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Abstract

Spin-orbit and spin-spin effects in the gravitational interaction are
treated in a close analogy with the fine and hyperfine interactions in
atoms. The proper definition of the center-of-mass coordinate is dis-
cussed. The technique developed is applied then to the gravitational
radiation of compact binary stars. Our result for the spin-orbit correc-
tion differs from that obtained by other authors. New effects possible
for the motion of a spinning particle in a gravitational field are pointed
out. The corresponding corrections, nonlinear in spin, are in principle
of the same order of magnitude as the ordinary spin-spin interaction.
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1. It is expected that in few years the gravitational radiation from coa-
lescing binary stars will be observed by laser interferometer systems LIGO
and VIRGO. Its successful detection depends crucially on the accurate the-
oretical prediction of the exact form of the signal. In this way the observed
effect becomes sensitive to the relativistic corrections of the ¢=2, ¢=3 and ¢~*
orders to the motion of a binary system and to the radiation intensity. In
particular, the spin-orbit interaction becomes essential, and for two extreme
Kerr black holes even the spin-spin one [1].

Some years ago it was noticed that the general relativity can accomodate
in a natural way a specific gravitational magnetic moment coupling [2] (see
also [3]). The starting point of the present work was the observation that
the spin self-interaction arising in this way is of the same order of magnitude
as the spin-spin interaction, and therefore in principle its existence can be
checked in the gravitational-wave experiments.

However, in the course of the investigation, when trying to rederive pre-
vious calculations related to the spin effects in the gravitational radiation of
binary stars, we came to the results which differ from those of Refs. [1, 4]
as concerns the spin-orbit contributions. The origin of this discrepancy can
be traced back to, what is to our belief, a long-standing confusion concern-
ing the definition of the center of mass in the case when spin is taken nto
account. The problem is quite instructive and amusing by itself, and on the
other hand, the spin-orbit correction is the leading one among spin effects.
That is why we would like to start our discussion with this subject.

2. The spin-orbit and spin-spin interactions in the two-body problem can
be immediately obtained in fact from the well-known results for the limiting
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case when one of the bodies (say, 2) is very heavy (see, e.g., book [5]). In
this limit we have the usual spin-orbit interaction [6]

1 __?i_k-@"- (1)

the interaction of the orbital angular momentum ! with the spin 52 of the

central body [7] : .

i o
Vai, = 2 cg_rg'Iszl (2)
and the spin-spin interaction [8]
k N & - =
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Simple symmetry arguments dictate now the form of the spin-orbit interac-
tion for the two-body problem:

Bk eelma LTl o - b &

Vi, = 2 czrai(ml 51+ vin 52): (4)
Vs itk U it (5)
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As to the spin-spin interaction, it is of the same form (3).

However, due to the mentioned discrepancy concerning the spin-orbit cor-
rections to the gravitational radiation, it turns out expedient to der%ve ex-
plicitly the interactions discussed. This is only an elementary generalization
of the solution of the corresponding problem for the case of a heavy central
body, as given in book [5] (§106, Problem 4). We will start with the two-body

Lagrangian including ¢~? corrections:
_ myvs mév% 4 kmyms i myv} 4—?’?1211%
il 2 r 8c2
. N
kmym | ok L uis wle EEmymalmy 4 ma)
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Here ¥ = | —2; #i = 7/r; my, i, U; are the mass, coordinate and velocity,
respectively, of the ith particle, 2 = 1,2. ; :

Let us take the term with v? in the second line of Eq. (6). We write the
velocities of individual elements of the top 1 (with mass dm,) in the form

f =lp —
vy + Wi X P,
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where ¢ is the velocity of the orbital motion, &; is the angular velocity. The
radius-vector pj of the element dm, is counted off the center of mass of the
top 1, so that the integral over the volume of the top

/ prdmy = 0. (7)

Due to (7) the first-order term of the expansion in p;/r of the interaction

discussed vanishes. As to the second-order term, with the obvious definition
- | feon

w1 /Pimﬂlndml = 531 bimn

of the spin &) of the top 1, it generates

v—%sl[r X p1]

* 2c2r3 m

in the spin-orbit potential. Treating in this way the next term, that with v32,
in (6), we completely restore the spin-orbit potential (4) in the center-of-mass
system for the binary, where pj = —ps = p. The similar procedure applied
to the terms with — 7(#,%2) — (17)(v27) in (6) leads to the next spin-orbit
contribution (5), as well as to the spin-spin potential (3).

