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1 Introduction

Abstract
In 1985-86 by the authors was developed the package of computer : One of the main trends in the development of accelerating devices is the
codes SAM for evaluation of the wide range of 2D electromagnetostatic production of linear accelerators with high accelerating rate (up to 50 +
problems arising at designing of the injection units of accelerators and 100 MeV/m). The development of B powelSirinia Bl s poner b0t

high power RF sources. Among them there are electric field calcu.lat,ic{n
‘0 the electrode systems with dielectric, magnetic field L'ﬂ.lCl.ll.‘dtani in
the magnetic focusing systems or systems providing the acco mpanying
magnetic field with ferromagnetic elements (without considering the
saturation effects), calculation of the ion and electron guns.

300 MW within a wave range of 3 = 10 ¢m is required to achieve that accel-
erating rate in resonant accelerating structures. An important unit of that
sources is the injector forming the high-power electron beam (~ 1 MeV) with
low transverse size and phase volume with the current density of 1000 A/cm?.

This work describes in detail the methods and algorithms used or lf; 18 kl’li’:)‘i:ﬁ‘ll that the cathode emission current density is limited by the emis-
designed by the authors at developing the package of computer codes sion abll'lty of present cat.hgdgs and dDE.S not exceed 10 + 20 A/cm?. Thus
SAM. The examples of the real electron-optics systems simulation are the required current density can be achieved only as a result of the strong
presented. compression of initial beam.

This brings up a problem of design and computer simulation of the electron-
s §= optical systems forming axial-symmetrical high-power eleciron beam with
high compression and low phase volume. However, existing computer codes
[1, 2] do not provide the accuracy needed at simulations of the high power
RF sources units. Thereto these programs are realized on Large computers
and work in batch regime, that very hinders the data input and processing
of results.
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power RF sources. At its development the task to satisfy to following re-
quirements was delivered:

1) interactive operating mode with use of computer graphics;
2) realization of codes on personal computers (IBM PC);

3) extensive care about achievement of necessary accuracy of the calcula-
tions;
4) expansion of the class of evaluating problems, including:

a) calculation of electrical fields in the electrode systems with dielectrics;

b) calculation of magnetic systems with ferromagnetics (without consid-
ering effects of saturation);

¢) calculation of guns with high beam area convergence.

Though the existing codes do not satisfy to all mentioned requirements,
some of them use rather of effective numerical methods and algorithms. So,
in the code by V.T. Astrelin and V.Ya. Ivanov [1] the boundary elements
equations method in common with spline-interpolation of surface charge den-
sity is applied. The main advantage of such approach is the a small volume
of required memory at a high accuracy of calculation.

In presented work the positive experience of work of these authors was
used as well as the new methods and algorithms for increasing the calculation
accuracy are advanced. However, for the sake of convenience of perception,
we describe all the used methods and algorithms of calculation, though some
of them are already described in the works [1, 3].

At an electron guns simulation the electric and magnetic fields are pre-
sented in kind of superposition of external fields, created by electrode systems
with dielectrics and with magnetic focusing elements, and own fields of beam.
Thus, calculation of the gun is reduced to the consecutive solving of the two
following problems:

1) electromagnetostatic;
2) calculation of the beam dynamics.

The electromagnetostatic problem 1s worked out by method of boundary
elements equations relative to the secondary surface electric and magnetic
charge density. At a numerical simulation of these equations the method of
collocation with the spline-interpolation of the surface charge density is used.
As a result, the initial integral equations are reduced to the two systems
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of linear equations relative to the charge density in the collocation nodes.
The matrix coefficients of these systems are expressed through the integrals
above the electrodes surfaces and along the boundaries between dielectrics
and magnetics of the product of weight spline functions into the kernel of the
corresponding integral equation. These integrals are calculated numerically,
and the kernel singularities of the integral equations in the collocation nodes
are separated analytically to increase the accuracy of the calculations.

The accuracy of spline-interpolation sharply drops if there are singularities
of fields, and as the result, singularities of the surface charge density on
the sharp electrodes, dielectrics and magnetics edges, as well as in the joint
points of the electrodes with the dielectrics. In this case the charge density
is presented as a product of the factor, describing the singularity, mnto the
smooth function that is good described by the spline. The initial systems of
linear equations are rewritten concerning to the smooth function values in
the collocation nodes, and the singularity powers are introduced under the
integrals mentioned above. Thus the accuracy of calculations is increased at a
sacrifice in the analytical separation of the singularities of the charge density
on the edges and in the joint points, as well as the kernel singularities in the
collocation nodes.

For the description of the beam dynamics in the gun the hydrodynamics
current pipes model is used. The space charge and beam current distribution
are described using a mesh with rectangular cells in the cylindrical coordi-
nates (r, z) covering only the expected area of the beam particles motion.
The charge and current density is considered constant within the limits of
the one cell of the mesh. The electric and magnetic fields are calculated only
in the mesh nodes, and evaluated in the arbitrary point with interpolation.
For the description of the cathode emission the model of flat or spherical
diode in dependence on the emitter form is used. To evaluate all the electron
gun as a whole the method of iterations is carried out.

Especially we note the following new methods and algorithms, offered in
the given work for the accuracy of calculations increasing and expansion of
the class of soluble problems.

At the calculation of the electromagnetic problems:

1. Description of the charge density singularities on the dielectrics and
magnetics edges, where the integral equation and its kernel lose their mean-

Ing;

9. Finding by the Mexiner method [4] of the singularity power of the
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electric field close to the joint points of metals with dielectrics;

3. The low scattered magnetic fields calculation accuracy increasing
through the regularization of the initial integral equation in accordance with
Tozoni [5].

At the calculation of the beam dynamics:

1. The set of rectangular meshes with different sizes and subdivision of
the cells, that allows to describe the charge and current non-uniform, as well
as the non-uniform strong external fields more accurately. For example, non-
uniform charge density in the cathode vicinity at the high beam compression
or the electric field close to the anode gun aperture.

2. The parabolic interpolation at the calculation of fields in points that
are not coincident with mesh nodes is used.

3. The initial approximation for iterations on the space charge is entered,
that determined by the following three parameters:

a) the assumed beam current;
b) the effective anode-cathode gap;
c) the accelerating voltage on this gap.

It allows substantially to reduce the number of iterations, required for the
achievement of given accuracy, especially at the calculation of the electron
guns with a high perveance.

4. The singularities under integrals, that arise at the calculation of the
potential and field, induced by the separate mesh cell charge inside or on
the cell boundary are defined analytically. As a result the accuracy of the
calculation of the beam induced potentials and fields increases significantly.

5. The current pipes have the finite section, which varies with the change
of the beam radius. This allows to describe the highly non-laminar beams
with high compression correctly with rather small number of the current

pipes.
6. As a criterion of the iterations convergence on the space charge the

convergence not only of the emitting from the cathode current, but also of
the beam emittance at the exit of the gun is used.

-

7. At the calculation of the electric fields and potentials the matrixes
of their values in the mesh nodes and collocation points at a unit surface
and space charge density are previously calculated once and then are stored
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on the hard disk. After that the real values of the fields and potentials in
each iteration on the charge density are calculated by simple multiplication
of these matrixes into the vectors of the surface charge density values in the
collocation points and into the vector of the space charge density values in
the mesh nodes. It allows to reduce the gun calculation time essentially at a
high accuracy of the fields and potentials calculation.

The advantages of the interactive operating mode with the use of com-
puter graphics imply that the user during calculation can see on the color
graphic display the field map and the parameters of the beam in the gun.
The map of the equipotentials and the electric field distribution on the gun
axis, as well as the trajectories of particles, distribution of the current density
and the phase diagram of the beam at the different stages of motion are thus
outputted.

More the total description of the used methods and algorithms is given
in the sections 2-4. In the last section the tests calculations as well as some
examples of the real electron guns simulations and the comparison with the
experimental results are presented.

2 Setting up a problem

At calculation of the stationary election-optical systems for the intensive
beams of charged particles forming there are considered given (Fig.1):

1) the geometry and potentials of the electrodes;
2) the geometry and dielectric constant of the dielectrics;

3) the geometry and magnetic constant of the magnetic cores, as well as
the geometry and currents of the coils of the magnetic focusing system;

4) the regime of the cathode emission.

The problem of simulation is to evaluate the beam formed by the given
gun in terms of its own electric and magnetic (for the relativistic electron
beams) fields.

To describe the space charge flux it is necessary to resolve two main
equation systems simultaneously: the equation of the electromagnetic field
and the beam particles motion equations.
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Figure 1: General view of the electron-optics system.

2.1 Equations of the electromagnetic field

By virtue of stationarity the total electric field (i.e. the field of the elec-
trodes plus the own beam field) can be described by scalar electric potential,
satisfying to the Poisson equation:

Ap = —dnp, (2.1.1)

where p — the volume charge density of the beam. On the electrodes surfaces
and on the boundaries between the dielectrics with the different dielectric
constants the following boundary conditions are imposed:

“P - LFE ¥ [2-1-2}

Se
3@) i oy
«(52), = = (5,

where S, and Sy — the surfaces of the electrodes and boundaries between

the dielectrics; U, — the potentials of the electrodes; -ﬂ% — the derivative

, (2.1.3)

Sd

-“.

with respect to the normal to the boundary. The indexes 1 and 2 correspond
to the two different mediums contiguous to the given boundary.

It is known, that the general solution of the equation (2.1.1) can be shown
up as:

L iig a(F)dS p(F)dV
¢(fo) = ] e A R -y (2.1.4)
S+ 54 Vi
where & — the surface charge density on the electrodes and boundaries be-
tween the dielectrics; V5 — the volume, occupied by the beam. Substituting
the general solution (2.1.4) into the boundary conditions (2.1.2) and (2.1.3),
one can obtain the following boundary integral equations for the unknown

surface charge density on the electrodes:

o@ds _ . [ ePav
f oA s e R i)
S.+54 A

and on the boundaries between the dielectrics:

ea+e1 o J 1 ; b 1
= - V
2“&'2 —Eld(rd) fﬂ-[ﬂaﬂd (!Fg—f’l) g fp[ﬁand (lFa—Fl) o

S:+Sd Vb
(2.1.6)

where ., g — the coordinates of points on the electrodes surfaces and
demarcation boundaries respectively; a_f{; _ derivative with respect to the
normal to the boundary in the point with coordinate rj.

