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Abstract

Comparison of the Wigner BRM model with a series 41 eigenstates
in Cerium atom is considered. It is shown that such a generic model
provides a satisfactory description of the global structure of chaotic
atomic states. Several improvements are suggested to incorporate into
the model some more realistic atomic features like a smooth matrix

band and its sparsity.

E-mail: chirikov@inp.nsk.su

@ The State Research Cent.r of Russian Federation
“Budker Institute of Nuclear Physics SB RAS”

The first attempt to describe statistical properties of complex
quantum systems by means of random matrices goes back to

- Wigner [1]. He introduced a Band Random Matrix (BRM) model

to describe conservative systems like atomic nuclei [2]. Specif-
ically, he considered an ensemble of real, infinite, Hamiltonian
matrices of the type

m
Hon = —0mn + Umn 4 Umn = Unm (1)

where p is the mean level density; the off-diagonal matrix elements
are random and statistically independent with < v,,, >= 0 and
< vh, >=v? for |m — n| < b, while v,,, = 0 otherwise; b is the
band width.

Wigner introduced also the weighted level density

was(£; m) = ; i S (E — Ey) (2)

where a,,; are components of the éigenfum:tinns Y of Hamiltonian
(1) in some physically significant unperturbed basis {¢,,}, and E;
are eigenvalues corresponding to ;.



The density wgs(E; m), called strength function by Wigner
(the term still in use in nuclear physics), proved to be very im-
portant in the studies of quantum statistics, and is now called
also local spectral density (see, e.g., Ref.[3]). It is related to the
so—called operative eigenfunctions [4] which actually control the
dynamics of the initial state ¢,,. Hence still another term for
wgs, the Green spectrum we now use [3].

The analytical evaluation of the density (2) turned out to be
very difficult. Only in two limit cases Wigner was able to derive

an explicit expression for wgg, namely: for the semicircle (¢ =

(pv)?/b > 1), and for Breit - Wigner laws (for recent development
see Ref.[6]).

After Wigner’s pioneering work, BRM were almost forgotten
(curiously enough by Wigner himself [7]), apparently because of
their mathematical inconvenience, namely, non-invariance with
respect to basis rotation. Due to this, attention was paid mainly
to full random matrices for which a fairly complete mathematical
analysis has been developed [8]. However, full random Hamilto-
nian matrices can be used to describe the local statistical proper-
ties only, the restriction which is especially bad for atoms [9].

A physically meaningful approach to the analysis of global
properties of Hamiltonian systems can be obtained by just going
back to the original Wigner model with increasing diagonal ele-
ments (1). In this model the semicircle law holds for the weighted
level density (2) only, while the total level density is approxi-
mately uniform in the semiclassical region. Moreover, in physical
applications, the interaction of unperturbed states always has a
finite range which determines the band structure of Hamiltonian
matrices. For this reason, there has been a revival of interest in
BRM [10]. Particulary, in Refs.[11] the energy level statistics has
been studied in the original Wigner model (1).

To which extent a relatively simple Wigner model does repre-
sent a real physical system?

Below, we discuss this important question using as an example
the series J™ = 4% of about 100 excited eigenstates in the Cerium
atom which was studied in detail in Refs.[12, 13] following Ref.[9]
where the global structure of chaotic atomic eigenstates had been
first estimated.! The average energy of the Ce states is about 3 eV
above the ground state as compared to 5.54 eV for the ionization
threshold. The main parameters of the corresponding matrix were-
found to be as follows: p = 31 eV~!; v = 0.1 eV; b = 100 for
the matrix size N = 276 which is a technical parameter in the
Wigner model (see Ref.[5] for details). It makes the Wigner pa-
rameter g = 0.1 which corresponds to the structure of the energy
shell intermediate between Breit - Wigner’s and semicircle’s one
(Fig.1). As a result there is some uncertainty in evaluation of
the ergodicity parameter [5]: Asc &~ 70; Agw =~ 50. However,
the result is clear in that the eigenfunctions must be very close
to ergodic contrary to the conclusion in Ref.[18] where the same
example was discussed.

The shape of the average eigenfunction is shown in Fig.1 by
squares. The averaging was made in two steps: first, within each
of 6 groups of close 19 eigenstates, and second, by superimposing
of the maxima of these groups. Whether the structure emerging
upon averaging is of a physical origin or is some residual fluctua-
tions remains unclear. To our knowledge, this is the first example
of the real chaotic eigenstates, and not only in atoms but also in
nuclei. Before, only Green spectra were studied whose structure
is generally different from that of eigenfunctions [5].

At the first glance, the shape of atomic eigenfunctions looks
rather different as compared to that in the Wigner model. There
are, at least, two striking differences:

1This first estimate was based essentially on the data of many laboratory experiments as
summarized in [19]. Unlike this, a much more detailed structure of atomic states presented
in {12, 13] was calculated numerically using new powerful techniques. Even though some
douh!: as to the accuracy of the latter data might still exist the statistical properties of
atomic eigenstates we only need here appear to be fairly reliable.
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Figure 1: The average eigenfunction of Cerium atom from 19 x 6
individual eigenfunctions 4% [12] (squares): wgr = |¢gr|® is the
eigenfunction probability (arbitrary units) for the basis states of
energy F in eV. Solid line 1 is the Breit - Wigner distribution (3)
with fitted I’ & 2 eV/; dashed line 2 is the Wigner tail (4) with
iitted b &~ 100; dotted line 3 is direct coupling (5) with a fitted
power—law tail (6) of the Hamiltonian matrix in Fig.2.

%

(i) the distribution is rather asymmetric with respect to the
maximum, and

(ii) there is additional slow-decaying tail on the right.

