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Abstract

One of the possible procedures for the kinematic reconstruction of multi-
particle events is considered. For a suggested approximate angular part of
the likelihood function the optimal rotation procedure is derived and imple-
mented in Fortran-77.
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1 Introduction

The task of kinematic reconstruction of an event is typical of high energy
physics. Usually the solution is found by numerical minimization of the log-
likelihood function. In this paper we consider one possible parametrization of
the event. The main guidelines of this approach were reported at CHEP-97
[1]

For conveniency let us consider the particular process ete™ — ¢ — 5y —
rtx~ 7y — atx~yyvy. The final state contains five particles and is de-
scribed by 15 parameters: 5 momenta and 10 angles (¢ and ¢ angles in the
polar system). But these parameters are not independent. There are 5 con-
straints: 4 energy-momentum conservation laws and a known value of the 7°
mass. So there are only 10 free parameters. In general, if a detector measures
the angles of all 5 particles, one can reconstruct momenta of all particles. Of
course the accuracy of angular measuments will determine the accuracy of
the reconstructed n-meson mass. If there are some additional measured pa-
rameters, then the accuracy of 7 meson mass will increase and the minimum
value of the log-likelihood function can be used for rejection of background
events.

The possible set of 10 free parameters is the following. The first parameter
is an invariant mass M, of the n-meson. For an ete™ collider with equal
energies of the initial electron and positron Ey, the total momentum equals
zero and the total energy equals 2E,. Using this information one can easily
derive the energy of the first photon and momentum of the n-meson. Let n-
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meson move along the Z-axis in some system of reference and 7° move in the
XZ-plane in this system. In the system of 7-meson we can define two more
free parameters: momentum pg of 7o and angle #p between this momentum
and the Z-axis. Now in the system of #%-meson we can define the angle 0,
between one of the photons and 7° momentum and axial angle ¢, which
determines the rotation of 7° — v decay plane with respect to the XZ-
plane. The corresponding angles 64 and ¢ define the 7t momentum vector
in the center-of-mass system of 7+ x~. At last the rotation angles ¥, g, Y3
allow an arbitrary rotation of this 5-particles construction as a whole.

Let us represent the log-likelihood function L as asum L = Lg + La,
where Lp takes into account the deviations of the particles energies from the
measured values (for those particles, whose energies are measured) and L
takes into account the deviations of particle directions from the measured
ones:

La= : (1)

Here Aa; is the angle between the direction of the i-th particle momentum
in our model and experimentally measured one, ; is an estimation of exper-
imental angular accuracy.

Obviously the energies of particles in our model do not depend on the
angles 11, s, ¥a, hence the energy part of likelihood function Lg does
not depend on these angles. There is no profit to minimize separately L by
numerical methods over ¥, 2 a for every set of 7 parameters My, po, bo, By, ¥,
84, ¢+. On opposite there will be great increase of CPU time consumption.
In this paper the analytic solution for minimization of the approximate form
of L4 over v 23 is presented.

2 Approximate form of likelihood function

For small deviations Aa; in (1) the likelihood function can be approximated

by
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Here vector e; is the unit vector, defining the measured direction of the i-th
particle, vector n; is the theoretical unit vector for the i-th particle, defined
in our model by 10 variablé parameters.

TPE first sum in (2) is constant and can be omitted. The likelihood
function L4 reaches its minimum value, when the second sum in (2)

€ - 1§
Lig= ) 2 (3)

reaches its maximum value. Vectors n; can be presented as unit vectors s;,
depending in our model only on the first 7 parameters, transformed with a
rotation matrix T, depending only on the angles 11 3 3

H{ZT'S{ (4)

Now we can repeat the task in another way: it is necessary to find the rotation
matrix T such that

ef

Ly =) {f" =T (TZ S;:

) = Tr(T V) (5)

:;ea.ches its maximum value, where superscript “bT” means transposed matrix

3 Solution for optimal rotation

Let us introduce matrix V
T
V=) = (6)
i 1

and let vectors vy, va, va be the columns of the matrix V, vectors u;, us, us
be the rows of the matrix T. Then the maximized function
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Ly = zuk “ Vi | (7)
k=1

Being the rows of rotation matrix, vectors u; satisfy the following con-
straints ‘

v=uli=1 u u=0, uz=u xuy (8)
Now the task is transformed to the following: for given vectors vi,k =

1,2,3 it is necessary to find vectors u; and uz, maximizing the function Las
(7) and satisfying the constraints (8).



Further on we shall use the following variables:
Vi =vi-vj, Vigg=v;:[va X vg] (9)

The searched rotation matrix is derived by the well-known method of
Lagrange uncertain coefficients (for example [2]). Auxilliary transformation
of expressions was performed by REDUCE code [3].

There are several classes of solutions depending on the rank of the matrix
V.