The own magnetic field of the beam is defined from the law of total
current:

}((B‘-ai') = %’[(}’-ds"}. (2.1.7)

Here j(#) — the beam current density, the surface S bears up against the
closed contour L.

At a simulation of the beam dynamics it is necessary also to take into
account the external magnetic field produced by the magnetic focusing sys-
tem. Frequently for its description the paraxial approximation, that provides
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the goods accuracy if the beam diameter is small in comparison with the
aperture of the magnetic focusing system, is used. However, the quest to
minimize the dimensions and power supply of the magnetic focusing system
frequently leads to then infringement of this condition.

On the other hand, the majority of magnetic focusing system operates in
the linear range of the magnetization curve of magnetic cores (p = const). In
this case the magnetostatic problem can be easily resolved in total statement.
To do this, one may represent the magnetic field formed by the magnetic fo-
cusing system as a sum of the current field H, and field H,,, that is produced
by the induced magnet dipoles (magnetization field):

=8+ An. (2.1.8)

Entering the scalar magnetic potential to describe the magnetization field
and taking into account the condition p = const, it is possible to reduce the
problem of magnetization field calculation to the electrostatic problem about
the dielectric in the given external field. The boundary integral equation for

the “magnetic charge” surface density, similar to the equation (2.1.6), will
look like:

AT B iy fa[r*} a (IF : )dS = (fm-He(fm)), (2.1.9)

M2 — M — ]

Sm

where 7,, — the coordinate of point on the boundary between the magnetics;
fiy;, — the normal vector to the border in this point; S,,, — the total surface
of the boundary between the magnetics.

The equations (2.1.4)—(2.1.9) form the complete set of the electromag-
netic field equations in stationary electron-optical systems, forming high-
perveance beams of charged particles. However, in these equations the beam
charge and current densities remain indeterminate.

2.2 Equation of the beam particles motion

To describe the unknown charge and current density it is necessary to ac-
cept the any model of real beam charge particles motion. For description
of stationary flows the most adequate is the hydrodynamic model of cur-
rent pipes. In this model the real space charge flux is replaced by the finite
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set of laminar flows or current pipes, each of that is characterized by the
section-averaged values the charge and current density. Thus, by virtue of
stationarity and laminarity, for each of fluxes the following equation between
the current density through the pipe section and space charge density holds:

] = o, (2.2.1)

where 7 — the average speed of the charged particles, forming the given flux.

In the given fields the coordinates and speéds of particles can be found
by the equation of motion

%f”. = o(- %o + L xB) (2.2.2)

with the initial conditions

= o, (2.2.3)

i w13
where P = m~y¥ — the particle momentum; vy = (1 — 'é—z) — the rela-
tivistic factor; 7o and ¥ — the coordinate and velocity of the particle on the
emitter.

According to the stationary condition the current of the given pipe does
not depend on the time, hence it 1s constant along the pipe and is equal to

I = / 70(70)dS , (2.2.4)
Sp
where _;{](Fg) __ the extracted from the emitter current density; S, — the

pipe section on the emitter. In case of the limitation of the emission by the
space charge the current density can be approximated by the model of the
flat or spherical diode in dependence on the emitter shape:

20(70) = EU(E(FG,J},JJ , (2.2.5)

where & — the electric field strength on the small distance § from the point
7o along the normal to the emitter.
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Within the framework of current pipe model the equations (2.2.1)—(2.2.5)
completely describe the space charge flux in the real electron-optical system
at the given electric and magnetic fields.

2.3 The self-consistent problem solution

The Poisson equation (2.1.1) and, consequently, equations (2.1.5)—(2.1.6)
are nonlinear, as far as their solution depends on the beam space charge
density distribution. In turn, the charge distribution depends on the electric
field configuration, i.e. on the equations (2.1.5)—(2.1.6) solution. The same
situation arises and if the own beam magnetic field is taken into the account
(formula (2.1.7)). To solve the arising self-consistent problem one shall use
the method of iterations .

As initial approximation we take some beam charge and current density
distribution model. Solved equations (2.1.5)—(2.1.7), we can find the electric
and magnetic fields appropriate to them. After that, simulating the emission
from the cathode and beam dynamics in known fields, it is possible to find
the next charge and current density approximation etc. As a criterion of
the iteration process convergence the small relative change from iteration to
iteration of the beam current and emittance at the gun exit can serve.

Thus, the problem of the given gun analysis can be reduced to the con-
secutive solution of three independent problems:

a) linear magnetostatics (u = const);

b) electrostatics with the potentials and fields induced by the given beam
taken into account;

¢) simulation of the emission from the cathode and beam dynamics in the
given fields.

The method of the two first problems solution is detailed stated in the next
section. The simulation of the emission from the cathode and beam dynamics,
as well as method of the induced by the beam fields and potentials calculation
are separate considered in section 4.
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3 Method of the boundary integral
equations solution

2 1 Statement of the equations for the
axial-symmetric problem

As far as hereinafter we shall consider only axial-symmetric guns and mag-
netic systems, it is convenient to write the boundary integral equations
(2.1.5), (2.1.6) and (2.1.9) in cylindrical coordinate system (r, 8, z) and
to integrate them over the angle. We designate through £ = (ro, zo) the
coordinates of the point of observation and through n = (r, z) the running
coordinates. With these designations the mentioned equations take the form:

j (MG, mdl = Uel€) — f e feL, T gan
L'e'i'Ld E‘Ib
g1 +¢ aG e oG = ;

zﬂi‘__s%a('s} ‘"fﬂr(f]] 3"5 [E,T}](ﬂ T fﬂ(fﬂ aﬂg ('E? q)d"bf EE Lﬂ’rr (3‘1 2}
Le+La Sh

2t B2 506y — 55 o) 2 (g )l = (e, Ae(©), €€ Lmy  (313)

M1 — H2 g

Lo

where L, L4, Lm — the contours of the electrodes, dielectrics and magnetics
in plane (r, z); Sp — the section of the beam by this plane. The kernel of

the integral equation (3.1.1)

2
rdd 4K (k)r
G = = = (3.1.4)
(&) / \/rﬁ — 9rorcos @ + r? + (20 — 2)° \/_(r,:, +r)2 + (20 — z)?
0

has a simple physical meaning. This is potential, created in the point of
observation (rg, zo) by the infinitely thin charged ring(circle) of radius r
with axial coordinate z and with unit linear charge density. In formula (3.1.4)
K (k) is a total elliptical integral of first kind from argument:

f’l'l‘ul‘"
k = \[{rﬂ T (o il (3.1.5)
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The kernel of the integral equations (3.1.2)—(3.1.3) coincides accurate to
a sign with a normal to the boundary component of the electric field of that
ring and looks like

oG oG oG
m(&n) = e (&,m) + nsg— (¢,n) , (3.1.6)
where n,., n, — projections of the normal to the boundary in the point of
observation (rg, zo),
E(f o 2r/ro r? —13 4 (20 — z)?
aru :']'

V(ro + 1) + (za — 2)2 LT —70)? + (20 — 2)? E""‘)‘*’*’“‘)]= (3.1.7)

4r (z — 20)
\/(rﬂ +r)? + (20 — 2)? (r —10)% + (20 — 2)

_E(k),  (3.18)

oG

E(k) — the whole elliptical integral of second kind.

3.2 The collocation method with spline-interpolation
of the solution

At numerical solving equations (3.1.1)—(3.1.3) are written in the finite num-
ber of points on the contours of the electrodes, dielectrics and magnetics
Eei €ELey, t=1,...,N¢;8qj € Ly, J = 1,...,Na; &mk € Lm, k= 1,...,Nm;
(Fig.2). In these points — collocation nodes the values of surface charge den-
sity o; = o(€;) are found. For the integrals calculation in left-hand parts
of the equations (3.1.1)—(3.1.3), as in work [3], the interpolation of charge
density by cubic spline is used:

2 2
a(n(l)) = (Mi-a¥ui(l) + M;‘#Jz;‘{”)%— + (crt-_l - ﬂ.-f,'_]%) Pai(l) +

2
+ (a; - M.-%‘) Yai(l), ima <1<, h=li=liy, 1=2,...,N, (3.2.1)

where | — the parametrical length of the contour; M; = %?{I;] — the second
moments of the spline;

(li=1)°.
A

Yu(l) = Yoi(l) =
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Figure 2: Arrangement of the collocation nodes on the surfaces of: a) -
electrodes and dielectrics; b) — magnetics.
Bal iy w heiel (3.2.2)
vai(l) = TR vai(l) = g

the weight functions of the spline. On the interpolation segment tips the
additional conditions of the freely fixed tips are set:

Ml == Mz, J'VIN_1 = MN. {3.2.3]

From condition of continuity of the first spline (3.2.1) dcrivative_in the
collocation nodes jointly with the boundary conditions (3.2.3) we receive the
following system of linear equations for the vectors of second moments
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=1
Il

AM = B, (3.2.4)

where the matrix A is of the form:

2. =20 0
g 2 2 A 0 0
44- = 5 e U ¥
0 0 pyn- 2 ANn-1
0 0 -2 2
h:-l-'l
-‘11— b e p— P - — 13 2.5
hi +hig,' * s iy
and vector of right parts is defined by the formula:
TFy41 =74 = Ty — g1
R B
B, = 6—% . i = LN 3.2
By EENe; T=1, <IN (3.2.6)
o :
where g;; = { {11 if't fj . The solution of the system (3.2.4) is found by
the running method and can be written as
N Te41 =Tk  Txp—0%_)
h h
M =6 i€ w1 . 3.2
;ak 1kE Nk e : (3.2.7)
where a;; — coefficients of the matrix A~!. After the substitution of (3.2.7)
into the formula (3.2.1) we receive
e
N
o(l) = oirsil) + oeai(l) + A (w.t-(s}—wm{u) D dicikon +
k=1
-
N
+ hi (%i(t) - a,m;.-u:u) Y dingn s i=2,..,N,
k=1
16

o Qi k-1E1kE2k QikE1kENK
i A RN
hie(hx + hik41) khk41

i k4+1EN-1,kENEK
hiy1(hr+1 + hrg2)

