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Abstract

First theoretical and numerical results on the gloha.l strfuct?e :f
the energy shell, the Green function _Spectra a:nd_ the eigenfunc 1:'::m,
both localized and ergodic, in a generic 'cnn'servatwe_qua.ntuntli sys -
are presented. In case of quantum lcnc:allzaf;mn thf: eigenfunc mdnsml
shown to be typically narrow and solid with t'hmr centers ra{n nt' lg,lr
scattered within the semicircle energy shell while the Green functio
spectra are extended over the whole shell but sparse.
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One of the main results in the study of the so-called quantum chaos
has been the discovery of quantum dynamical localization as a Imesoscopic
quasi-classical phenomenon. This phenomenon has been widely studied and
confirmed by many researchers for dynamical models described by maps
(see, e.g., Refs.[5,8]). Contrary to a common belief, maps describe not only
time-dependent systems but also conservative ones (in the form of Poincare’s
maps). On the other hand, to our knowledge, there were no direct studies of
quantum dynamical localization in bounded conservative models; moreover,
the very existence of quantum localization is challenged by some researchers.
The localization in conservative systems would restrict quantum distributions
to smaller regions of phase space than classically allowed, and would therefore
introduce significant deviations from ergodicity.

We have addressed this problem on the Wigner Band Random Matrix
(WBRM) model which was introduced by Wigner 40 years ago [1] for the de-
scription of complex conservative quantum systems like atomic nuclei. Duye
to severe mathematical difficulties the random matrix theory (RMT) imme-
diately turned to the much simpler case of statistically homogeneous (full)
matrices for which impressive theoretical results have been achieved (see, e.g.,
Refs.[2]). However, the full matrices describe a local chaotic structure only,
and this limitation is often macceptable, for instance, in the case of atoms
[34].

Generally speaking, RMT is a statistical theory of systems with discrete
energy (and frequency) spectrum. Sinece the latter is a typical property of
quantum dynamical chaos [5], RMT provides a statistical description of quan-
tum chaos and, what is very Important, one which does not involve any cou-
pling to a thermal bath which is a standard element in most statistical the-
ories. Moreover, a single matrix from a given statistical ensemble represents
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the typical (generic) dynamical system of a given class characterized by a few
matrix parameters. This makes an important bridge between dynamical and
statistical description of quantum chaos.

To the extent that Band Random Matrices can be taken as the models
for generic few—freedom conservative systems which are classically strongly
chaotic (in particular, ergodic) on a compact energy surface, the results pre-
sented in this Letter provide the first characterization of the structure of
quantum chaos in momentum space for quantum systems of this class.

We consider real Hamiltonian matrices of a rather general type (more
specific random matrix models have been recently proposed in Ref.[6])

Hﬂlﬂ:- = Eﬂ 5?““ + 'Umn (?n1 n=— ]'! EIET J'?\Ir) ¥ (1)
where off-diagonal matrix elements vpn = vnm are statistically independent
Gaussian random variables, with < vm, >= 0 and < v2,, >= ¢* if [m—n| <
b, and are zero otherwise. In a classical picture, WBRMs like (1) would
correspond to classical Hamiltonians of the form:

H=Ho+ V, (2)

where the perturbation V is usually assumed to be sufficiently small while the
unperturbed Hamiltonian Hy is completely integrable. In the quantum model
the matrix (1) is given in the basis of the unperturbed eigenstates ¢, of Ha.
Correspondingly, the fluctuations of unperturbed energy levels E,, are taken
as Poissonian. Although in completely integrable quantum system there is a
quantum number for each freedom, we suppose that the unperturbed states
are ordered according to increasing energy (E, ~ n/p), and we thereby label
them by a single number n. The most important characteristic of WBRM is

the average level density p:
P-l - (ﬁ:n_‘ 1'ﬂ—l)' {3)

Here and below the averaging is understood either over disorder that is over
many random matrices or within a single sufficiently large matrix. Both ways
are equivalent owing to assumed independence of matrix elements.

In the classical case, the unperturbed energy Ejy is not constant along a
chaotic trajectory of the full Hamiltonian with a given total energy H = FE.
Instead, it sweeps a range of values, or 'energy shell’ AEy = AV, and is
distributed inside this shell according to a measure Wg(Ep). The form of
WE(FEq) depends on the form of the perturbation V. We will call this measure
ergodic because it is determined by the ergodic (microcanonical) measure on
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the energy surface H = F. The quantum analog of this measure characterizes
the distribution of the ergodic eigenfunction (EF) in the unperturbed basis.