It should be mentioned that the above expressions for the spin-orbit
and spin-spin interaction in the two-body problem were obtained previously
in Refs. [9, 10] from the analysis of the scattering amplitude for spin-
1/2 particles in the one-graviton-exchange approximation. (As to the spin-
independent relativistic corrections, some terms of this type are missing from
their expression.)

An amusing fact is that the obtained spin-orbit and spin-spin interactions
are exact analogues (up to an obvious change of notations) of the correspond-
ing well-known terms in the hydrogen atom. We mean the fine and hyperfine
structure, the last interaction being induced by the coupling of the nuclear
spin with the electron orbital angular momentum and spin. (Of course, in
our classical approach we cannot reproduce the contact Fermi spin-spin in
teraction with 6(7)). :

However, the expression for the spin-orbit correction to the acceleration,
presented in Refs. [1, 4], differs from that which can be derived from our
formulae Vi, and Va;,. The discrepancy is due to the difference in the def-
initions of the center-of-mass coordinate of a rotating star. The coordinate
&; advocated and used in Ref. [1] is related to our 7; as follows:

— — 1 - —
F; = & + 5l X §; (8)
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(from now on we put ¢ =1 in our explicit formulae). The shift by itself is
of course a matter of convention, but it is in fact our definition which just
by construction (see Eq. (7) and the arguments leading to it) corresponds to
the true center-of-mass coordinate of a rotating star.

Still, what is the meaning of the vector # and why is it irrelevant to the
problem under consideration? The answer can be conveniently formulated
with the following example. For the free Dirac particle with the Hamiltonian

H = dap+ pm

the operator whose expectation value equals to 7, is not 7 itself, but [11]

o £ Iﬁ&' iﬁ(ﬂ.—.p :Ip - [E X pl Ep - 1 i
2 | o - B, = \!p2+m2* L= —,{Ixa‘|.
i 4 2E? QEP?(EP -+ m) : P : 21[

To lowest nonvanishing order in ¢~2 expression (9) reduces to

— = 1*’ — =
r=r — —iX8 § —

= (10)

2] QY

which might prompt indeed substitution (8). However, the transition from
the exact Dirac equation in an external field to its approximate form con-
taining only the first-order correction in ¢~2 is performed by means of the
Foldy-Wouthuysen (FW) transformation. And under the same FW transfor-
mation the relativistic operator Z (its form for an interacting particle is more
complicated than (9)) goes over into mere . In other words, in the arising
Hamiltonian the coordinate of spinning electron has the same meaning r as
in the completely nonrelativistic case. Nobody makes substitution (8) when
treating the spin-orbit interaction in the hydrogen atom.

3. Let us consider now the fully covariant equation of motion for a spin-
ning particle in an external field

Ty
.f_% (m ut + Dgr -uy) = — %Rﬁﬁuusp“ 4 e  uy (11)
derived by Papapetrou [12]. Here D/DT means the covariant derivative with
respect to the proper time; u* = dz* /dt is the four-velocity; S** 1s the anti-
symmetric tensor of spin; R,y is the Riemann tensor. We have included as
well into this equation the interaction with an external electromagnetic field
F#¥ A close analogy between the two terms, electromagnetic and gravita-

tional, in the rhs of Eq. (11) was emphasized in Ref. [2].
6

. We will use the common definition of the relativistic spin. According to
lt,.thﬁ'. only nonvanishing components of the tensor of spin (and the vector of
spin) in the particle rest frame are the space ones. Transition to an arbitrary

frame is performed by a boost. This definition guarantees automatically the
constraint for spin

S*u, = 0. (12)

Due to this constraint,

DS#H Du
B By =
Di ﬂu i S DJ i

So, if the electromagnetic field is switched off and terms nonlinear in spin
neglected, the second term in the lhs of Eq. (11) should be deleted. Clearly,
- %Rfjg u,S?? is nothing else but a covariant expression for the force due to
the spin-orbit interaction. In the field created by a heavy mass M this term
reduces to first order in ¢c~2 to

k
~3 % (x5 - (0)7 x § — 24T x 3)) (14)

r

(13)

which coincides with the corresponding force from Ref. [1]. However, the
force extracted from potential (1) is different:

R gL i R S T
-—3—;3—(1:7:5—E(ntﬂnxa—ﬁn(n[ﬁ'xﬂ)). (15)

This discrepancy was pointed out long ago in Ref. [13] where the force

(15) was derived from the scattering amplitude for the Dirac parficle. The

explanation suggested in Ref. [13] for the disagreement is that expression

(14) refers to an extended body and (15) to a point particle. It does not

look satisfactory. For instance, is the proton in a gravitational field a point

particle or extended body? Obviously and as long as we do not go into details -
of its structure and as long as we do not consider its internal excitations, an

extended body can be treated as a point particle.