+ (3.2.8)

Substituting the obtained expression into the equations (3.1.1)—(3.1.3)
and designating

L7 = fﬂi’mj(f) R(&,n(1)) di,

m=1,...,4, i=1,...,N;, 7=2,...,N,, t=e,m,d, (3.2.9)

where R(£,7) — the kernel of the integral equations (3.1.1)—(3.1.3), we
obtain the following system of linear equations for electrostatic problem:

Ne+Ny
Y Dijo; = Eni, i=Ne+1,...,NetNa; (3.2.10)

j=1

Here the general numeration of the nodes on metals and dielectrics are intro-
duced, and

N N
Cij = ennlin + einlin+ 3 Bo(Ih — I)aro1n + ) Wi(Tik = Iik)akn , (3:2:11)
k=2

k=32
wheren=3j, N=N.at j< N.andn=j— Ne, N=Ngatj> N

ez + €1

I = 2%
€2 — £1

bl (3.2.12)

where C}; is coincident with C;; accurate to a kernel change in the integrals
(3.2.9). In the system (3.2.10) also the following designations are introduced:

Ui = fﬂ{n}G(Ehn}dS,

Zh

oG
—— e | £ L 3.2.13
Eni /P‘{ﬂ} aﬂf‘ (El: ﬂ']dg ) ( }
S
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for the potential and the normal component of the electric field, induced by
the beam in the collocation nodes.

For the magnetostatic problem the similar equation system will look like

N
Z Fijo; = (ﬁ(,ﬁm‘] Rl w5 PeRe o, e (3.2.14)
3=1

where the matrix F;; coincides with the matrix D;; (3.2.11) accurate to
numbering of elements and changing from ¢ to u.

Thus, the initial integral equations (3.1.1)—(3.1.3) can be reduced to the
two systems of linear algebraic equations (3.2.10) and (3.2.14). Therewith the
accuracy of the spline interpolation of the surface charge density in its values
in nodes reaches o(h%), where h = max h;. In turn, accuracy of calculation

of the charge density in nodes depends on the accuracy of calculation of
the integrals (3.2.9). Analytical expressions for these integrals do not exist,
therefore they are calculated numerically by the Gauss quadratures method.
However, the accuracy of numerical integration sharply drops because of the
singularity of the integral equations kernel R(£;,7) in case when the point of
observation coincides with the beginning or end of the interval of integration
(i=j—1ori=}j).

3.3 Separation of the integral equations
kernel singularity

In case mentioned above let us do following. Let the point of observation
coincides, for example, with the end of the integration segment & = n(l;),

i = j. We conduct a tangent line to the contour of integration in this point
and designate it 7j(l) (Fig.3). Obviously, that in limit [ — I; the difference
R(&;,n) — R(§j,n) tends to zero. Let expand the function R(&;,7) into a
series on a small parameter ¢ = ;:“;, where p — the distance between the
point of observation & = (rj, z;) and point on the tangent line 7(l). We
designate obtained by this means the kernel asymptotics at 7(l) = £; in the
form of R(€;,7) (see the Appendix A.1). The initial integrals (3.2.9) can be
submitted in following form:

18

Figure 3: Tangent line to the contour of integration.

S s
I = / Wmj () [R{fj,r}(f)}—R(fj,ﬁ{l})]df—i— [ Y (DR(E;, 7(1))dl . (3.3.1)

Ij_l

In the formula (3.3.1) the first integral has not already a singularity and
can be numerically calculated with a good accuracy. The remaining integral
is taken analytically (see Appendix A.1).

In case when the point of observation coincides with the beginning of
the integration segment the singularity is separated in a similar way. Notice
that obtained by that way kernel asymptotic is not defined if the point of
observation is located on the axis of the system. However, from formulas
(3.1.4), (3.1.7), and (3.1.8) it is easily to see, that at r = ro = 0 the kernel
has not a singularity and integrals (3.2.9) can be calculated numerically with

good accuracy.

3.4 Separation of the solution singularities

The other complexity at boundary integral equations (3.1.1)—(3.1.3) solution
is that the desired surface charge density may have a singularity on tl}e
metals, dielectrics, and magnetics edges. The nature of this singularity in

general case looks like [4]:

F pf_l (3.4-1)




where p — the distance from the edge; > 0 — the singularity power,
depending on the edge geometry and external fields. At 7 < 1 the cubic
spline (3.2.1) interpolation of charge density produces large error, and, on
the strength of spline properties, not only near the edge. To avoid this, we
divide the contours of the electrodes, dielectrics, and magnetics into parts

My
L = Y La, t=edm, (3.4.2)
k=l

So that the edges coincides with joint points of separate parts. Then the
charge density on each of the intervals 0 < I < Ly can be presented in
following form:

ﬂg::(éﬂﬁrﬂ(LE:ﬂﬁrﬁ&m, (3.4.3)

where &(l) is a smooth function good described by the spline, and multipliers
before it describe the singularity of the charge density on the edges of type
(3.4.1) with powers 714 and 7z at the beginning and at the end of given part
of the contour, respectively. On the each part of the contour L we build its
own spline to describe the smooth function &(I).

We emphasize that on the metal surfaces the spline nodes (points of ob-
servation) can be placed on the edges, where the equation (3.1.1) and its
kernel are defined. Therefore the formulas (3.1.1)—(3.2.10) remain in force
for the points, belonging to the electrodes, accurate to replacement o; —

and addition of a summation over the segments L.k, and integrals (3.2.9) will
look like

H: = f(Lik)ru_l(Lfﬁe:!)fuﬂ'tﬁ‘mj(”'R{fi:ﬁ“)} dl,

R LR (e P QO R Ny e T (3.4.4)

Moreover, it is possible to write the condition of continuity for the charge
density in the joint points of the separate parts of L, for example, for k-th

and k 4 1-th:
=1
Fn, = e .81 , (3.4.5)
Lek41

g |

where T = T9x = T1 k+1; Ni — the number of the spline nodes on the segment
L.i; & — the value of function (1) in the first spline node on the segment

Lek+1-

The integrals (3.4.4) at 7k, T2x < 1 have the singularities just as at
! = 0 and | = Lex (singularities of the charge density on the edges), as
at alignment of the point of observation with the beginning or end of the
integration segment (the singularity of the integral equation kernel).

For these singularities allocation we proceed as follows. The integrals
(3.4.4) can be presented in general form

1

Iy = fP_,-(.r) Qm(r) Rij{z) dr , (3.4.6)

0

where the function P;j(z) describes the singularity on the edges, i.e. at j =
2, =0, and j = Ng, 2 =1, function Qm(z) accurate to the multiplier
coincides with the weight functions of the spline, Rij (x) — kernel of the
integral equations (3.1.1)—(3.1.3), possessing the singularities at i = j —
l, z=0andi=j z =1 At allocation of the singularities one shall
recognize the following two main cases:

1. Point of observation does not coincide with ends of interval of inte-
gration. In this case in the all intervals, except for the first and the latest,
the function under the integral sign has not singularity and integrals (3.4.6)
are calculated numerically. The singularity of the function Pj(z) on the first
(j = 2) and the latest (j = Ni) intervals of integration is allocated as follows:

1 1

L = fPj(ﬂf)[@m(ﬁ)ﬂu(m)*Qm(ﬂ)ﬂe;(ﬂ]ldm‘+Qm(ﬂ)Ru(ﬂ]fPJ{:U}ffﬂ:,
0 0

(3.4.7)
wherea=0at j=2anda=1at j = Ni. In formula (3.4.7) the first
integral has not the singularity and is integrated numerically, and the second
— analytically.

9 Point of observation coincides with the beginning or end of the interval
of integration (i = j — 1 or i = j). If it is not the outer interval (j # 2 and
j # Ni), so only the kernel R;; has the singularity and the integral (3.4.6)
may be written as:
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1 1
I3 = f Qnm(z) [Pj(z)Ri;(z) - Pj(a)Ri;(z)] dz + P;(a) f Qm(z)Rij(z)dz

(3.4.8)

where R;;j(z) — the asymptotics of a kernel at z — a, with a = 0 at
i=j—1and a = 1ati=j. The first integral already has not the singularity,
and the second one coincides with the additional integral in formula (3.3.1)
and is presented in Appendix A.l.

If the point of observation coincides with the beginning of first or end of
last interval of integration, i.e. is located on the electrode edge, so in this
point not only the kernel of equation (3.1.1), but also its solution (functions
P;(z) and R;j(z) in formula (3.4.6)) has a singularity. For allocation of the
singularity we present the integral (3.4.6) in following form:

1

1
H_;'l v fPJ'(I)Qm{I} [Rij(-’r) - R;; {I]] dr + f Pj(I)Qm(ﬂ?}Rij{:ﬂ}dI . (3.4.9)

0 0

Hereori=1, j=2,0r i = j = Ny; ﬂi;j(;r] — asymptotics of the kernel at
z — 0 in the first and at £ — 1 in the last interval of integration.

If the point of observation coincides with the end of the first or with the
beginning of the last interval, so on the one of limits of integration in (3.4.6)
it is the kernel of equation (3.1.1) that has a singularity, and on another
it is its solution . In that case the integral (3.4.6) can be presented in the
following form:

1
I} = f{PJ(IJ [Qum(z)Rij(z) — Qm(a)Ri;(a)] = P;(1 = a)Qm(1 — a)Rij(x)}dx+
0

1 1
+Qm(a)Ri;(a) f Pj(z)dz + P;(1 —a)Qm(1 — a) f Ri;(z)dzr , (3.4.10)

wherea=0ati=j=2anda=1ati=j—1, j = Ni; Rjj(z) — the kernel
asymptotics at £ — 1 —a. The expression in curly braces in formula (3.4.10)
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already has not singularities, and other integrals are calculated analytically.
Formulas (3.4.6)—(3:4.10) are adduced more detailed in Appendix A.2.

