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Abstract

The closed expressions for the differential cross section of the large
angle Bhabha ete™ scattering which explicitly takes into account the
leading and next to leading contributions due to the emission of two
hard photons is presented. Both collinear and semi-collinear kinemat-
ical regions are considered.

1 Introduction

The large angle Bhabha process is well suited for the determination of the
luminosity £ at ete™ colliders of the intermediate energy range /s = 2¢ ~
1GeV [1,2]. As far as 0.1% accuracy is needed in the determination of £ the
corresponding requirement
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—
el 10 (1)

on the Bhabha cross section theoretical description appears. Ae is the un-
known uncertainty in the cross section due to higher order radiative correc-
tions. A great attention was paid to this process during the last decades [3].
The Born cross section with the weak interactions taken into account as well
as the radiative corrections to it, including the emission of a single virtual
photon, soft and hard real one, where studied in details [4]. Both contribu-
tions, the one reinforced by "the large logarithmic multiplier” L = In s/m?
(where s = (py + p-)® = 4¢? is the square of total centre-of-mass (CM)
energy, m is the electron mass), and the one without L are to be kept in
frames (1): oL/, a/w. As for the corrections in the second order of the per-
turbation theory, they are necessary in the leading and the next to leading -
approximations and take the following orders respectively:
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The total two—loop (~ (a/7)*) correction may be constructed from: 1) the
two—loop corrections arising from emission of two virtual photons; 2) the
one-loop corrections to the single real (soft and hard) photon emission; 3)
tl}e ones arising from cross sections of emission of two real photons; 4) the
virtual and real e¥ e~ pair production. As for the corrections in third order
of the perturbation theory, only the leading ones proportional to (aL/7)® are
to be taken into account. Their calculation can be performed by means of
the electron structure functions method [4].
In this paper we consider the emission of two real hard photons:

et(ps) + e (p-) — et (g4) + e (g-) + (k1) + 7(ka). (3)

The relevant contribution to the ”experimental” cross section has the follow-
ing form

1
Texrp = E'/dﬂ'6+6_, (4)

where ©, and ©_ are the experimental restrictions providing the simulta-
neous detection of both scattered electron and positron. At first that means
that their energy fractions should be larger then a certain (small) quantity
gwn/e, €1n 18 the energy threshold of the detectors. The second condition
restricts their angles in respect to the beam axes, they should be larger then
a certain finite value 0,,;,:

T — Bpin > He‘h 9.a‘|* > ﬂmiﬂ: e = q:‘ﬁ-—: ﬂa"‘ - qr:ii‘—r (5)

where #,+,0,+ are the polar angles of the scattered leptons in respect to
the beam axes (p~). The main (~ (aL/x)*) contribution to the total cross
section (5) arises from the collinear region: when both emitted photons fly
within narrow cones along the charged particle momenta (they may go along
the same particle). So we will distinguish 16 kinematical regions:

ak, and ak, < 0y, ak, and ﬁg < B, (6)
m
?‘ggﬂ‘ilg ﬂ#"}! a:b:F*:P+rq'-:Q+-

Thqpa squared matrix element modules summed over the spin states in the
regions (6) have th.e form of the Born ones multiplied by the so called collinear
factors. The contribution to the cross section of the each region has also the

form of 2 — 2 Bhabha eross sections in the Born approximation multiplied
by factors of the form

£20;

£203
m2

dof" = dog; [ai(x;, yj) In*( 2
m

)+ bil=;, ;) In(—3)], (7)
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where z; = wjfe, y1 = q¢2 /e, Y2 = q% /< are the energy fractions of the pho-
tons and the scattered electron and positron. The dependence on the auxil-
iary parameter fg will cancel in the sum of the contributions of the collinear
and semi-collinear regions. The last region corresponds to the kinematics,
when only one of the photons is emitted inside the narrow cone 0; < fq
along one of the charged particle momenta and the second photon is emitted
outside of any such a cone along charged particles (62 > fg):

i o 4¢?
dof® = ;ln(ﬁ]ddgi(kg), (8)

where dal; has the known form of the single hard bremsstrahlung cross sec-
tion in the Born approximation [5].