To make the problem even more acute, let us consider another limit, that
of vanishing gravitational field. In this case Eq. (11) describes a particle with
spin, but without magnetic moment. Still, its spin interacts with an external
electromagnetic field, which to lowest order in ¢~ should be described by
the Thomas interaction

[ g

This expression can be easily recovered from the well-known results for the
spin precession (see, e.g., book [14]) at the vanishing g-factor, g = 0. When
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the electric field £ is that of a point charge —Ze, the force corresponding to
interaction (16) is

ol S OGP e D
-;:i—(vxs—-j(nﬁ')nxs—gﬂ(”[”xﬂ))' (17)

However, the force obtained in this case from the second term in the lhs of
Eq. (11) to lowest order in ¢™?, is different:

Ze?

A

The reason of both discrepancies is clear now: 7 entering expressions
(14), (18) is just the relativistic coordinate of Eq. (11), it is nothing else
but 7 in the notations of relations (9). Therefore, the transition from the
fully relativistic Eq. (11) to the ¢~? approximations to it (14), (18), should
be accompanied indeed by substitution (10). This substitution should be
performed of course both in the acceleration entering the Newton equation

of motion, and in the (formally) nonrelativistic force. In this way correct
Egs. (15), (17) are restored.

(7% § — (A7) x & — 2A(A[T x ). (18)

4. The above consideration of the Papapetrou equation (11) is instructive
in one more respect. It was pointed out that this equation describes a particle
with spin, but without magnetic moment. The magnetic moment interaction
s well-known to be taken into account by the following term in the relativistic
Hamiltonian:

g e 19
me 4?’]’1 Ly - ( }

In Ref. [2] it was demonstrated that expression (19) has a close gravitational
analogue :

Vom = — E‘ESW 5% Ry po (20)

which can be called gravitational magnetic moment interaction. In particular,
this coupling arises in a natural way in wave equations, and the value k = 1
for the constant in it is as preferable from the point of view of the high-energy
behaviour as g = 2 is in the electromagnetic case [2]. Both interactions, (19)
and (20), should include in fact some additional terms treated in detail in
Refs. [15] (for usual magnetic moment) and [3]. Being certainly of higher
order in v/e, those terms can be omitted in our treatment of binary stars.

For the field created by a heavy mass M interaction (20) reduces in lowest,
first order in ¢~ 2 to the quadrupole form:

i kM it i - 21)

— e My Tin
2 21“3 1141
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where the effective quadrupole moment

1 1
:nn o E(Smsﬂ = E‘smnsﬂ)

resembles by its spin dependence the well-known expression from quantum
mechanics. For the two-body problem under discussion expression (21) gen-
eralizes to the following self-interaction of spins:

Vs=k -2—?5 (Eslmsln - %SEmSEﬂ) (3nmnp — bmn)- (22)
resembling the usual spin-spin interaction (3).

Let us compare now the effective quadrupole interaction (21) or (22) with
the usual quadrupole one. At & ~ 1 interaction (22) is of the same order
of magnitude as the spin-spin one (3). Even in the most favourable case
when they can become essential, that of two extreme Kerr black holes, both
interactions are of the ¢—* order. The star rotation velocity is here ~ ¢, but
its radius is close to the gravitational one r4 ~ ¢~2, so that each spin s ~ ¢~
[1]. (The same argument demonstrates that the spin-orbit interaction is of
the ¢=3 order [1].) As to the usual quadrupole interaction, it is suppressed by
the small value of the quadrupole deformation and, according to Ref. [16],
can also manifest itself in the case of two extreme Kerr black holes only.