The question about the allocation of singularities on the edges of di-

electrics and magnetics, as well as in the joint points between a metal and
dielectric and between various dielectrics or magnetics with one another, de-

mands the individual consideration. The fact is that in these points the
direction of a normal is not defined, so and the kernel of equations (3.1.2)—
(3.1.3). Besides the charge density in these points can tend to the infinity
and then equations , (3.1.2)—(3.1.3) unlike the equation (3.1.1), simply lose
their meaning.

R

L

+

Figure 4: Arrangement of the collocation nodes close to the dielectric (mag-
netic) edges.

The presented work offers the following method of allocation of singulari- -
ties on the edges of dielectrics and magnetics, as well as in the joint points of
various materials. We consider the part of the boundary between dielectrics
or magnetics, for example, abutting on the corner (see Fig.4). We remove
from the corner the outer point of observation on this boundary on some
small finite distance d <« h, where h — the step of spline, describing the
charge density on this boundary.

At the same time in integrals in left-hand parts of equations (3.1.1)—
(3.1.3) the contribution from the small segment d shall be taken into account.
It can be significant owing to the singularity of the charge density in the cor-
ner. To describe the charge density on the segment d the extrapolations with
the spline, constructed on the given part of the boundary between dielectrics
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or magnetics, will be used. Similarly we proceed on the other end of the
considered part of the boundary, which also can adjoin to the corner or to
the joint point of different materials.

It will be considered, that spline is still built on interval 0 <! < L. In
view of two small segments d on the boundaries, the total length of the given
part of the boundary will be equal to L¢x + 2d, and parameter [ will vary
in limits —d < ! < Ly + d. Then on the boundary between dielectrics or
magnetics the integrals (3.4.4) can be submitted in following form:

IP = I™ 4 6,A05 + AR, (3.4.11)

where f:? coincide with integrals (3.4.4) accurate to replacement of the charge
density singularities multipliers:

[4d ol Lo +d =1\
D= (posg) - =0 = (__‘——4) S
a® = (555 a0 = (g (34.12)
and .&f:‘g and &hﬂ‘wk — the additional integrals over the small segments d

and are different from I3 and I, only by limits of integration.

In integrals f’}’ only the kernel of integral equations (3.1.2)—(3.1.3) can

1
have a singularity. The method of allocation of this kernel singularity is

similar to the method of the kernel singularity allocation on the metal surfaces
in formula (3.4.8).

The integrals AIT} and &f}’;{k can be written in following general form:

b

aly = [ Pie) @nie) Rie) d

a

(3.4.13)

that is completely similar to formula (3.4.6), except that here or j =2 and
thena= -4, b=0,orj=Nyanda=1, b=1 + &, where d = d/h < 1.
Notice also, that function Pj(z) that is equal to the product of multipliers
(3.4.12), in the both integrals has a singularity or at j = 2 and 2 = 9,
orat j= Ny andz =140 (a singularity of the solution). If the point of
observation does not belong to the interval of integration, the singularity of
function P;j(z) is allocated by following way (see formula (3.4.7)):
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A

B

ALY f P;(x) [@m(2)Ri;(z) — Qm(c)Rij(c)]dz + Qm(c)Rij(c) / Pj(z)dzx ,

(3.4.14)
where c=aat j=2and c=b at j = N;.

The following two cases require the individual consideration:

1) point of observation coincides with the joint point of metal with the
boundary between dielectrics. It is possible only in the case when the point of
observation is on the metal. In this case at a calculation of integrals (3.4.13)
over the small segment d of the boundary between dielectrics, contiguous to
the metal, singularity in the joint point will have already not only solution
(function Pj(z)), but also the kernel of equation (3.1.1). For allocation of
these singularity the integrals (3.4.13) should be written in following form:

b

b
Al = / P;(z) [Qm(2)Rij(z) — Qm(c)Ri(z)] dz 4 Qm(c) f P;(z)Ri;(z)dz

(3.4.15)

where c =a at j =2 and c = b at j = Ny; R‘J[.n) — the kernel asymptotics
at = c;

2) point of observation is an outer point on the boundary between di-
electrics or magnetics. In this case in integrals (3.4.13) the kernel of equations
(3.1.2)—(3.1.3) will have a singularity on the other limit in comparison with
the previous case. For allocation of the singularity of the solution and ker-

nel the integral (3.4.13) should be presented in form, similar to the formula
(3.4.10):

b

AlT = /{Pj(I) [Qm (@) Ris(2) — Qm(c)Ri; (0)] = P5(£)Q@m(f)Ri;(2)}dz+

a

b b
+Qm(ﬂ)R-‘ij}fPi[I}dr+ Pj(f)Qm[f)/ﬁu(f}drs (3.4.16)

where c=aand f=bat j=2,andc="band f = a at j = Ni; ﬁ:;_,,:(x]—
the kernel asymptotics at  — f. It is clear that in this representation the
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expression in curly braces has not a singularity, and two remaining integrals
are calculated analytically.

Formulas (3.4.13)—(3.4.16) are adduced more detailed in Appendix A.2.

3.5 Finding of the field singularity parameter

The accuracy, achievable by allocation of a singularity of the charge density,
depends mostly on the accuracy of definition of the parameter of field singu-
larity on the sharp edges of electrodes, dielectrics and magnetics, as well as
in the joint points. The behaviour of field in close proximity to the edge or
joint point on distances, small in comparison with distance from this point
to axis of system will be searched. Then the problem of finding of singularity
parameter can be considered in plane approximation. The exception 1s the
case when the field has a singularity on the axis of system (for example, conic
point).

Figure 5: Metal wedge with the wedge angle ©q.

It is known, that the analytical solution about behaviour of the field in
the vicinity of the flat wedge-like edge of the conductor [7] (see Fig.5) exists:

i e e ol 3.5.1
P o o7 — 0y ; ( }

where p — the distance from the edge, 6o — the wedge angle. The solution
can be used for description of the singularity of the magnetic field in the
vicinity of sharp magnetic edge with the constraint g 2> 1. The problem
of finding the field singularity parameter in the vicinity of dielectric wedge
or joint point of some dielectric media one with other and with the metals
require the individual consideration. To do this the advantages of well-known
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Mexiner method [4] will be taken with applying it to the static field descrip-
tion [8].

Figure 6: Joint point of several dielectric media and metals.

Let we have the joint point of N media with the different dielectric con-
stants ¢;, among which are M < N metals. Introduce the polar coordinates
system (p, 0), the center of which coincides with the joint point (see Fig.6).
The electric field should satisfy to the electrostatics equations:

divD = 0,
rotE = 0 (3.5.2)
and to the boundary conditions:

a) on the boundary between the dielectrics

giFei = eis1B8iq ,
Epi = Epiy1; (3.5.3)

b) on the conductors surface

Esi = Bgig1 = 0. (3.5.4)




The solution of the equations (3.5.2) will be searched in the form of the
asymptotic series:

Ey = Pr_liﬂui + aiip+ ﬂ?-’ﬂz + ...,
Eoi = p " '[boi + brip +b2ip’ +...]. (3.5.5)
Substituting (3.5.5) into (3.5.2), one can obtain the differential equations

for the first coefficients of series ag; and bg;, the general solution of which
takes the form of

ag;i = pisintd — gicosth ,
bo; = picosTl 4 ¢isinTl (3.5.6)

To find the constants p; and ¢; the boundary conditions (3.5.3) and (3.5.4)
will be used. As far as the electric field in metal is equal to zero, for metal
media we can immediately consider that p; and ¢; are equal to zero. A result
of the substitution of (3.5.6) into the boundary conditions (3.5.3) and (3.5.4)
is the uniform system of 2 - (N — M) equations:

A(r)-B =0, (3.5.7)
i

The system (3.5.7) has the nontrivial solution with the proviso that the
determinant of matrix A(7) is equal to zero:

where 4(7‘) — the system matrix; P= { Pi } S e

detA(r) = 0. (3.5.8)

This condition allows to determine the singularity parameter of the electric
field in the general case.

Specially notice, that in the given method of solution at M = 0 the infor-
mation about configuration of the external fields is not available completely.
Therefore, if several solutions of equation (3.5.8) exist, the question arises of
choosing the physical solution, appropriate to the given distribution of the
external electric field. For example, for a dielectric wedge with ¢ = 5 and
a wedge angle of 8y = 90° one can obtain from (3.5.8) two values of sin-
gularity parameter r; = 0.78 and m = 1.22. The same values result for a

wedge with 8 = 270°. Therewith to each value #; there corresponds its own
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Figure 7: Character of the electric field behavior and appropriate values of
the singularity power r for the two dielectric wedges with ¢ = 5 and wedge
angles of 90° and 270°.

configuration of the electric field in the vicinity of the wedge edge, that are
schematically represented on Fig.7. Notice, that at 7 < 1 the electric field

and, consequently, surface charge density have a singularity on the edge for
the both values of the wedge angle.

To illustrate aforesaid we consider the dielectric cap with ¢ = 5, placed
in the electric field with the special configuration (Fig.8). In this case the
surface charge density has a singularity in points 3, 4 and 5 and vanishes in
point 2. Below on the same drawing the distribution of the charge density
on the dielectric along the polygonal line 123456 is represented.