+Cnnversely, if we keep the unperturbed energy E; fixed the bundle of
trajectories of the total Hamiltonian H, which reach the surface Hy = E,
has a distribution in the total energy E described by a measure wg,(F). II;
the quantum case this measure corresponds to the energy spectrurl:'] of the
Green function (GFS) at energy Fj, and has received different names. such as
“strength function” [1], local spectral density of states”, “spectral n;easure”
of the unperturbed eigenstate at energy FEj. '

+An expression for the latter measure has been given by Wigner [1]. For a
typical perturbation represented by a WBRM the average measure w(FE) =
(wg,(E)) depends on the Wigner parameter ?

g U};‘J )

and has the following limiting forms [1] (see also Refs.[8,9,10]):
NEE?C VEEC st Ez: IEi i SR B

wE) =g _ ©)
ET§T2]a° E‘~arcta;(1,hrqr]’ |Ei = EHW? ¢ <1

Outside the specified energy intervals both distributions have exponentially

small tails. Formulae (5) are valid provided pv 2 1 which is the condition for

strong coupling of neighboring unperturbed states by the perturbation. In

the opposite case pv <1 the effect of the perturbation is small. and we have

the so-called perturbative localization. :

In the limit ¢ >> 1 we have the semicircle (SC) law, and the width of the
energy shell AE = 2F,, = 4v:/2b = 4/2qE, > Ey where Ej = b/p is the
half width (in energy) of the band. In the opposite limit ¢ < 1 we have the
Bre:il; - Wigner (BW) distribution of width AE = 2Egw = 2FE, with the
main part inside a width I' = 27pv® = 27¢E, < E;. In all these expressions
E 1s'measured with respect to the center of the distribution. Since g <1
requires pv < /b, in the BW regime the perturbation is not strong enough
to couple all states within one bandwidth. This means that the BW regime
corresponds in fact to a sort of partial perturbative localization.

The 'numerica.l results presented below are contained in the EF matrix
Cmn Which connects exact eigenfunctions ¥m , obtained by diagonalization of
the Hamiltonian matrix (1), to the unperturbed basis states b

Vm = Zcm-.:ﬁ,,. (6)
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In what follows the eigenvalues E,, are ordered, so that E,, &~ m/p.

From the matrix C,,, we have found both the statistical distribution
Wmn(n) = C2,, of the eigenstates 1, on the unperturbed ones ¢,,, and the
distribution wy,(m) of the unperturbed eigenstates on the exact ones. The
meaning of these distributions is similar to that of the classical W and w
discussed above. We have then analyzed both distributions, and have com-
pared their structures to each other and to the SC distribution paying special
attention to localization. By localization we mean a situation in which the
eigenfunctions are concentrated on a scale significantly smaller than the max-
imal one consistent with energy conservation. Indeed, ilie size of the region
which is populated by an eigenfunction (termed localization length in the fol-
lowing) is bounded from above by the ergodic localization length d(®) = cpAE
which measures the maximum number of basis states coupled by the pertur-
bation. This length characterizes the full width of the energy shell AE. The
factor c depends on the definition of localization width (see Eq.(7) below). In
other words, in a conservative quantum system there is always localization in
energy due to the existence of a finite AE [7]. This fact, which is sometimes
a source of confusion, is just a trivial consequence of energy conservation.
Here we are interested in localization inside the shell [7] which can be caused
by quantum effects. In this connection, the matrix size N is an irrelevant
parameter, provided N > d(¢) is large enough to avoid boundary effects. The
quantum model (1) is thus defined by the 3 physical parameters: p, v, and
b.

The localization length can be defined in several ways. We have used the

so—called inverse participation ratio (see, e.g., Ref.[5]):

G = s WA dt = Y Wim) (7)

n

and similarly for w. The numerical factor 1/3 accounts for the fluctuations
in individual distributions W,,(n), w,(m) but not in the average ones like
W(n), w(m), and the others (see below). The fluctuations are assumed to
be Gaussian and independent [4].

In order to suppress large fluctuations in individual distributions of both
types, W (n) and w,(m}, we have taken averages over 300 of them chosen
around the center of the spectrum. Since different distributions cover different
regions of the n (respectively, m) space, prior to averaging they have to be
shifted into a common region. This we have done in two different ways,
namely, by counting the site label n in W,,,(n) starting either from the center
of the energy shell, i.e., from the reference site m (and vice-versa in the case
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of wa(m)) or from the center ne(m) of Wi,(n) defined by

n.(m) = Z Wn(n) -n. (8)

'I:'he two types‘nf the average are denoted by (Wi (n)) and Tf‘l«_"m(n), respec-
gvelg) In particular, W,,(n) yields the average shape of an eigenstate (see
ig.2).