3.1 Non-zero determinant

For the case of the non-zero determinant Vi35 # 0 the searched vectors uj 1
can be written as

Uy = 21Vy + ZaVa + T3avVa, Uz = T7V; + TgVe + Zgvs (10)

The searched coefficients z1, 23, z3, 7, z5, 29 were found to be equal to

2A3Viga—VaaVas+ V.2
21 Viza

) =

Ty = VaaVia—~ViaVaa =21 Vias

21Vyas
— Vi23:(2Vis A3 =Vas A1 )+ (VaaVia=Via Vas )(21 ~ Vas)

333 Ev ELVIJ‘E'{";I_VEE-} (11)
7 = =A1Vi2a4ViaVaa —ViaVos
_ #1Vi2a
i = 2A3V193— V11 Vaa+ V3
¥~ z1Vizs
po = YV123:(2VasAs~Vish 1 )+(Vas Vi~ ViaVis )(21— Vaa)
. 231 Viza(21—Vaa)
where
Ay = Elg[vlgrl:z1—V33}+V13V:3 ) p—— Aa[(V11—31){31—V33}+V33]
1= Via+(Vii=21)(2:-Vss) ? = Via+(Vaz—21)(21—-Vas) (12)
AE o Vlﬂa'[3?*(V22+V33}31+V22V33—V§3}

3?+ﬁ‘31f2+2(V11V:3V33—angns-Vnnvfa—VaaV1“:)+4V13VIaV=a
and z; is a root of the following equation

+bi e +d=0 (13)

= 2(VE+Vi+VE - Vi1Vog— Vy1Vas — Va2Vas)
c= 8Via ;
d= (Vi+Vd+2Vh) VA — 2(Vis + Vao + Vas) Vs
=2 (Vaa V3 + Vas Vi + 2V12VasVas) Vi
+ (Vas + 2V%) Vi — 2(VasVas + 2ViaVas) Vaa Ves + 2 (V3 + V2) V2
+2VEVE — 4VasViaVisVas + Vi + Vi + V4 + 2VAVA
Usually there are four real roots of this equation. For all real values of z;

the value of the goal function Ly is evaluated, and that value of z; is chosen,
which provides the maximum value of L.

3.2 Zero determinant: matrix V of rank 2

There can be a case when Vj9a a2 (0, but there are at least two acolinear vectors
vi. For conveniency let us consider the case when these are the vectors v
and L

Let us introduce auxilliary variables

D = Vi1Vae — Vi3 > 0,

ry = fracVaaViz — ViaVas D, . (14)
e VHVHBV,;V,:

Now the solution is represented as

U = Z1Vy + ZavVa + 24 [\Fl X \i’z] 5
Ug = Z7V] + TgVe + T1g [Vl X ".’g] ; (15)
V3 = vy + rava




where
(Vag+2VizAs)rira +riVia+2 (rgVn-h)la
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3.3 7Zero.determinant: matrix V of rank 1

In this case all vectors v are proportional to one vector p
vi =ap, va=bp, vs=cp, p’=1 (17)

Maximum value of Ljs is

fur = max Ly = maxTr (TV) = Va? + b2 + ¢2 (18)

The rotation matrix T is not unique in this case. One of the possible
solutions is

0 VB3 tc? 8

far Im

T = T,T;, where Tbnldmath T, = —m _73%3}' }%
b ac e

Tre  TINS Tu

(19)

and the third line of matrix T; is vector p. The first two lines of T; are any
two unit vectors, which form with p a right-hand coordinate system.

4 Description of input and output arguments

Following the described algorithm there was written the subroutine BURO-
TAT in Fortran-77 with typical running time about 1.1 ms per call on VAX-
3600 computer.

Subroutine BUROTAT is called with the following arguments:

call BUROTAT(N,E,V,SIG,TT,FL)
where

integer ¥4 N ! Number of particles
real *8 E(3,N) | Unit vectors of “experimental particles”
real *8 V(3,N) ! Unit vectors of “theoretical particles”
real *8 SIG(N) ! Experimental angular accuracy -(radian)
real *8 TT(3,2) | Searched rotation matrix
real *8 FL ! Searched minimum of

| angular likelihood function L4

Input: N, E, V, SIG.
Output: TT, FL.

5 Conclusion

One of the possible procedures for the kinematic reconstruction of multi-
particle events is considered. For special parametrization of an event and
suggested approximate angular part of the likelihood function the optimal
rotation procedure is derived and implemented in Fortran-77.