From this simple example it is evident that in the general case it is diffi-
cult to choose the right value of singularity parameter at once. Besides the
singularity allocation needs to be done and at 1 < 7 < 2. Actually in this
case the charge density as the edge of the dielectric wedge or the joint point
of the different media is approached seeks zero according to the power law
with the parameter less then one and is also poorly described by the spline

(Fig.8).
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Figure 8: Dielectric cup with € = 5 in the electric field: a — the geometry of
the electrodes and dielectrics, the electric field force lines; b — the charge density
distribution on the dielectric boundary along the polygonal line 123456.
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3.6 Regularization of the magnetostatics problem

It 1s appropriate to consider the difficulties arising at the calculation of the
magnetic focusing systems with a large magnetic constant g 3> 1. The fact is
that at introducing of boundary integral equation (3.1.3) the representation
of t.he magnetic field in the form of sum of the current field H, and the mag-
netization field H,, (2.1.8) was used. But at calculation of the real magnetic
systems frequently the problem of finding the small shattered magnetic fields
(problem of shielding) arises. Clearly that in that case the current fields are
nearly compensated by the magnetization fields. Therefore at calculation of
the shielding tasks the required calculation accuracy for the each summand
.in (2.1.8), especially when g > 1 is strongly growing. But in this case, as
it shown in work [5], the equation (3.1.3) becomes incorrect. ActualIy,let
g2 — the magnetic constant inside of volume, limited by the contour}L
(see (3.1.3)) and ps >> py. It is easy to show that a small average error z:;;
calculation of the right part of equation (3.1.3)

1
&E{av = bT- (ﬁ(f?c - Hc{}})dﬁ y {3.6.1}
5m
therewith will lead to the significant average error in the solution of
&Jav - Bz — H1 &I{ﬂ\" (3.6_2)

: f ( )dSs
o T LY. = J[} i =
Sm 2#1 211'
Sm

where H.; — the exact value of the current field: ¢y — the corresponding
solution of the equation (3.1.3).

W'mfk [5] describes also the method of the initial integral equation (3.1.3)
r:egulanzatmn by introduction in it of the additional information about solu-
tion. In our case it is the equality to zero of the total magnetic charge:

Sm

(3.6.3)

: Based on this condition, equation (3.1.3) is transformed into the following
Orin.:

31



b

B2+ Ele s sl oG R S

2«P2_ma(£} - j{a(n) anf{ﬁ,nﬂ)} = f e (g,c[r)]d:] P
Lom

Lm

= (fg-He(§)), €€Lm. (3.6.4)

Here S,,, — the total magnetic surface; { = (v, z’) — the running coordinates,
belonging to the element of the magnetic contour di’.

The equation (3.6.4) offers several advantages over the equation (3.1.3).
Firstly, any one of its solutions satisfies to the condition (3.6.3). Secondly, the
average solution error because of the of the right part calculation discrepancy:

(3.6.5)

However, it might be well to point out the following feature of the problem
of calculation of the magnetic systems with a symmetry about plane z =
const. For the elements of this system, that are crossed by the plane of
symmetry, the solution needs to be found only n the one half. Then in view
of the antisymmetry of the magnetic charges the condition (3.6.3) will be
satisfied automatically and the boundary equation (3.1.3) will look like:

pz + oG oG i

£ X Rl — Vel =

Zﬂ'pz = .U‘g ﬂ'f_\E; f ﬂ-{ﬂ') [ane{é‘vﬂ} 3115(51”; i
Lm [2

= (f¢-H(€)), €€ Lm/2. (3.6.6)

where 7j — coordinates, symmetric to the coordinates n = (r, 2).

It is easy to show that the equation (3.6.6) has the same properties as
the equation (3.6.4). Hence, at a calculation of the symmetric magnetic
focusing systems with the symmetric exciting currents regularization of the
equation (3.6.6) is not required for the elements that are crossed by the
symmetric plane. For all the other elements of given system and for all the
elements of the non-symmetric magnetic systems or geometrical symmetric
magnetic systems with the antisymmetric currents the calculation must be
carried out using the regularized boundary condition of the equation (3.6.4).
The modifications in algorithm therewith are slight and detailed adduced 1n

Appendix A.3.
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e t ere for comparison. It is visible that the advantages of regul;rizat'
present just at calculation of small shattered magnetic fields (u = 103) a5

4 Dynamics of the high-perveance beam

The numerical simulation of dynamics of the high-

: S ervean ]
of charge particles is included by four main stage P ce stationary beam

S,
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a) simulation of the emission conditions on the cathode;

b) calculation of the particles trajectories in given fields, finding of space
charge and beam current densities;

c) calculation of the proper electric and magnetic fields of the beam;

d) solving of the electrostatic task in terms of potentials and fields induced
by the beam.

As already noted the main method of simulation of guns with high-
perveance beams of charge particles is the method of iterations. What this
means is that the stages of simulation mentioned above are repeated until
the relative small change of the beam parameters at the gun exit will be
achieved. To increase the speed of convergence of this iterative process the
top relaxation method is used at finding of charge density and beam current:

pN41 = wWpN41 + (1—w)pn ,
3N+1 = WENH + [1-W}3N, (4.0.1)

where pn41 and ;NH are the charge and beam current densities, calculated
at N + 1-th iteration, and pn, pN41 and ji",\h .}:NH are the actual(real) values
of the charge and current at N-th and N + 1-th iterat jons: 0 €<w<1l— the
relaxation coefficient.

4.1 Initial approximation of Poisson iterations

The speed of convergence of the iterative process (4.0.1) essentially depends
on the initial approximation, accepted for the beam parameters, which are
unknown in the beginning of calculation. The only task can be resolved at
once is the electrostatic task without considering of the space charge influence.
Usually just its solution s used for finding of the beam current and particles
trajectories at the first iteration. But the beam parameters found by this
means differ widely from the true solution of self-consistent task.

To illustrate the foregoing we compare solutions for flat diode and flat
capacitor with identical gapes D and accelerating voltage Up. However, we
anticipate that the beam of charge particles is also emitted and travels in
the capacitor. For finding of the beam current density in the diode and in
the capacitor we will consider that at some small distance d <« D from the
emitting surface (its potential is set equal to zero) the Child’s law 1s obeyed:
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i‘a

"R (4.1.1)

where U(d) — the value of :
_  of potential on dist d e
The b e : ance d from the e :
eam charge density in the diode and in the capacitor wﬁlltgéiis “rfﬂ-:ﬂ-
ual to

7 =A

p(zr) = S e
2eUlx 3 (4-1.2)

m

tions for a flat diode and flat itor i
e et capacitor into the formulas (4.1.1) and (4.1.2)

a) a flat diode

: s
= .-_-'l_ -
D? (4.1.3)
pl{':r} i J1 : (.‘i) —2/3
2eUp D ; {414}
a) a flat capacitor
Jo. = AU':‘E'Jrz (i) Ee
S ! (4.1.5)
p2(z) = B (_I_)"l’!z
f D ? (4.1.6)

Vi

It is clear t i
tions (4_1,33‘121;11 z(;lu;;]:;i;{:]']lj)?(gl‘liﬁ] differ widely from the true solu-
% SRS : v notice the depend = i

capacit pendence of current Sity
densi: or f;{:fm the small parameter d/D, and it always lar e;lll i
Siotribriti lode by the factor of (D/d)'/? » 1. The FB e s
utions also differ widely. In the Fig.10 g, b the (iependeﬁgiggifdens:tw
; 1es of a ratio

j2/71 from parameter d/D '
sl Sl /D and a ratio py/p; from parameter /D at d = D

From this simpl A
ple example it is clear, that t
soliitith Wi A , that the use of the ele 1
s ﬁrsi;t}il;m EOIISIdEl‘lng space charge for finding of the be;}fm;f;; e
rations can lead not only to the large initial errc:-l; and E;z::;
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Figure 10: Comparative characteristics of the flat diode and flat capacitor.

convergence of iterations (4.0.1), but even to the beam cut-off after the first
iteration. This may be overcome through the choice of relaxation factor
w < (d/D)M? « 1, that also reduces the speed of convergence of iterations
(4.0.1). Notice that in considered example the particles trajectories coincide
whether the space charge influence is taken into account or not. In real guns
in these two cases they differ widely, that leads to the more greater error in
the initial approximation. Especially stron§ this problem arises at calculation
of the guns with large perveance P,>1 375

Given work proposes the other way of setting of the initial approximation
of Poisson iterations. We assume, that following three parameters are known
in advance:

1) the beam current Igp;
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2) the effective anode—cathode gap Do, within the limits of which the po-
tential distribution approximately coincides with the distribution in a flat or
spherical (according to the cathode form) diode with the same gap;

3) accelerating voltage Up, acting on the beam in the gap Do.

The current density on the cathode will be assumed or constant, or pro-

portional to Ii’g"'t 2 where Eo — field on the cathode without considering the
space charge. The chose of one or other distribution depends on the specific
gun geometry and operating mode. Irrespective of the relative distribution of
current density on the cathode the total beam current will be assumed given
and equal to Io. Further we well assume that within the limits of the gap
Dy the beam travels in the field of a flat or spherical diode with the same
anode—cathode gap and accelerating voltage Up. Once the beam particles
have passed the gap Do and gained the energy W = ely, it is agreed that
they travel with the constant energy along trajectories parallel to the gun
axis (Fig. 11).
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Figure 11: Trajectories of the electrons at the first iteration.
This initial approximation together with the method of top relaxation
allows to reduce considerably the number of iterations on space charge re-

quired for calculation of the gun with the given accuracy. Especially that
is concerned with the high-perveance guns. Besides it let us to choose the
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4.2 Simulation of emission from the cathode

Emission from the cathode at all iterati
first : all iterations on space char
sph-.ﬂ;rii?:il dﬁidiei:: Edd' ‘o sufficient accuracy using the el ot t;;};tﬂ:;
ik 5, catholc'lelng to the cathode form. To do this the value of the
sonll hatanic & & component, o_f the electric field E, is found at

rom the cathode (in terms of the own beam field) ;?:::

the density of current emitti
mitting f :
Langmour-Bloudgett’s law: g from the cathode can be found by the Child-

1) a flat cathode

:  En”
Jo = A——;
== (4.2.1)
2) a spherical cathode
( - )3!2'
72 g Blra)ry
(@trara) 7 .
where s 1 -
e T the radius of curvature of a spherical cathode: r, = r, — 4
r) — the Lengmour’s function [9]; B(r) = —r82 4 — . /3¢ “ i
or? B HEE’ €0 — the

dielectric constant of vacuum.

