10)

ff’ V2r (21 + 1) A fiwr) Yua(8, 8) = V x (Gawr) Yua(6,9))],
s




each term will contain all powers in w? starting from w?. In eq. (10)
Ji{wr) denotes the spherical Bessel function and Y\ (0, ¢) are vec-
tor spherical harmonics. The first term in the brackets on the rhs
of (10) corresponds to a magnetic multipole of the photon and the
second term to an electric one. When in eq. (10) the substitution
Jilwr) = (wr)'/(21 + 1) is made, the resulting cross section is called
“unretarded”. If the wavelength of the incoming photon is of the same
order as the nuclear radius, it is impossible to expand the photon plane
wave with respect to wr in the matrix elements for photoabsorption.
At these photon energies the effect of retardation is essential.

All absorption cross sections, which in principle can be obtained di-
rectly from experiment, are by definition retarded quantities. At high
energies the cross sections calculated with the use of an unretarded
photon wave function differ essentially from retarded cross sections
and cannot be extracted directly from experimental data. Neverthe-
less, unretarded cross sections are convenient objects in theoretical
investigations. If the potential V' entering into the Hamiltonian con-
tains velocity-dependent or charge exchange contributions, it is well
known (see e.g. [17, 11]) that this leads to a modified TRK sum rule

(9) with K given by

o AM
k= 2= (0] [D:, [V, D]} |0). (11)

In (11) D, is the z-component of the intrinsic electric dipole opera-

tor. Again, since the unretarded oFl and K are by themselves not
observable, it is necessary to establish a connection with experimen-
tally observed quantities. This has been attempted by Gerasimov [31].
Note that 0F! consists of two parts, a giant resonance part 66PF and a
quasi-deuteron part 092, For the giant resonance region Gerasimov’s
argument states that in the sum rule (4) the contribution of higher
multipoles precisely cancels the retardation correction to agh. There-
fore, kqr is equal to the contribution of the giant dipole resonance to
k. A discussion of the applicability of Gerasimov’s argument at giant
resonance energies can be found in [2].
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Let us now return to the properties of the seagull amplitude. In
addition to the static limit (8), it is necessary to take into account
the corrections proportional to w?. Usually the seagull amplitude .is
represented in the following form (see e.g. [9, 7]):

50,0 =~ 25 (Fi(8) 5 5 F(A)) +
Aw? [ﬁN.Flfﬁ) + Jﬂng(ﬁ)] €1 €24+ - (12}

A[BNFi(8) + 68 Fy(A)] (e x ki) - (€2 X ko)

where an = (Za, + Na,)/A is the average electric and By = (Z8, +
NpB,)/A is the average magnetic polarizability of the individual nu-
cleon.  The quantities da and 63 are the contribution of correlated
nucleon pairs to the total electric and magnetic polarizability, respec-
tively. In eq. (12) the A-dependence of the seagull amplitude is con-
tained in the one-nucleon form factor F; and the two-nucleon form
factor F,. The function Fj can be identified with the experimentally
accessible nuclear charge form factor, while for the function F3 phe-
nomenological descriptions have to be made. In [8] it was shown that

in the limit R >> 1/m, where again m denotes the pion mass, one

has F3=F;. Also it was shown that the approximation (12), where
only terms up to o(w?) were taken into account, reproduces with good
accuracy the energy dependence up to 100 MeV. For a finite m R some
difference between F, and F; appears. Strictly speaking, the form
factors for k, 6o and 873 in eq. (12) also differ from each other. In .
the next two sections we study the effect of finite nuclear size on k,
da and 603, as well as the modification of form factors with the use
of a two-nucleon spin-isospin correlation function. For simplicity we
consider symmetric nuclei, N=Z=A/2.



3 Nucleon correlations and mesonic seagull
amplitude

The mesonic seagull amplitude M can be written in the following form
[5, 23, 8]:

M= [ 53 FQ T(Q) (13)

The amplitude T;; is determined by amputated diagrams, which con-
tain only the nucleon vertices, but not its wave functions. The di-
agrams corresponding to the contribution T () of m-meson exchange

to T;; are shown in Fig. (1). The explicit form of T{ y is given in [8],

eq.(8). It is also necessary to take into account p-meson exchange.
This will be done following the prescription of [21]. The correlator F*
- entering into eq. (13) has the following general form:

Fi = Z (0] r{- ]'-_-(+} ‘a"' et Q:(xb—%a) ,—i A-(xa+xp)/2 l0). (14)
' a#b

Here the summation with respect to a and b is performed over all
nucleons, 7% = (T + i72)/2 are the isospin raising and lowering
operators, whﬂe o} /2 denotes the i-th component of the spin operator
for the a-th nucleon. For the case of a pure Fermi gas model the
correlation function is given by

.?’};';j Sl dp1dp; / dxy dxy e~ X1 +%2)A/2 i(x1~x2)(P1-Q~p2)_
(27)°

(15)
The range of integration for the nucleon momenta p; and p; is the
sphere with Fermi momentum pr as a radius, while the integration
with respect to x; and x; is performed over the nuclear volume V.
Fermi momentum pr and nuclear volume V are related via p3.V=37227.
Taking the integral with respect to p; and p; we obtain

.'Féj = §¥ f dxydxg e X1 1%2)A/2 g—ilxi-x2)Q gg‘]}(xl —Xz), (16)
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‘where

95 (p) = -2 (ﬁi’%) FY(prp), F(z)= fi (Si” - cnsa:) (1)

T

Thus, in a pure Fermi gas model the correlator is proportional to %7,
i.e. only central correlations appear. However, it is well-known that
tensor correlations strongly influence the parameters of the mesonic
seagull amplitude M. For instance, tensor correlations give the biggest
contribution to the value of the enhancement constant x [16]. In order
to obtain a quantitative description of the effect of tensor correlations,
a modified Fermi gas model was considered in [8], where a correla-
tion function was obtained in a perturbative way by evaluating three-
nucleon diagrams and additional two-nucleon diagrams. We represent
the correlation function, eq. (14), in the following form

Fh i ddige-ia CFRIRRE=D S . )
[90(x1 = x2) 89 + gr(x1 — x2) £],

where ;
5229 g o

In eq.{18) the functions gc and gr describe the central and tensor

 correlations of two nucleons, while the exponential function depending

on A is responsible for the distribution of such nucleon pairs inside
the nucleus. The functions g¢ and gr are related to momentum space
correlation functions F¢ and Fr obtained in [8] via

ger(p) = V o Q}g For(Q)ePe. (20)

Note that in the calculation of - and Fr the contribution from p-
meson exchange has been taken into account. Next, we expand T"’}

in eq. (13) with respect to k; and k; up to o(w?), pass to variables
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P = X3 — X1 and £ = (x; + %x2)/2. Then, taking the integral with
respect to Q and the angles of p and £ we obtain .

A2 2
y g {@1@)51.524-%@2(5)51*5”

4M
%‘I'a(ﬁ) (€1 x k1) - (€2 X k) } | (2.1)

where

D; = %(QRPF)S} dz [G?(PI) dc(p2)+ G (p1) §T(P2)]'><

e ( f d{fﬂméﬂ.& b f d{ smERL\ I-Ez._e*z), (22)

with f being the pion-nucleon coupling constant, f?/nhr':[},ﬁ& In eq.
(22) the following abbreviations have been used:

672\ _
dor(p2) = 3 (E) gor(p2/pF), pr=2Rmz, p;=2Rprz .

The functions G<*7 are of the form

: 254 =12
Gfp)=p1, Gllpr) = "—,
150 + 30p; — p3 2% + 12p; — p3
GS(p1) = A R A £ )
60 30
3 - 21p; + 2p? 202 - 8p; —.15
e R L VR i £

The integral with respect to £ in (22) can easily be taken analytically,
but we represent the result in this form for the sake of brevity. By
comparing eq. (21) with the corresponding terms in eq. (12) one sees
that the parameters appearing in the mesonic seagull amplitude are
given by the functions ®;(A) at A=0:

2 2
ami 20 s 9=
12

k=-0,(0), da=

®3(0).  (23)

It is evident from eq. (22) that three different form factors

P;(A)
®:(0) |
appear instead of only F3. In the case of magnetic polarizability 3
the contribution of the A-isobar excitation to the mesonic seagull am-
plitude should also be taken into account [32, 8]. In our notation this

corresponds to an additional contribution to the function ®3, which is
of the following form:

§0; = SMfaTmaleFon) J’dm [GC (p1) G0(pa)+ GB (p1) ar(p)] X

r2e—P1 ( f dEf ﬂm§ IE J‘ df smﬁRﬁ 1—::;1_-52) 1 ; (25)

where My is the A-isobar mass and

65t = S Gy =,
P &
The coupling constants appearing in eq. (25) are taken to be J&=2]
and f.,rNg—ﬂ 35.
Up to now we have considered a constant nucleon denmt}' ng =
p3 /372 inside the nucleus, which is normalized as noV=2. Using a
local-density approximation we will extend our consideration to real-

istic nuclear densities n(r). With the help of the usual plane-wave
expansion via Legendre polynomials Pj(z) we obtain

F(a) = (24)

3 4 9 Oy o0
.@E 9) - f{% /d:r: mge"gmz/dr r’n?(r) x (26)
0 x

|GE (22m) o (22p(r)) + G (2em) gr(2ep(r))] x

oo

3 i(rA) i(@d) (Pos (2/r) = Pisa (2/7)),

1=0

where p(r)=(372n(r))!/3 is the local Fermi momentum.
Eqs. (21)-(26) form the starting point of our numerical investiga-
tion of the mesonic seagull amplitude.
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4 Numerical results

The dependence of the normalized correlation functions j¢ and §r on
distance in units of 1/pp is shown in Fig. (2). For comparison, the
pure Fermi gas prediction, eq. (17), for g¢ is also shown. At distances
below 0.8 fm the difference between this zero-order approximation and
the result o of our model becomes most significant. For finite-size (as
opposed to point-like) nucleons one may expect that any correlation
function vanishes at distance equal to zero. However, we checked nu-
merically that the absence of this behaviour in our model has only a
very small influence (less than eight per cent) on the explicit values for
K, 0a and 0f. Note that due to the use of either the Fermi gas model
or a local density approximation the accuracy of our results decreases
with decreasing Z.

In order to account for the contribution of p-meson exchange to 7'
we follow the prescription of [21] and make the substitution f2 — 2 ff

for the central part of each quantity and f2 — — f‘E for the tensor
part. The pion mass m is substituted in all cases by the p-meson mass
m,. We used f2=0.4f2 and f2/4r = 4.86. In accordance with [21, 33]
the coefficient 0.4 approximates the influence of short-range repulsive
correlations due to the exchange of w- and o-mesons.

We now pass to the discussion of our numerical results for the
different contributions to k. Note that, as it was argued in [19] and is
also discussed in [17], the main contribution to KGR comes from central
correlations, while k9” is mainly determined by tensor correlations. In
the pure Fermi gas model, where go= gg] ) and gr=0, the contribution
to & from pion exchange K™ is approximately equal to the p-meson
contribution x?. For nuclear matter (infinite nuclear radius) one has
£"=k?=0.2, which is in agreement with a variety of model calculations,
e.g. [21, 19, 20]. For finite nuclei, again in the pure Fermi gas, the
value for k™ decreases slightly with decreasing Z, whereas x” remains
the same. With inclusion of the full correlation functions go and gr
from Fig. (2) the situation for k changes drastically. Now the main
contribution to K comes from tensor correlations related with pion
exchange. The pionic central contribution is still of the same order as
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Figure 1: Typical diagrams contributing to T;’,. The wavy lines de-
note photons and dashed lines denote pions. The amputation indicates
that T* contains only the nucleon vertices, but not its wave functions.

Figure 2: Normalized correlation functions jc (dashed curve) and jr
(full curve) as a function of y = ppr. For comparison the normalized
correlation function for a pure Fermi gas model (cf. eq. (17)) is shown
(dotted curve). 15



before, while k7. becomes negligible. The only significant contribution
from p-meson exchange is now due to tensor correlations and has a
negative value. All these relations between the different ingredients to
k remain valid, when realistic nuclear densities are considered. In Fig.
(3) the different contributions to x are shown as a function of Z for

ol - ——

09}

08}

0.7}

L2040, 60 ;180 e 00

Figure 3: Dependence of enhancement constant & on proton number
Z. The dashed curve corresponds to the pionic tensor contribution
kT, the dotted curve includes also the central contribution <% and
the dash-dotted curve gives the total x, including the contribution
from p-meson exchange. The realistic-density result k9 for the full
enhancement constant (cf. eq. (26)) is shown as a full curve.

the modified Fermi gas model. The realistic-density result k'®) which
is obtained from eq. (26), is also shown in Fig. (3). For the densities
n(r) we used a three-parameter Fermi parametrization with values for
the different nuclei taken from [34].