The first peculiarity is apparently related to a short basis. How-
ever, it cannot be extended to the left as the leftmost basis states
are already close to the ground state. Surprisingly, the upper part
of the distribution remains approximately symmetric with respect
to the maximum.

The eigenfunction cap is well represented by the Breit - Wigner

law:
WEF = in =l - fy < .
= oty L Bl
with fitted w, = 7.55 x 1073 and I'/2 ~ 1 eV which is close to
I'/2 ~ 0.9 eV in Refs.[12, 13]. However, a characteristic Breit -
Wigner tail is absent because of a low cut—off at b/p ~ 3.3 eV.
Instead, the Wigner tail (corrected in Ref.[12], see also Ref.[16])

shows up:

Inwgr = A — €[In(C-In¢) — 1.6] (4)

where § = pe/b, ( = £%/q, and fitted A = —6.49. This simple
relation approximately describes the eigenfunction down to E ~
1.5 eV, much lower the cut—off energy. Moreover, two curves, (1)
and (2), are tangential at the intersection [12] which is not the
case generally|[6].

We used Eq.(4) for evaluation of the effective band width b ~
100. However, the fine structure and/or residual fluctuations in
the average eigenfunction as well as the narrow energy interval
(1.5 — 4.5 V) for the Wigner tail substantially restrict the accu-
racy of b value. The discrepancy with b &~ 80 in Ref.[12], obtained
by a different method, characterizes a real accuracy which is not
so bad for a rather crude approximation of the real Hamiltonian
matrix by a simple one in generalized Wigner model (Fig.2).
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Figure 2: Distribution of matrix elements (solid triangles, upper
half) fitted by the exponential (solid curve) [13], and a crude ap-
proximation in generalized Wigner model: upper solid lines rep-
resent the main part of model’s Hamiltonian with vy =~ 0.13 eV,
b = 100, and the tail (6) with sparsity s = 0.6 and pg = 0.4;
lower dashed lines give recalculated values of v = v ,/3g corre-
sponding to s = 1 (cf. Ref.[6]).

i |

The additional tail on the right was fitted by a power law:
w= — (5)

with ¢ = 3.2 x 1073, and p = 2.73. Our attempts to fit the tail to
any reasonable exponential failed.

The physical mechanism of the tail formation is apparently
related to the direct coupling of far basis states due to a long
tail in the Hamiltonian matrix itself (Fig.2). However, it would
imply, in the first—order perturbation theory, a very slow decay of
the matrix elements: '

with pg = 0.37 which seems to be very difficult to agree with
the actual decay in Fig.2 in spite of big fluctuations. A possible
explanation of this apparent discrepancy is in that the asymptotic
behavior (6) is not yet reached in the range 4 — 8 eV (Fig.1),
and higher orders of perturbation theory are required.
Localization length (Hilbert dimension) of the average eigen-
function was found to be dp = 126 (from the participation ratio,
see, e.g., Ref.[14]). In the semicircle approximation the ergodic
dimension were d. = 157. A better agreement is achieved by using
the Wigner model with ¢ = 0.1 as in the Cerium atom: d, = 140.
Remaining discrepancy (= 10% assuming ergodicity) is again not
that bad. Particularly, it is related to a physically restricted ba-
sis: the ratio N/d. = 2 is certainly not sufficiently large. The
ergodicity of the Ce eigenfunctions can be directly measured us-
ing the methods proposed in Ref.[5], for instance, by computing
the Hilbert dimensions of the Green spectra which must be the

- same in case of ergodicity.

A relatively small Hilbert dimension d, & 130 emphasizes the
importamce of the global structure in atoms [9] as compared to

9



nuclei where d. ~ 10%! The origin of such a big difference for com-
parable quantum numbers is not completely clear. Apparently, it
is related somehow to an additional independent fermion in nuclei
(proton and neutron as compared to electron in atoms).

The above comparison of relatively simple (but far from theo-
retically analysed!) Wigner model with a real physical system sug-
gests already some immediate improvements of the model without
loosing its generic nature (cf. more specific matrix models like one

in Ref.[15]):

e a smooth distribution of matrix elements across the band
(Fig.2) which has been already taken into account, at least
formally, in Refs.[6, 16], and which was included roughly in
the above theoretical analysis;

e a variation of matrix parameters p, v, b within the energy

shell (Fig.1), also considered in Ref.[16];

® a finite size N of the physical basis which is not always a
'technical’ parameter as in the original Wigner model:

e the sparsity of the Hamiltonian matrix which crucially de-
pends on the basis chosen; for example, in Ref.[12] two bases
are considered with sparsity (the fraction of nonzero matrix
elements) s = 0.6 (discussed above), and s = 0.06 (!) only.

Including sparsity must be done with some care as follows from
Ref.[17]. Taken literally, s — 0 with increasing quantum numbers
in the quasiclassical region. The difficulty is in that the remain-
ing nonzero matrix elements are strongly correlated and cannot
be considered as random in any sense. This is a typical situa-
tion as the original perturbation in a physical system is usually
a simple and fairly regular function, the dynamical chaos being
developed as a result of the action of such a perturbation. One
possible solution of this difficulty is in constructing the unitary
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matrix (a map) instead of the Hamiltonian one. However, in-
creasing diagonal matrix elements (finite level density p), which

- is the most important property of the Wigner model for describ-

ing conservative systems, is lost, and it is not clear how to restol:e
it. A more simple method seems to be in variation of the basis
in such a way to keep sparsity, at least, constant (with increasing
quantum numbers) and not too small.

In conclusion we would like to emphasize again that using ran-
dom matrices (even a single matrix!) considerably simplifies both
numerical experiments as well as the theoretical analysis without
loosing essential part of the dynamical properties of real physical

systems.
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