The formulas e ;
cathode if the Lragiftjr)iea~ndf‘ (41{ 2.2) describe correctly the emission from the
mal to the cathode ai; a db: i} L‘e be:am particles little deviate from the nor-
i St il 5 istance 4. That means that the distance § must be
bk T st curvature of t}%e trajectories in the vicinity of th

e of the non-magnetized cathode the radius of trajeci;ﬂe

ries curvature near the cath i
s "athode uniquely . ; -
emitting current density [10]: quely depends on a inhomogeneity of the

Jo

A0 /01

‘ (4.2.3)

W — the )
here | — the coordinate along the cathode surface
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of work [11], to the condition (

If there is a magnetic field en the cathode, as it follows from the results

4.2.3) one more condition is added:

Cijﬂ E‘,_}:D(A!C )
—_— — - . B T e TR 1 4. .
bkilo=nm = 28 NI HG (em), {40

where jo — the current density on the cathode; Ho — the magnetic field on
the cathode; w = pg“—ﬁﬂ — the cyclotron frequency.

The formulas (4.2.1)—(4.2.4) are true only in the immediate vicinity from
the cathode, therefore the value of 5 must be small in comparison with the
effective anode—cathode gap, assumed at setting of the initial distribution:

5 < Do . (4.2.5)

The equations (4.2.3)—(4.2.5) completely define the restrictions imposed
on the distance from cathode, on which the density of current with good
accuracy is possible to be described by model of flat or spherical diode. On
this distance the curvature of the beam particles trajectories may be ignored
and assumed to be directed along the normal to the cathode, and the charge
density distribution along trajectwries assumed to be coincided with the dis-
tribution in a diode. Thus all the beam parameters within the limits of
distance & from the cathode are found. The particles energy after passing

this distance is equal:

3
Wo = EEE"S, (4.2.6)
eld vector. The further integration

and speeds are directed along the electric fi
is carried out numerically.

of equations of the beam particles motion

4.3 Quasilaminar model of the current pipes

r the numerical description of the stationary
llisions the model of current pipes [12].

the charge particles flow
1d current

The most adequate model fo
beams of charge particles with no co
There are some versions of this model that differ in

dividing into the separate current pipes as well as in the charge a1
distribution inside the pipe.

In the presented work the quasilamina
been developed and is used for description of the

r model of the current pipes has
real charge particles flows
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Y,

this circle with the initial point of the ¢-th trajectory,

in the electron guns. In this model the current pipes are formed as follows.

The cathode contour is divided into the intervals hi, i=1,...,N, where N
— the number of the current pipes. The trajectories of particles are released
from the extreme(end) points of the intervals, a total of N + 1 trajectories.
Each two adjacent trajectories form the one current pipe. The main feature
of given model is the final size of the current pipe, which is defined by the
distance between these two trajectories irrespective of their further mutual

arrangement. In the case of non-laminar flow the boundary trajectories of
different current pipes can be mutually intersected.

For the definition of the current carried by each pipe the linear inter-
polation of a current density on the cathode is used. As a result one can
receive:

a) flat cathode

AL & il {(js+.:&+1)Re % 'ﬁiﬂ’"ﬂh;sﬁnﬂ] :

3 (4.3.1)
b) spherical cathode
Al; = 2?TR¢Sig[l{ﬁﬂ){£i:;—hRQﬁﬂ +
Z 4] | Jitkt —Ji . . ’
+ [J, COS @ — Ji41 COS ¥4y + —E—(sm 41 — Sin ar.}} . Rc} : (4.3.2)
o

where j; and R; — the current density and radius in the initial point of i-th
trajectory; # — the angle of inclination of the straight line forming a flat
cathode contour; Ry and R, - the radius of the center and radius of the
curvature of the circle forming the contour of a spherical cathode; a; — the

angle between the system axis and the straight line connecting the center of
Aa = iy — Oy, P
oo N

The particles trajectories are found by the numerical integration of the

equation of movement (2.2.2), the components of which in the axial-symmetric
case take the form of:

>
d;r b . + ﬂ(Er'I'E}‘Bz“_EBF) i
4 r c C
sz ks E(E=+EBQ_EBT) 5
dt ¢ c
40

diPe-r) o . (fig, £ EB,) : (4.3.3)

dt C e

WhETe L’rﬂ — T'H..

To describe the space charge and current of the beam the set of .rectt,}angilalz;

id tinuously filling the assumed area of the bealy mcwm:nent n : pla s

4 T’tmzntmduced Each of grids may have the arbitrary sizes anﬁ wnsmd
18 ; ma . »

'(r!tz rectangular cells. Within the limits of one cell of the grid t%wic: ari?ds .

e t densities are assumed to be constant ones. The set of mEous g s

Curresgary for exact description of the strong il]hcmugene1ty cnfra, e?m L:hzge
Eziesity in the vicinity of the cathode as well as inhomogeneity of a charg

and current density at high beam compression.

The beam current and space ch arge are {{istributu:ad o':rer ltll;]e 1'51:3;111] :teit; :?
follows. The trajectories calculation is carried «::ruthmi p.::;ra Tfms el
always intersected only the same vertlca.l.mesh ((11(?:2}3 ay 1: frmrhengs e
has the following parameters of trajectories: R; e t Pj r hl : e
(1) and outlet (2); At; = 1‘.52} - tE” — the moving tlfm:dl‘n; e layer.
current pipes borders in each layer are the cylinders of radiu

R + R

]

el

R = i=1,...,N+1. (4.3.4)

SR : S Vio
The charee delivered by each of current pipes into the given layer, 1s equa
=] o i o

At + Atigy
Qi = AL —————,

-

if At;-Atipr =0,

if At - Aty #0,

- e N, (4'3‘5)

here Al; — the pipe current determined by the formulas (4.3.1) or (4.3.2).
W 2 Ml "

The charges in all the cells of the given mesh layer will be equal to

Q—"V{m 3 (436}

M=t M
Vi

Qm =

N

1

I V; = n|R%,, — R}| - 6z — the volume, occupied by the i-th curra}n:i
/ = e g 4 J ‘ i
w"f?n ;.he givcnt:;lesh layer of thickness Az; Vim — the volum? f;{::ﬁbﬂ
E;pthe i-th current pipe in the m-th cell in this layer; M — the tota

of cells in the given layer.
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) ‘1_"he advantages of the described quasilaminar model, as we believe, con-
sist In opportunity to describe with sufficient accuracy just as strongly non-

laminar beams, so also the beams with a high compression with a relative
small number of the current pipes.

4.4 Calculation of potentials and fields
induced by the beam

During integration of equations of movement (4.3.3) it is necessary to know
the values of the electric and magnetic fields, including the induced by the
bear:.n ones, in the whole area of the beam particles movement. In addition
solving of electrostatic task it is necessary to known the values of the e]ectrir;

potentials and fields, induced by the beam on the electrodes and dielectrics
surfaces, consequently (see 3.2.13).

The additi'..re to electrostatic potential at the expense of the beam space
charge, according to the equation (2.1.4), has the following form:

p(F)dV

e =
Ffgp —r

¥e(fo) =

Ve

(4.4.1)

Having regard to tl.le axial symmetry of a task and accepted assumption
abmft the charge density uniformity within the limits of the one mesh cell,
the integral (4.4.1) can be written in the form

Af
ep(§) = Zﬂifﬂ'(&n)dn-‘?- (4.4.2)

5

where £ = ('.i“[],Z(]) — the coordinates of the point of observation; 5 = (r, 2)
— the running coordinates; the function G(€,n) is defined by the form:.lla
(3.1.4); p; — the charge density in the i-th cell, 5; — its cross-section, and
M — the total number of cells in all the meshes. :

Thle electric field of the beam space charge from the formula (4.4.2), can
be written in the form ]

M
Eie) = “¥00) = - my f GG, m)ds , (443)

=1
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where the function ﬁ'EG{.E, n) is defined by the formulas (3.1.7) and (3.1.8).

For the beam magnetic field from the formulas (2.1.7) we obtain the fol-
lowing expression in cylindrical coordinates:

Bao(¢) = ﬁ f julr, 20)rdr . (4.4.4)
Q

The electric potentials and fields induced by the beam are expressed by
the integrals of form

wi(€) = f G(&,n)dS , (4.4.5)
Ei¢) = — f V:G(£,n)dS , (4.4.6)

which represent the potential and electric field, produced in the point of ob-
servation by the charge in the i-th cell with unit density p; = 1. There is
no analytical expression for the integrals (4.4.5)—(4.4.6) in the general case,
therefore they are calculated numerically. Notice, however, that functions
under the integrals in (4.4.5)—(4.4.6) have singularities if the point of obser-
vation is inside or on the boundary of the i-th mesh cell. Hence ihe accuracy
of numerical calculation sharply drops. At calculation of the integral (4.4.5)
it happens when the electrode intersects the mesh cell or is tangent to it, and
it demands to find the potential on it induced by the charge of this cell (for
example, a spherical cathode always intersects the rectangular mesh cells).
Besides the electric and magnetic fields are calculated only in the mesh nodes.
Field over all area of the beam movement are found then using the parabolic
interpolation over the values of fields in the nine nearest mesh nodes. There-
fore the set of different meshes is necessary and for more exact description
of the strong non-uniform fields (for example, electric field in the vicinity of
anode aperture). However, at calculation of the electric field, produced by
the individual mesh cell charge in nodes, coincided with the vertexes of this
cell, the function under the integral in (4.4.6) also has the singularity.

To separate the singularity of functions under integrals in (4.4.5)—(4.4.6)
we proceed the same way as at allocation of the kernel singularity of the
integrated equations (see the formula (3.3.1)). We designate through G(¢, 1)

and ﬁ'eé(&q) the asymptotics of the functions under the integrals at n —
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€. In this case, accurate to the sign, they coincide with the potential and
electric field of infinitely thin filament with the unit linear charge density.
The integrals (4.4.5)—(4.4.6) can be rewritten in the form

w6 = [ laen-Gends + [demas

S 5y

—Ei(¢) = /[f’g(}*(f,n)—ﬁgé{f,n}] ds + fﬁﬁé{s,n)da (4.4.7)

S

The first integrals in (4.4.7) have no allocations and can be calculated nu-
merically with a good accuracy, the second are calculated analytically (see
Appendix A.4). The described procedure of singularity allocation provides
the poor accuracy if the point of observation is on the gun axis. However,
in this case the integrals (4.4.5)—(4.4.6) can be calculated analytically. The
results of these calculations are also adduced in Appendix A 4.