We show below explicitly that the result of the integration over the single
hard photon emission in eq. (8) in the kinematical region #5 > 8o (6% is the
emission angle of the second hard photon in respect to the direction of one
of the four charged particles) has the following form

-/d:;r;i(kr_;) = —21n(6?)a;(z, y)do}, + da*. (9)

The collinear factors in the double bremsstrahlung process were firstly
considered in papers of the CALKUL collaboration [6]. Unfortunately they
have rather complicate form, which is less convenient for further analytical
integration in comparison with the expressions given below. Calculation of
the collinear factors may be considered as a generalization of the quasi-
real electron method [7] for the case of multiple bremsstrahlung. Another
generalization is needed for the calculations of the cross section of the process
ete— — ete—ete~. We will consider it in a separate paper.

It is interesting to note that the collinear factors for the kinematical region
of the two hard photons emission along the projectile and the scattered elec-
tron are found to be the same as for the electron—proton scattering process
considered in paper [8].

There are 40 Feynman diagrams which describe the double bremsstrahlung
process in ete™ collisions. The expression for the differential cross section 1n
terms of helicity amplitudes was computed about ten years ago (6,9]. It has a
very complicated form. We note that the contribution from the kinematical
region in which the angles (in the CM system) between any two final particles
are large compared with m/¢ has the magnitude of the order

a’rim? 1es o
-—T-r"ﬂ-gé‘"‘ ~ 10 cin -, (10)
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(ro is the classical electron radius). So, the corresponding events will have
poor statistics at the colliders with the luminosity £ ~ 103! — 10%2em~2s~ 1.
More probable are the cases of double bremsstrahlug imitating the processes
ete” — ete™ or ete™ — ete~ 7. That corresponds to the emission of one
or two photons along charged particles momenta.

2 Kinematics in the collinear region

It is convenient to introduce in the collinear region new variables and trans-
form the phase volume of the final state in the following way (here and further
we would work in the CM system)

/d[‘ b daq_dHQ+d3‘fld3k2
id 155_5+W]w3{2T)3

;2:)“ /dm/dz ;mlmo/dqﬁfd, /dm/dl‘q, (11)

ddq d1¥+
3 - 4 5 gl e
/dI‘ f%_ E+(_2i‘f}2§ (mp- + m2ps — Arg- — A2qy),

gl JIEL2 . g £
th
= ) : ¢ = k11kay, i = ? za > 1, &:T

Eqimph + mapy — Adrg- — A2g4)

1,'_:-:(

where £}, is the detector threshold energy resolution; #; (i = 1, 2) is the polar
angle of the photon emission in respect to the momentum of the charged
particle which emitted the photon; 54, A4 depend on the specific emission
kinematics, they are given in Table 1.

Table 1. n; and A; for the different collinear kinematics.

P=P—19-G— |P+P+ |9+ 9+ | P=P+ |9-04 | P-G— | P+G+ | P—G9+ | P+9-
m Yy 1 1 1 1 - iy | 1 1-—ux, 1 1 - F | 1
2 1 1 Y 1 1—1=x, 1 1 1 -z 1 1 -z,
1 1 x X
Al 1 2 1 1 1 per 1+ ﬁ 1 : 1 1+ ;_11_
Az| 1 1 1 = SRR R R

The columns of the table correspond to a certain choice of the kinematics
1 the following way: p_p_ means the emission of both photons along the
projectile electron, p4q. means that the first of the photons goes along the
projectile positron and the second — along the scattered electron, etc. The
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contributions from 6 remaining kinematical regions (when the photons in the
last 6 columns are interchanged) could be found by the simple substitution
Ty + T2. We will use the momentum conservation law

Mmp- + Napy = A1q- + Aq_, (12)
and the following relations coming from it
M+ 12 = Ay + A2y, Aty sinf_ = Azyosinfy, (13)
M —1n2 = A\yrcosB_ + Aayscosfy, 6. =q_p_,

0
— ‘. S
ﬁ+=q+pfn V2= T'

One can find from eq. (12) (taking i, Ai, € = cosf_ as the known
quantities) that

. i 2mne
sinfly = sinf_ ; ' —, (14
ni+ 03+ (n3 —ni)e )
R 2mne \sipy = T 02 + (05 — mi)e
!}'1+H2+(ﬂ2“f}1)-‘3’ = m+nge+(n2—m)e