5. We are going over at last to the spin effects in the gravitational radia-
tion of binary stars. In fact, the only essentially new correction to the energy
loss obtained by us is that due to the spin self-interaction and originating
mainly from interaction (22). Our final result for the contribution due to the
spin-spin interaction (3) coincides with that presented in Refs. [1, 4]. As to
the spin-orbit correction, our result for it can be in fact obtained from the
expression given in [1, 4] by merely going back to the simple-minded defi-
nition of the center-of-mass coordinate advocated by us above. However, in
parallel with calculating the correction due to the spin self-interaction (22),
we will present corresponding contributions induced by the spin-orbit and
spin-spin couplings (4), (5), (3). It serves as an independent check of the
results presented previously in Refs. [1, 4], and we confirm in this way their
result, but for the spin-spin interaction only.

We start with the well-known expression for the metric perturbation A
at large distance R from the source (see, e.g., [5], §110):

4k 12 L Lo 1 o
T,I"),.T",,(R= f) = —'-R’/df“fmn(r, t—R+71); Ymn = hmnt Eémnhpp; n —




The source T, includes not only the energy-momentum tensor of matter,

but generally speaking corresponding nonlinearities of the gravitational field
itself. It is conserved in the sense

St = 0. (24)

As usual, we will be interested in the part of the perturbation ¥mn which is
orthogonal to 7 and trace-free (otherwise Eq. (23) would look slightly more
complicated). It should be mentioned here that both expression (23) and the
¢—2 Lagrangian (6) are valid under the same gauge conditions

1 1
500hmm = 0, Ouhun — 50nhus = 0.

One can easily check it by inspecting the corresponding derivations in book
[5] (§§106, 110).

Neglecting the retardation 77 in expression (23) we reduce 1t to the
quadrupole formula

aﬂ‘l hm{] i

2k
?nn = — Eagjdr?rmrnfun. (25)

To lowest order in v/¢ Tpo reduces to rest masses, and the integral gives the
usual quadrupole moment

1

mym
mn — ﬂ(rm?'n"__s“‘smnrz); H = e

my + mg

Here new terms in the quadrupole radiation intensity are generated by the
spin-dependent corrections to the orbit radius r and to the equations of mo-
tion used to evaluate time derivatives of #. In all our discussions of grav-
itational radiation we restrict to the case of circular orbits which is most
interesting from the physical point of view [1], and much more simple as con-

cerns calculations. In this way we get the following relative corrections to
the usual quadrupole formula: |

ok (AR 9 - |
st £ AN SRR oy Tl
Iq mlmgf‘z (63 + 2& )T (26)
If; 9 S
T 2mymeor? (351482 — 5152); (20)
I 9% ma ,. o 2 mi ., 2 2
19 = 4mymgr? [mi (3 S1t 31) i ;n“; (3 L0 52) - (28)
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Here
32k*mimsm
i ==
5r8 :
is the unperturbed quadrupole intensity, m = my + ma; subscripts [s, ss,
s refer to the spin-orbit, spin-spin and spin-self-interaction contributions re-
spectively;

Fegitd = 25+ L5
my ma
The expressions for 19! and I¢' have been averaged over the period of ro-
tation. That is why they contain the spin components 5 orthogonal to the
orbit plane.

The next correction to the quadrupole radiation originates from the terms
of the relative order ¢~2 in 7go. The only spin-dependent contribution here is
of the Is type. The same procedure which has generated the spin interactions
from Lagrangian (6) allows one to extract from

my 'U% TH-Q’U%

2 2

the following correction to the quadrupole moment

fsQ,lnn = '% Pm€nrsVrEs- (29)

Since this expression will be anyway contracted with the symmetric Qmn,
there is no need to symmetrize it explicitly. Certainly, correction (29) makes
a spin-orbit type contribution to the radiation intensity only. But we will
postpone its calculation for the time being.

Let us go over now to the retardation effects in radiation. The first-order

correction in formula (23) looks as follows:

ﬂ:ib = — %60]!‘.’3?2 Tab- (30)

We have made explicit here that the wave propagates along the z axis, a,b =
1,2. Simple transformations based on the continuity equation (24) (see [5],
§110) lead to the following identity:

2 F (Sl
derkfmn = %3{%de?‘&?‘an%&+ Eam def‘n(T'hTUm — rm7ok). (31)

The first, totally symmetric term in this expression generates the octupole
radiation. Being spin-independent, it is not of interest to us.
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In the second structure we restrict to the term in 7y,, which is of lowest
order in v/e, and obtain in this way

f difrn(TkTom— *mTok) = MiP1a(PimV1e— P1£V1m) + MaT2n(TomVak — Fakam ).