Notice, that the accuracy of calculation of the own fields appreciably drops
on the beam boundary. There are two reasons for that.

E,.By b . fields in mesh nodes

without extrapolalion
- — — with extrapolation

| ,T./

|
|
|
|
|
|
|
|
1
a

~1

o
-Figure 12: Beam own fields versus the radius (a — the beam radius).

Firstly, as a rule, the beam in an electron gun has a sharp boundary
— the charge density becomes zero on the distance from a boundary, much
less than the beam cross-size. This distance is defined by the beam cross
phase volume and at calculation is usual assumed to be zero. In this case
the own beam fields have a brake on the boundary. If the beam boundary
is not parallel to the gun axis and does not pass through the mesh nodes,
this leads to errors in calculation of the own beam fields inside the mesh cell,
containing the boundary because of using of interpolation (see Fig. 12). One
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can see from the drawing that the field in the vicinity of the boundary appears
to be less than true one. As a result the extreme trajectories experience a
less defocusing action of the space charge and fall inward the beam. This
artificial aberration is typical of the many existing computing algorithms for
descriptions of the space charge flows.

Secondly, owing to the uniform spread along the cells, the significant part
of the beam charge and current is removed out of its border. That leads to the
additional reducing of the own beam fields action and gain of the described
artificial aberration. These errors especially have an effect at calculation of
extended beams and beams with high area compression.

In this case developed by us algorithm of the beam own fields extrapola-
tion allows to increase the calculation accuracy significantly. For this purpose
at first from the formulas (4.4.3)—(4.4.4) the field values in the mesh nodes
inside the beam are calculated. On the strength of axial symmetry of task
in the mesh nodes in plane z = const, the beam own electric and magnetic
fields can be presented in the form of following series:

N
E = Zﬂ"'*?i_l‘
i=1
N -
Bl Sohr (4.4.8)
=1

N

2i—1
By = E Cir :

=1

The coefficients a;, b; ,c; are found by the method of least squares over the
calculated fields values in the mesh nodes inside the beam. In the mesh nodes,
located outside of the beam, the own fields are already calculated from the
formulas (4.4.8). The effect of the applying of the described algorithm will
be shown below on example of calculation of the real electron gun.
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Figure 13: Pierce gun with a flat cathode (the gap between the gun an-
ode and cathode is equal to the cathode diameter, microperveance P,y =
1.83 pA/V3/2).

5 Tests and examples of the electron guns
calculation

5.1 Test calculation of electron guns

The first test is calculation of the axial-symmetric Pierce gun with a flat
cathode. The gap between the gun anode and cathode was chosen equal
to the cathode diameter (microperveance Pyo = 1.83 pA/V3/%). The gun
electrodes geometry was calculated numerically by the method, described in
work [9], and is shown in Fig.13. To describe the beam space charge three
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meshes at three division variants of each of the meshes into the cells were used.
In Fig.13 the meshes structure in the initial variant with the total number of
mesh cells of Neen = 32 is shown. Two other variants were different from the
initial one by increase of cells number in each mesh along the radius and gun
axis by a factor of two and three. The distance from the cathode, on which
the beam was described by the model of a flat diode (see section 4.2), in all
the three variants was identical and equal to the two longitudinal sizes of the
mesh cell next to the cathode in the initial variant.

The calculation results for all the three variants are shown in Tab.1, where
the calculated gun microperveance and its difference from the theoretical one,
current density inhomogeneity on the cathode, as well as the maximal angle
of inclination of the trajectories (jo — the theoretical value of the current
density) are mentioned.

Table 1:
N | Neat | Pu | D2, % | imsxcmin, % | amax(mrad)
1 | 32 [187195| 270 1.2 5.1
3 | 128 | 1.8499 | 1.09 0.64 0.9
3 | 288 | 1.8416 | 0.63 0.42 1.4

As seen from Tab.1l, the calculation errors in all the variants are suf-
ficiently small and systematically decrease with increase of the mesh cells
number. Specially notice the good solution stability even at very rough mesh.
It connected with the uniform charge “spread” over the mesh cells, allocation
of singularities at beam space charge field calculation, as well as with the use
of parabolic interpolation for the total electric field description. In Fig.13
the received in initial variant equipotential lines and field distribution on the
gun axis, as well as particles trajectories, the current density distribution and
beam phase portrait at the gun output are shown.

One more test was the calculation of the Pierce gun with a spherical
cathode. The convergence angle of the electron beam in the gun ag = 40° at
» ratio of the cathode and anode curvature radiuses ry/rs = 5 (beam area
compression ratio of 25 : 1, microperveance Py, = 0.431 pA/V3/2). The
geometry accepted in the gun electrodes calculations that was found by the

Harker method [13] is shown in Fig.14.

The beam space charge was described by the three meshes, and the three
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Figure 14: Pierce gun with a spherical cathode. The beam convergence
angle is 40°, the ratio between the radii of the cathode and anode r./rs = 5

(microperveance Py = 0.431 pA/V3?).

variants of the mesh dividing into cells was considered. In the initial variant
the total number of cells in two meshes was equal to Ngey = 60. The two
other variants were different from the initial one by increasing of the number
of cells in the each mesh along the radius and gun axis in two and three times.

The first series of calculations was carried out at the fixed distance d =
(re — ra)/10 from the cathode, where the beam was described by the model
of a spherical diode (see section 4.2). In all these three variants the value of
§ was chosen equal to the maximal cell size h = max(Ar, Az) in the mesh
next to the cathode in the initial variant. The calculation results are shown
in Table 2, where Aamax is the maximal difference between the calculation
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value of the beam outer trajectory inclination angle and the convergence one.

1D'|

Figure 15: Calculated emitting current density distributions for the Pierce
gun with a spherical cathode at different numbers of total mesh nodes.

The calculation results for the second variant are reflected also in Fig.14,
where the arrangement of the mesh nodes, the calculated equipotentials,
released from the mesh nodes on the gun axis, the electric field distribution
along the gun axis, and particles trajectories can be seen. The distribution
curves of the current density on the gun cathode (see Fig.15), normalized to
the exact value of the current density jo, show the convergence speed of the
gun calculation parameters to the theoretical ones with increase of the cells

number in the mesh.

Table 2:
T % P, ﬂf’f&‘ % mgj.-‘;m’ % ﬁ_fglgax, %
1 60 | 1 | 0.4251 -1.37 11.33 -0.17
2 240 | 2 | 0.4285 -0.58 3.5 0.07
3 540 | 3 | 0.4285 -0.58 1.86 0.09

For the second variant of mesh dividing with Neey = 240 the dependence
of the calculated gun parameters from the rate §/h, where h is the maxi-
mal size of the mesh cell next to the cathode in this variant has also been
investigated. The results of calculations are presented in Fig.16 and Tab.3.
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Figure 16: Calculated emitting current density distributions for the Pierce
gun with a spherical cathode at a different distance & from the cathode, where
the beam are described by the spherical diode model (h — the maximal size
of the mesh cell close to the cathode).

It is evident from the results of tests carried out, that for the high calcu-
lation accuracy accounts achievement it is necessary to satisfy the condition
6/h > 2, where h is the longitudinal size of the mesh cell next to the cathode
in the case of a flat cathode and the maximal size of the mesh cell next to
the cathode for the cathode of the spherical form. It is the only restriction,
imposed from below on the value of the parameter 4.

Table 3:
'fa_ pﬁ PE!!;,,I:““= % m.,; mia 07 ﬁaamoax! o7
1 | 0.4207 -2.39 11.04 -0.20
2 | 0.4285 -(.58 3.55 0.07
3 | 0.4284 -0.60 1.29 0.03
4 | 0.4278 -0.74 1.07 -0.01
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Figure 17: Electron gun of the 915 M Hz RF amplifier “Magnicon.”

5.2 Examples of the real electron guns
simulation

The simulation of the 915 M Hz RF amplifier “Magnicon” [14] electron gun
can serve as one such example. The geometry of the gun cathode unit,
focusing electrodes, and anode is shown in Fig.17. For the beam space charge
description the seven meshes with the total number of cells Ngop = 312 were
used.

One of calculation tasks were to receive the gun perveance dependence on
the anode—cathode gap. The results of simulation and measurements at ac-
celerating voltage of 280 kV are presented in Fig.18. The results of measure-
ments are given by E.V. Kozyrev. The difference between the experimental
results and calculation curve is explained by the accuracy of manufacturing
and adjusting of the separate gun units as well as their thermal drift. In ad-
dition, as a result of calculations, the beam particles trajectories , its phase
portrait and current density distribution at the gun exit (see Fig.17) were
found. The calculated equipotentials in the beam motion area and electric
field distribution on the gun axis are also shown in Fig.17.
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Figure 18: Perveance of the 915 MHz Magnicon electron gun versus the
anode-cathode gap for anode voltage U = 280 kV.
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Figure 19: Electron gun of the 915 M Hz RF amplifier “Magnicon,” calcula-
tion with extrapolation of the beam own fields.
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Fig.19 represents the same gun parameters at calculation with use of
the beam own fields extrapolation algorithm, described in section 4.4. It is
visible, that the beam phase portrait has significantly changed (the artificial
aberration vanished) and, as a result, the current density distribution at the
gun exit has also changed.

Simulation of the gun with a spherical cathode and microperveance P, =
1.94A/ V32 can serve as another example. The gun electrodes geometry and
measurement results are given in work [15]. The feature of this gun is the
strong thermal anode drift at the sacrifice of the anode plate deflection in
the cathode direction. Therefore at calculations the anode—cathode gap was
chosen so that the measured at the experiment gun perveance was provided.
Thus the measured experimentally and received from simulation beam cur-
rent density distribution at the gun exit were compared (see Fig.20). The
difference between the calculated and experimental distributions of the cur-
rent density is explained by the influence of the electrons thermal speeds,
which were not taken into account at calculations. At the same time the
calculated radius of the beam at the gun exit is in a good agreement with
the measured in experiment one. The beam area convergence in the given
example comprises C, = 27.