The invariant cross section we put in the form

2ra’ st 411 4 ot 47ra? (sz-i-t:-i-st) dit (15)

doo(n)) = " 572 dt = S =

m(l —c)
m 402+ (n2 —m)e

s=4emny, s+i+u=0, t=-—s

So, we can express the invariant cross section in terms of the electron scat-
tering angle 0_:

doo(nA) _ 2ma? nf + 03 + 2e(n3 — ni + (0F + 03 — mna)c?

e - Ce? [m + n2 + (12 — m)c)*ni(1 - ¢)?
Each contribution from 16 ones to the cross section of process (3) can be

expressed in terms of the corresponding Born cross section of type (16) mul-
tiplied by its collinear factor:

(16)

s mitp
do™ = Ld}'{(qh)dag(m\)m} (17)
e e T
dK(nA) = 8 ;) di’.ld.‘rgﬁ;igﬁ d*: f~2--m &(ﬂk).’
0 0
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2 Y S : :
Kip-p-) = ;A(ﬂhﬂmflzﬂllﬁrﬂ)u Kipsrs) = ;A{Gl;f_-?z,ﬂ,ﬂfhma} (18) here:
: —z; —23 A= (po —k)?—m?, A= (p- —ki—ko)* —m’,
K{g-qg— :QTAB,BE,B,—,-— y . o . - o F
(9-¢-) % ( ’ Y Yy ) B; = (q+ + k;)" - ’.'T!A, B =g+ + ki + kg)" - m-, (22)
K(g+4+) = 20A(Dy, D2, D, B S | \ Ci=(-py +k)—-m?, C=(-pp+h+ ky)? — m?,
bt 3 Y £ } Di :(_-q++ki)2'_?nzﬂ D= (_‘Q-l‘ +kl +k2)2_m21
Wbk Smpe sl 400 08 L=z +yll -2
R TS A2A, A2A; ziza A1 A AAizi29 } For the further integration it is useful to rewrite the denominators in terms of
(1 -za)® +y(l—2z1) |, 2m?(y* + (1 — 21)°) 2m?(y® + (1 — z2)?) the photons energy fractions 2, 2 and their angles. In the case of the emission
AAsziE9 5 AA3z, AA2z, : of both photons along p_ we would have

% = —z1(1 + 21) = 22(1 + 22) + 2122(21 + 22) + 2x1224/2122 €08 $,(23)

F1+(1—$1)2 21‘]’12- -1+(1‘-172)2 2m*T I A
K(p- & + — ; 19 2 = —zi(1 + z;),
{P P-{-) Lﬂlml[l = Il) ﬂf | _021'2(1 - I:g) CE ] ( ) m? t( )
X( ) =2 [1+(1—21)® 2m*][1+(1- z3)?  2m?] where z; = (¢0;/m)? and ¢ is the azimuthal angle between the planes con-
R | Bizi(1-2z1) Bijl Daza 1’ taining the space vector pairs p_, k; and p_ k2. In the same way one can
K ) 2[1 +(1—21)  2m?] [ + (y2 + 22)° ng] obtain in the case kq ,ka||q-:
e p—Q‘l‘ et : 2 IH =) ] -
o _mlj A12:1 ZDEM(HE +::2? Ds - L =2(1+yia)+ 22(1 + gy 22) + 12221 + 22) + 22129,/Z122 cO8 ¢, (24)
14 (1—=z1)®  2m®]}[yi + (0 +22)°  2m° R A
K ) B -+ - ; 21 = %] T2 ).
(p+q ] [Clﬂf](l A 3:1.} Ci'z 11 B‘Jrﬂ('yl 52 Ej) B% - Tl yl( + n :}
K( y= —2 14 (1—21)?  2m?] y3 + (y2 + 22)° b 2m” ] Then we perform the elementary azimuthal angle integration and the in-
Abasdve | Ciz1 (1 —2;)  C} || Dazalyz + 22) Dg ] tegration over zi,zs with the logarithmical accuracy using the procedure
K _ : 14+ (1=21)?  2m?][v} + (n + 22)° G132 ] suggested in paper (8]
iy Az (1—z1) | Al || Boza(yr +22) B3]