This procedure allows to decrease the number of free optimized parame-
ters by three, and hence decrease the CPU consumption by more than two
times for the sample process ete™ — ny — nt @~ yyy (decrease from 10 to
7 optimized parameters). Even more important there is an increase of a de-
tection efficiency for this process by several percents, that characterises the
simplification of the likelihood function profile and hence the smaller proba-
bility of finding the false minimum (minimization was performed by MINUIT
code).
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Addendum. Output of the test program

For the purpose of control of fatal corruption of subroutine BUROTAT
text, a simple test program TESBURO has been written. The construction of
four particles with some directions of movement e; is transformed by rotation
transformation in order to obtain the “theoretical” directions sz. Then both
sets of unit vectors are processed by BUROTAT subroutine to find the inverse
transformation and minimum value of angular part of the likelihood function
L 4. The minimum value L 4 in this case must be equal to zero. The following
is the output listing of this test program:

Test of BUROTAT subroutine

4 initial unit "experimental” vectors:
Eil= 0.42426 0.56569 0.70711
E2= 0.09759 0.19518 0.97530
E3= =-0.53452 0.80178 0.26726
E4= -0.09950 -0.99504 0.00000

vere rotated by orthogonal transformation T3:

0.36851 0.92077 0.12799
T3= -0.92473 0.3489%98 0.15195
0.09525 -0.17435 0.98007

and so the "theoretical" vectors obtained:
Vi= 0.76771 -0.08747 0.63480
V2= 0.34058 0.12616 0.93171
V3 0.57548 0.81470 0.07123
V4= ~0,95287 -0.25523 0.16401

Angular errors were put equal to 0.100 0.050 0.080 0,150
BUROTAT subroutine has searched inverse transformation TT:
0.36851 -0.92473 0.09525
¥ L 0.92077 0.34898 -0.17435
0.12799 0.15195 0.98007

and calculated Likelihood function FL= 0.000000
(vhich should be equal to zero here)

Product T3*TT must be equal to unit matrix:
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1.000000 ©.000000 0.000000
T3*TT= 0.000000 1.000000 0.000000
0.000000 0©0.000000 1.000000

Besides this simple check a more sophisticated test with 104 Monte Carlo
events was carried out. Test program TESBURO1 had the following algo-
rithm of generating each event:

1. Five unit vectors u; are generated, isotropic and independant from each
other. These vectors are treated as theoretical vectors.

2. Random rotation matrix R is generated.
3. Five "experimental” vectors e; are obtained: ¢; = R - u;.

4. These sets of ”theoretical” and ”experimental” vectors are offered to
“subroutine BUROTAT to find the rotation matrix T and minimum
value of likelihood function. Angular accuracy is assigned to the first
two particles equal to 2° and to the last three particles equal to 5° (of
course, recalculated to radians).

5. For this case we know the exact result: likelihood function should be
equal to zero and rotation matrix T should be equal to the matrix R.
Moreover we can calculate ourselves the likelihood function and com-
pare it with BUROTAT value.

6. If loop on the events is not over, then proceed with the point 1.

Over all statistics the maximum deviation of the returned from BUROTAT
rotation matrix from the known original rotation matrix was found to be
3.4 - 10~ (all calculations were made with double precision). Maximum
value of likelihood function is equal to 21075 and matches with maximum
deviation of likelihood function, calculated via rotation matrix T, from that
returned from BUROTAT subroutine. Obviously there is a great loss of
accuracy because of many arithmetic operations, but it seems suitable for
most realistic cases.

Randomness of the rotation matrix R is assured by the distributions of
its diagonal elements (Fig? 1), which are the cosines of rotation angles of the
three coordinate vectors. Now let us ”spoil” the directions of the experimen-
tal vectors in accordance with angular accuracy, assigned to each particle.
Then the likelihood function must not be equal to zero. The distribution of
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Figure 2: Distribution of the events over the minimum value of
likelihood function. Smooth curve shows the distribution function

over (x2/2) for 7 degrees of freedom.
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events over likelihood function value is presented in Fig. 2. Our log-likelihood
function equals %xz for 10 degrees of freedom, but after minimization over
3 rotation angles the effective number of degrees of freedom is equal to 7.
Probability function of # = x? for odd number (2k + 1) degrees of freedom
can be written as

&
aw = Hexn(=3)
de  2x(2k — 1)1

In our case, taking into account the total statistics, histogram bin size, and
that we plot the distribution over (x?/2), we should compare our simulated
distribution with function

(20)

4.10%25%%¢~*

15w

F(z) = (21)

(smooth curve in Fig. 2).
For every event we can calculate the value of likelihood function for all

”wrong” combinations (correspondence of theoretical and experimental parti-
cles violated). The excess AL of the best ”wrong” value of likelihood function
over that for true combination characterizes the possibility to distinguish the
right combination from the wrong ones. Distribution of the events over this
excess is displayed in Fig. 3. There is small probability that likelihood func-
tion of "wrong” combination is less than that of true combination. In our
case this probability appeared to be 1.1 %, that can be seen in Fig. 3 (62 %
of events have the valué of AL > 36).
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