The accepted at simulation the gun electrodes geometry and position of
the collector, with help of which the beam current density distribution was
measured, are shown in Fig.21. There are also the equipotentials, started
from the axial mesh nodes (the total number of cells in five meshes is N =
376), the electric field distribution along the gun axis, beam particles trajec-
tories, as well as its phase portrait and current density distribution on the
gun collector.
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Figure 20: Current density distribution on the collector of the gun with
microperveance Py = 1.9 A/ V3/2 and beam area compression C, = 27.
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A Appendices

A.1 Appendix

The kernel asymptotic at n — £; has the following form:

a) on a metal surface

R(&,0) = {2+ssina}ln§ + esina + O(e?); (A.1.1)

b) on a boundary between dielectrics and magnetics

ﬁ(.f_,-,ﬁ) ¥ [1 — (1 +§Sin -:r) Ing] + Ofe*) , (A.1.2)
7
where
S - 212
B Tl GACT L (A.1.3)
T'j'
sina = s S : (A.1.4)

Vi — 72 + (25 — 2)°

#, # — the coordinates on the tangent line to the contour of the electrode,
dielectric or magnetic in the point §; = (r;, z;). For calculation of additional
integrals in (3.3.1) we enter a new variable 2 = (I —1;_1)/h;, then

] 1
Jj; = j Ym(DR(E;, 7(1))dl = h, f Ym(z) R(&;,ii(z))dz (A.1.5)
l_f-l 0

3 i 3

where 1 = (1 —2)%, Ya=2° Y3=1—-2, Yg=1z.

Inserting into (A.1.5) the asymptotics (A.1.1)-(A.1.2), and, considering
that € = ’-:-’-(1 — z), after awkward but simple calculations one can receive:

a) on a metal surface

T el T
TSR ) 4 e TR ol TN M (il S S
fifR [(2 b zu) ot 200"t 2
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1 - 8 6 1
W 1 o i g i -
! b 8- 13 3
3 = h; - -t —b4+ =] ,
3= _(1+6) T +2]
[ b 8 4 1
4 = s i e . R "

b) on a boundary between dielectrics or magnetics

Ji; = c:(%+%)ln-§+%b+£] ;

= <[(3+3) "+ 5]

Ji = c:(%+%)lng+%b+i~. ,

Ji; = ¢ @—4—%) lng+%—%l : (A.1.7)
where a = hj/r;, b=asina; ¢ = —acosa.

If the point of observation coincides with the beginning of the segment

of integration, i.e. i = j — 1, integrals Ji, ; will be equal to integrals J7%

accurate to replacement r; with rj_; (the angle of tangent line will be also
changed) and indexes modification 1 ¢+ 2 and 3 ¢ 4.

A.2 Appendix

The integrals (3.3.1) have the following form:

1

L= h_.,'/r:u_,(I)azj(r}qu(ﬂz}ﬁq(m]dr 3 (A.2.1)

0

where

Bk p e
o Bl G e ] ’

26

1-"T2
_ ﬁ N +24
az;(z) = (N—j+1+5—r) , (A.2.2)

6 = d/h (on metal § = 0); N - the number of the spline steps on the segment
0 <1 < Lix; h = const — the spline step; ¥, (z) — the weight spline functions
(see the Appendix A.1;

{ G(&i,n(z)) — on metal
ittt r—= B s _on dielectric or (A.2.3)
Ong; (&, n(x)) on magnetic

li-1<n(z)<ljat0<z <1
In the formula (3.4.7) the second integral will be equal to (§ = 0)

1 1

/P;[I}dz = /(g)l_r = N:r : (A.2.4)

0 a

where r=m at j=2and r=m at j= N.

In the formula (3.4.9) the second integrals will have the following form

1 1

2 N l—r i
n = fPJ-(I)Qm[I}ft:’;{I)dI = h/(-—) Ym(z)Ri;(z)dx (A.2.5)

£
0 0

where R;;(z) = R(&,7(z)) (see Appendix A.1). The integrals (A.2.5) are the
same at j = 2 and j = N accurate to replacement(substitution) of r; with =

and of the weight functions with m =1 and m = 3 with m = 2 and m = 4
and vice versa. Therefore we write out the results only for j = N:

[ 8
J,.’J;JN = _g"l..'rl_fh, {2&1 +f..',gb) II'IE—}-([IQQ—]‘GQ}b‘l‘?H.l?] )

ir 2 b 8 5 2
Janw = NI-Th ( + )111—4- 6 b+ 'i}2] ,

r+3 Tt+4 a (r+4)? (7 +
[ 8
J}?JN = Nl=th {le+bzb)lﬂg+(f}22+bg)b+2blg] ; (i?ﬁ]
= 2 b 8 T+ 3 2
4 rl=T1
- h -
R e ‘(T—I—1+T+2)Ina+(?‘+2}2b+{r+l)2] ’
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where the following designations were entered:

a = i, b=asna ,
TN
1 3 5! 1
@ = T TH1 r+2 r+8’
1 3 3 1
a2 = —— + mz TR
2 (r+ 12 (r+2)? (r+3)%)
1 3 3 1
L B e gy i B BT L
1 3 B oipiee i
822 = 1?7422 (H3? (r+4))
1 1
s
1 1
612-— ;E'—'(;jpiiﬁa
1 1
b2 ¥4+1 42"
1 1

& % A2.T
W= (r+2p St

It is easy to see that at 7 = 1 the integrals (A.1.6) coincide with integrals
(A.2.6) from Appendix A.l.

In the formula (3.4.10) the second integral coincides with the integral
(A.2.4), and the third has the following form:

1 1

= B 8r; hj
fR.‘j{I-‘]dI = f[(? +;r;—“:—sma) th—ﬂ—+rr—lsm::r]d

0 0

Designating a = hj/ri, b = asina, we receive

-/lﬁij'(:r}dr e (z+ )m-+ +§ (A.2.8)

L]

The additional integrals in formulas (3.4.14)—(3.4.15) are the same at j = 2
58

and j = N accurate to replacement of 73 with 3. Therefore the results only
for j = N are offered:

144 144 i 1
i N325 317 (N 428\!"7 §
1 1
144
f Py(x)Rin(z)dz =
1
N 4+ 28" 2 a 8r; T+ 2 2
- dl[= i 3
( 5 ) [(T+T+])ln d +[T+L)2a+72‘ (AN

Here d = éh and a = (d/r;) sina.

In the formula (3.4.16) the second integral coincides with the integral
(A.2.9), and third accurate to the angle of a tangent line and replacement of
7y with 7 coincides at j = 2 and j = N. We write out the result at j = N:

144

ff’ém(r)da: AL L [( )luﬁ—’é"f-Jrﬂ , (A.2.11)

N

1

where also d = dh and a = (d/rn)sina.

A.3 Appendix

The equation (3.6.4) differs from the equation (3.1.3) in the summand of the
form

36 = 000 |5 § Fe(ecnar|a, (A3.1)

Lm Lm

which depends only from the coordinate of the point of observation and,
consequently, can be written in the form, similar to (3.2.14):

& =8 8 Hyr;, 4=t N, (A.3.2)

29




T —

[ LI

where &; accurate to the singularity multipliers coincides with the magnetic
charge density in nodes, and H;j) — the regularization correction factor for
the matrix Fj; (3.2.14).

We calculate at first the integral in square brackets in (A.3.1):

1 aG ; : _
e ot a7 4 = 1t e N A.3.
A Smjﬁanﬂ(f,od i=1 (A3.3)

Lm

When passing from the equation (3.1.3) to (3.2.14) the integral of the
following form was calculated:

N
aG :
o iy —_ t._-' 1 - ,---,lnl'l;rm. .3.
ygd{n] s (&, C)dl E 1 Ci;0; =i (A.3.4)
P =

It is equal to the integral (A.3.3) at o(n) = 1 or:

GI(IJ) = a‘z(l‘lj] —_ f}j = 1 y j = ].54 --,P\Im " (;"’13,5)

where a;, as — the multipliers of singularities (3.4.12).

Notice, that a1(l;) = a2(l;) = 1, if the singularity powers at each of the
segment ends 7, = 7 = 1. Calculating the integral (A.3.3) numerically n a
similar manner as (A.3.4), one can obtain:

N
1 oG 1
—— ; - r T el l_tt ; ‘I‘: ..... h"rm1 - f'}
A Smfanﬁ(af}g}rﬂ SmZ}:CJ . Leoo,Nm,  (A36)
Eui ™

where Cj} is the matrix Cj, calculated under conditions (A.3.5). It remains
to calculate the integral of the form

5{ o(m)dl = Y _Bja, (A.3.7)

L

Lm

where B; is the line of the matrix C; (A.3.4) with g%%{&rn] = 1. Then

from (A.3.1) and (A.3.2) with regard to (A.3.6) and (A.3.7) we receive the
final expression for the matrix regularization factors:

60

Hi; = AiB;, =L ; Nu). (A.3.8)

A.4 Appendix

Asymptotics of the functions under the integrals in (4.4.7) has the following
form:

G(&,n) = —In|(ro - :-"}2 + (20 — z}2| ;

_3_{?_ +32 9 4 2(!‘3 — r}

3, o (‘E! ”?) g (rﬂ = !"]2 57 (30 o z}i 1 {A41)
aG e 2(z0 — 2)

Ozo W) = (ro=r2 +(20—-2)2

We designate £ = zp — z, y = ro — r. Then the additional integrals in
(4.4.7) will be equal to

f G(¢,n)dS = zyln(2® + ¢y°) - 32y + ?Izarct.g% +(2° + gf}am:i,g;E i
Y

8
oG i
—(&,mdS = —zln(z® +y*) - 2yarctg— 4,
fﬁ‘ruw”} s i 7 (A.4.2)
S
oG
[ emis = —yinta® +47) - 2ol
0 zls,
Sy

In the case rp = 0 the integrals (4.4.5)-(4.4.6) are equal to:

ff?(i,n)dS = %(-'tfv‘m*+y2+yzlnlrxﬁr"+y2|)| ;
s,

5
oG
fﬁ(gm}ds =0, (A.4.3)
5
3‘@ 2 207
ﬁ{f’”}ds = vrt4uy 51,@;!1(3.:*30} )

where z. is the coordinate of the cell center.
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