First,_ we shall discuss distributions Wm(n). In Ref.[7] it was shown that
the localization length obeys a scaling law of the form

d

= — = T
ﬂd dfﬁlml e

e 1, (9)

where
ab® S i
d®) — 4\/2cpv 0)

Here.a ~ 1.2, and factor ¢ can be directly calculated from the limitin ex
pression (5) for w which gives ¢ ~ 0.92. e
_ The empirical relation (9) has been found jn Ref.[7] to hold in the whole
interval A < 2.5, and was confirmed in the present studies up to )\ & 7
Thff parameter A was introduced in Ref.[11] to describe the energj,; level
?t&ftlstlcs, and was explained in Ref.[7] as the ergodicity parameter When
1t is large the localization length approaches its maximal value d(®) which
means that the eigenfmmtions become ergodic, i.e., delocalized over the whole
en;rgy shel‘l. Not?}ce that in the BW region the ergodic localization length
::f( = '?rpI = 2m°bq, and A = ab/2qx? > 1 [8] since ¢ < 1 (and b > 1
n quasiclassics). Hence, the localization is only possible in the SC domai
which is the main object of the present studies. L
In the case A 3> 1 (Fig.1) we have found that the averaged distributions
{(Wm(n)), Wn(n) are fairly close to the SC law: a remarkable result, because
that law was theoretically predicted for the other distribution nalmel for
the GFS (wn(m_}}. We presume that the deviations from the S’C law iiﬂch
are nbser?e‘d in the distribution Wom(n) are due to a not very large value of
the ergodicity parameter (A = 3.6). The numerical values of the localization
parame:ter (9) are # = 0.94 and B = 1.08 for the two types of averages
respectively. This is in a reasonable agreement with the average g8, = ﬁ‘g 9?:
computed from (9) for A = 3.6. For finite ¢ the average distributions of bc;th
types are bordered by the two symmetric steep tails which apparently fall
down even faster than the simple exponential (see below). 4

A=
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Fig. 1. Structure of ergodic eigenfunctions (A = 3.6) from a single matrix
with parameters: N = 2560, v = 0.1, b = 16, p = 40, ¢ = (pv)?/b = 1.
The thick line is semicircle law (5). Crosses were obtained by averaging 300
eigenfunctions with respect to their centers; circles, by averaging the same
eigenfunctions with respect to the centers of their energy shells. All the
distributions are close to one another apart from fluctuations.
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The structure of EFs is completely different in the case A <« 1 (Fig.2).
Whereas individual eigenstates exhibit large fluctuations, the main part of the
average distribution W,,(n) with respect to the centers n.(m)) shows a clear
evidence for exponential localization, with localization length in agreement
with the empirical formula (9). The width of the main part is small (8 = 0.24)
which is again close to average 84 = 0.21 for A = 0.23. We have found that
the main part of the distribution can be represented reasonably well by a
simple expression:

2/xl | (11)
cosh (2n/1)

where the parameter [ is related to the localization length by | = 47~2d.
The direct fit in Fig.2 gives [ = 45.2, d = 112, and A = 0.23.

Won(n) =~
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Fig. 2. Same as in Fig.1 for localized eigenfunctions (A = 0.23) from a
single matrix with parameters: N = 2400, v = 0.1, b = 10, p = 300, ¢ = 90.
The average with respect to centers n.(m) of eigenfunctions W,,(n) (crosses)
shows a clear localization with 8 = 0.24 while the other average (circles) with
f = 0.99 remains close to semicircle. The thin line is empirical relation (11)
with fitted [ = 45.2.

If, instead of averaging the EFs with respect to their centers, we average
them with respect to the center of the energy shell, a nice SC (with some
tails) reappears (Fig.2, # = 0.99) in spite of localization. This shows that,
in the average, the EFs homogeneously fill up the whole energy shell. In
other words, their centers are randomly scattered whithin the shell (see also
Fig.4). The latter type of averaging provides a new method for the direct
empirical evaluation of ergodic d(¢), and hence of the important localization
parameters F3 and A (9).

Now we turn to the analysis, in the case A < 1, of the other type of
distribution, the GFSa w,(m) which is obtained from the columns of the
matrix Cppn. The structure of this distribution is quite different from that of
EFs (represented by matrix rows). Averaging with respect to their centers
or with respect to the shell center now yields similar results, which well fit
the SC distribution in both cases (Fig.3, 8 = 0.97 and 0.99, respectively,
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cf. Fig.2 with # = 0.24 and 0.99). So, the GFSa look extended, yet they
are localized! This is clear from the average of the corresponding individual
f-values: < B >= 0.20. The explanation of this apparent paradox is that

even though each GFS is extended over the shell it is sparse that is contains
many ‘holes’.
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Fig. 3. Structure of the Green function spectra from a single matrix with
the same parameters as in Fig.2. The same averages are shown, and unlike
that case they are close to each other and to the semicircle law.