(32)

With the previous trick we single out in this tensor the spin-dependent terms
and arrive at the expression which can be presented as

Jekmn = €nkidim.

The second-rank tensor here is

m; — m 3 2 7
= ——f(f’mfn“}‘ fnfm)‘l' Zﬂ'(rmCﬂ'i' rncm_ EFC) (33)
where T s
P G AL
C_ my mﬂ.

It is a close analogue of the magnetic quadrupole moment in electrodynamics,

one can single out in it in an obvious way the contributions of the convection
and spin currents.

The intensity of this gravimagnetic quadrupole radiation can be conve-
niently calculated via the following transformation of the initial structure
RkCmnJimn:

Nilmndimn = EmkCmnPkdim = Eimdim- (34)

If we choose the independent components of the polarization tensor as

Loiaep =~ egh g1y Gt
Emn = H

2 ; 2

then the dual polarization is

€12 + €21 €11 — €3s )

Efm = Enkémang = (" ) 3 5

(39)

Formally the sum over independent dual polarizations € in ( &, Jim )? looks
exactly the same as that over common polarizations e when calculating the
usual quadrupole radiation. In the present case the intensity equals {1, 17]

16
Lo L (36)

12

A
L3 7

where the superscript at J denotes the third time derivative. The calculation
of these derivatives is simplified in the present case by the fact that to our
accuracy both I and & can be considered as constant in time. The spin-
dependent corrections arising in this way are

Jme i 1 % ¥

N S . 4§

Ie TSt L) &)
Jamg s o <

11— 4A8mymgyr? (s1e82¢ — 75182). (38)

Even a spin-self-interaction correction (somehow missed in Ref. [1]) arises
here:
Igme 1
19~ 96mimor?

m my
22, -1 + D - 7)) @)

Let us consider at last the second-order retardation correction in formula

(23)
4k 1 1 :
ib = —E i@g/drzz Tab - (4[])
A spin contribution can be produced in it only by velocity-dependent terms
in rp7Tmn, in other words only by the energy-momentum tensor of matter.

These terms are of the type vnv,rer and generate the following structure
2 £ rivmenrés.
m

The (k,!) and (m, n) symmetrizations are implied here. The irreducible
part of the third-rank tensor rivm&, can be omitted at once since it does not
interfere in the total intensity with the second-rank tensor (yn. Then, we
omit also the structures of the type ( riv;, — rmvk) & since both orbital angu-
lar momentum and spin can be considered constant in time to our accuracy.
The resulting structure transforms as follows:

2 p 2

K ¢
= — NN Emn€inrUm (TkEr o rrfk) = = "ﬂkniﬁmnfi'nrUmfkrsfijsri'fj =
3 m 3 m

2 p

EmnUmtnrs rr'fs .
3 m

In other words, this correction to the quadrupole moment is

9
6Q2, = — 3 % VmEnrsTris. (41)
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Adding up expressions (29) and (41) and neglecting again the term (rmv, —

7+Um ) €, We obtain the following total spin-dependent correction to the quadru-

pole moment:
1 p
5an = 3 ;;ﬂmfnrsrrgs* (42)

The corresponding relative correction to the radiation intensity constitutes

i 9
I9 iz 31’1’11”121‘2

€. (43)

Now, expressions (26), (37) and (43), taken together, give the following
total spin-orbit correction:

L, _ I(735 4 45¢)
It 12mamar®

(44)

It can be easily checked that the corresponding result of Refs. [1, 4] would
be reconciled with this one under the proper definition of the center-of-mass
coordinate.

Adding up expressions (27) and (38), we obtain the result of Refs. [1, 4]
for the spin-spin correction:

B5 1
I? o 48 mima

1‘2 (649 81189 — 223 glbl"g). (45)

And at last, the total spin-self-interaction correction, generated by (28)
~and (39), is

Dl e
 4d i 4?’!1-1?71-31"2
- 1 ma 2 Ty 2 T mso 2 1115 2
Wk = =2 W 2 gh st & v 0L sl L SEl
"[( Tk 24)(m131t+m252t) (9% 24)(m131+m232)

(46)

As has been mentioned already, at k ~ 1 this new correction is quite com-
parable to the spin-spin one.
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