In the case of electric and magnetic polarizabilities da and 63 the
contributions from' p-meson exchange are suppressed by a factor of

m?/m? in comparision with the pion contributions and, therefore, are

16

5 (10" fm 1

Figure 4: Pion-exchange contribution to electric polarizability da as a
function of Z. The dashed curve corresponds to the central contribu-
tion dac and the dotted curve gives the total da=dac+dar. The use
of a realistic density leads to the full curve. '

negligible. The values of da and 63 are determined mainly by pionic
central correlations, as can be seen in Figs. (4) and (5). In the case of
8/ the inclusion of the A-isobar intermediate state produces a notica-
ble effect (cf. Fig. (5)). In this contribution the values due to central
and tensor correlations are of the same order. Note that x, da and
d get close to their asymptotic (nuclear matter) values calculated in
[8] only at extremely high Z. The size of both, o and §3 becomes
noticably smaller, when a realistic density is taken into account. This
effect gains importance with decreasing Z. The ratio of central and
tensor contributions to da is approximately the same for a realistic
density as in a modified Fermi gas model. For 84 the influence of ten-
sor correlations in the realistic-density case is slightly stronger than
for homogeneous nuclear density.

We consider now the dependence of the mesonic seagull amplitude
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0.5 S S —
T20 40 :60 580 100

Figure 5: Pion-exchange contribution to magnetic polarizability é3 as
a function of Z. The dashed curve corresponds to the central con-
tribution 68¢c and the dotted curve gives the sum §80c+4480r. Adding
the contribution of the A-isobar excitation as given in eq. (25) leads
to the total value of 43 given as the dash-dotted curve. The use of a
realistic density leads to the full curve.

M on momentum transfer A, which is determined by the form factors

F}‘E}(A) (cf. eq. (24)). In order to cover a wide range of Z, results for
the form factors will be given for lead (A/2=104), calcium (A/2=20)

and carbon (A4/2=6). Our results indicate that Ff) for the term pro-
portional to da and Ff) (for 68) are equal with high accuracy, but
differ significantly from the form factor FE{ Y for the term containing K.

All three functions Fé'] differ noticably from Fj. Figs. (6),(7) and (8)
show the corresponding curves for lead, calcium and carbon, respec-
tively, for the case of a realistic density. One can see that the frequently
used phenomenological approximation F;(A)=F7(A/2), which is also
shown in Figs. (6)-(8), is not in agreement with the A-dependence of
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Figure 6: Form factors Ff](&) for A/2=104. The dashed curve is

F._El) and the full curve is F._En]. For comparison the (experimental)
charge form factor Fj is also shown (dash-dotted curve), as well as the
function F7(A/2) (dotted curve).

ss . 108 150 .200. 250
A [MeV]

Figure 7: Same as Fig. (6), but for A/2=20.
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the amplitude M obtained here. For very small A it is convenient to
represent the form factors as Fr_f‘} =1- A%r?/6. Then, for the case of
carbon we have ry=1.9fm, ro=1.4fm. For calcium we find r;=3.0fm
and ry=2.5fm. For lead the corresponding values are r;=5.0fm and
r;=4.7fm. In the case of lead, the result from [28] coincides within

good accuracy with the form factor Ffj shown in Fig. (6).

In Fig. (9) the form factors obtained for a homogeneous nuclear
density are compared with those for a realistic density in the case of
calcium.

5 Conclusion

In the frame of our model we demonstrated that central and tensor
correlations have a strong influence on the parameters appearing in
the mesonic seagull amplitude. Qur calculation is based on correlation
functions obtained with the help of perturbation theory. Therefore,
our predictions may still be influenced by higher-order effects in the
correlation functions. However, we suppose that our model describes
correctly the role of mesonic effects in low-energy nuclear Compton
scattering.

The values of the parameters &, o and 88 for finite nuclear size
differ essentially from those obtained for infinite nuclear matter. Qur
calculation indicates the necessity of applying two different exchange

form factors. While Fg(l) enters M at the term proportional to x, the

form factor Fzm is related with the terms containing the electromag-
netic polarizability modifications da and 64.
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Figure 8: Same as Fig. (6), but for 'A/_2=6.
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Figure 9: Comparison of form factors Fz('.]I (A) for the realistic-density .

approach with those for a homogeneous nuclear density. The dashed
(dotted) curve is Fél) for realistic (homogeneous) density, while the

dash-dotted (full) curve corresponds to Ff} for realistic (homoge-
neous) density. 91
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