The difference in the structure between EFs and GFSa is clear from Fig.4
where solid vertical bars show the main parts of EFs, and where the GFSa
are represented by horizontal dashed lines whose sparsity mmmediately fol-
lows from scattered and localized EFs. Qur physical interpretation of this
structure is the following. Spectral sparsity decreases the level density of the
operative EFs (that is, the ones which are actually excited in a given initial
state). This is the essential mechanism of quantum localization via decreas-
ing the relaxation time scale [5,8). Yet, the initial diffusion and relaxation
are still classical, similar to the ergodic case, which requires extended GFSa.
On the other hand, EFs are directly related to the steady-state distribution,

both being solid because of the homogeneous diffusion during the statistical
relaxation.
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Fig. 4. A comparison of the structure of Figenfunctions and of Gr?;lhfuic;;
tion spectra in the localized case. Solid vertical bars represent lihe wi dstt :
of individual eigenfunctions over the unperturbed basis. I—If:-nz_or}tal cl; e
lines show the size Am of the Green function spectra for mdlwdu:?.l aslls
states. All eigenfunctions within a part of energy Sllﬂ"ll are shown while only
each fifth Green function spectrum is lefif to distinguish the'whole structure.
Although all spectra have comparable sizes, close to the size c}f_ t.he:_ energﬁ
shell, they are very sparse (3 = 0.2'0) 'due to the strong localization an
irregular scattering of eigenfunctions inside the energy shell.
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h For comparison, in Fig.5 the structure of ergodic EFs and GFSa is also
shown. Incomplete symmetry between EFs and GFSa is apparently explained

by a not very large ergodicity parameter A = 3.6 (cf. Fig.1).
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- :;* eaegn jéersl?me;s in F(iigé for the ergodic case. Incomplete symmetry
uncltions and Green functions spectra is a
not very large ergodicity parameter A = 3.6. e ot

. d:g:rz?allg com;:hbaick to the structure of the distribution tails which mark
ce from the limit SC law (5). Two somewhat di i

relations are currently available f i e
: : or the discription of the tails. B

solutions of different versions of the original Wigner integral e;qu o

w(E) [1]. The first one was obtained in Ref.[4] and reads ( i e

with our minor
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correction of the last numerical factor by numerically solving a trascendental

equation in [4}):
Inwg(m) — —&-[In(¢-In¢) — 1.6] + A4, (12)

where £¢ = |m|/b, ( = £?/q, and where m is counted from the w center
(cf. Eq.(5)). By the virtue of the integral equation used in Ref.[4] one fitting
parameter is always required (A, for a separate normalization of the tail).
Usually we fixed the lower part of w,. Actually, Eq.(12) was derived in
Ref.[1) (and corrected in Ref.[4]) for the BW regime. Yet, we have found
numerically that it is equally applicable in the SC region as well.

The second relation can be derived from the results in Ref.[12] and, ap-
proximately, it has the form:

In we(n) — — qu : (l&ﬁl)EH + A, : (13)

where b-A¢ = m+pE,,. is counted now from the SC borders. This relation has
3 fitting parameters: normalization parameter A as before, factor f ~ 3.42
which is slightly different from the theoretical value 2.541, and exponent
p = 2/15 which is very close to the theoretical prediction 1/8.

Both relations are asymptotic (§¢ — co) but do work reasonably well even
near the SC border, and are practically indistinguishable in a very wide range
of w variation. The characteristic width of the exponential tail in m is equal
roughly to b. The physical mechanism of the tail formation is a specific
quantum tunneling via intermediate basis states [4].

In conclusion, we have found the global structure of eigenfunctions and of
the Green function spectra in a generic conservative classically chaotic quan-
tum system. We have provided numerical evidence for the existence of both
the ergodic (delocalized) regime in which the eigenfunctions have maximal
size and the average shape close to the semicircle law as well as the localized
regime in which the size of cigenfunctions is much smaller than the semicir-
cle width. In ergodic case statistical symmetry between eigenfunctions and
Green function spectra is shown. The quantum localization was found to
impose a crude asymmetry in that the eigenfunctions, remaining solid, be-
come short and randomly scattered within the semicircle energy shell while
the Green function spectra remain extended over the whole shell but become
sparse. Our results suggest similar investigations for the realistic Hamiltoni-
ans of conservative classically chaotic quantum systems.
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