Expressions (19) could be in principle reproduced from the results of paper (6]
by exception a more simple form of K(¢-¢4); as for eq. (18) it has an evident
advantage in comparison to the corresponding formulae given in paper [6]. 5 : TR . , ;
Let us note that the remaining factors K(p,q) could be obtained from the J The st of the relevant integrals is given in f"_\ppendm. A. In this way one
ones given in eq. (19) using the relations of the following type obtains the differential cross section in the collinear region:

Zn Zn _.‘]'I'cl :
E:rn4fd:1]dzgf£ﬂ, Lo=Inz =L+, l=Infd;. (25)
0 0 0

w:\_

K(p-q-)(=z1,22, A1, B2) = K(g-p-)(22, 21, Az, B1). (20) do, = oL Popde- doaday (4 4 p, ) [ L [L(L + 20)kiks (26)

4x3s  g¢1¢° . T173 vy

23‘*;.:3 &
Note also that the terms qf the form +(y? + 2 In _LI-ly + zyza(y — T122) — 221 ks)[Bp_p_bp_p_ + BP+P+§P+P+}
4

m o x120
B (21) +y—1?-[%(L + 20+ 4Iny)kiks + (¥° + 1) In T+ z1Zo(y — T122) — 221 k4]
: - - Nkikz _ 9k
do not give the logarithmically reinforced contributions, we will omit them X[Bﬂ—ﬁn 8y_q. + Bq+¢+54+q+] + Bp_pyOp_pi[(L +2 )31;2 1
below. The denominators of the propagators entering eq. (18, 19) are listed —2-';—3] 4 By_g4.64_g. (L + 21+ 21n(z122)) E—};& — 2% - ‘2%
8 9



HBp_g_bp_q_ + Bpyg Spig J(L+ 204 2Iny, Ja- — 2%

Ziyts 23
2ﬁ] - [BP+*]'+ IL".If‘+f£+ + HP 9+ ‘Sf ff+] X
[(f—hﬂ-i—zllnm)-—‘—‘— 2{"1 ?52—:-]}

Here we use symbol Py 2 f(z1,22) = f(z2, z1) for interchange operator; Fy g
“"1 * are the energy fractions of the photons, y = 1 — z; — 5 energy fractions
of th2e scattered electron and positron are respectively y;, y2. We use also
the notations:

I= lI] ﬂg, t; =i +.H’Ig.r t‘) = 12 —+ Lo, (27]

ne=l—zy, Bmolaas b=143,

kr=1+2;, ka=y3+1, ka=3+83, ks=y*+22
where 6y is the collinear parameter. The symbol dp,q corresponds to the
specific conservation law of the kinematical situation defined by the pair
P, q (see Table 1). Besides, we imply that the first photon is emitted along
momentum p and the second — along momentum q (p, ¢ = p—, p+, ¢, ¢4 ).

For instance, 8,_,, = 6*(py + p- — ¢-/(1 — 1) — g4 /(1 — 23)). And, finally,
we define

: 2
Biyoy =Bpgy =Bp_p_ = (5 + i 1), (28)
i 2
Bpips = Bg_q. = (5 + yL +1),
Bp...q,. s (5!-'1(::;1-1’1) E tt) + })

syi(l—=z,)
1
By s, = (uﬂ 2 m o 1) 5

1- 2
Bq_q+:Bp+q+=[’{ 171}_!_5{1 zlv}-i-.[) )

By 4. = (?%'*‘ff{*‘l)

1—x,) 2
B"?—"?+ LB BP‘-{-EH- (3( fxl + 5{1:1,1'} +1) '

3 Contribution of the semi—collinear region

We will suggest for definiteness that the photon with momentum ks moves
inside a narrow cone along the direction of motion of one of the charged
particles, while the other photon moves in any direction outside that cone.
This choice allows us to omit the statistical factor 1/2!. The quasireal electron

10

method [T] may be used to obtain the cross section:

ot g d®q %k Bk K
Ve ') e 29
32smwd qv r_.'_l_LU : k” {p ko p‘R (29)

dos,

Kpy Ky Ky
— m—tef B 5,
2 p+i-;- P+R‘P+ _L E’-+q k? R }
We omitted in eq. (29) the terms of kind m?/(p_k,)? because their contri-
bution does not contain the large logarithm L. The quantities entering ec.
(29) are presented below:

I !
— & F HE it s i '
i kips-kip— + kige-k1g-  kipy-kigy  Eap--kag- (30)
!
i} L

+-‘-‘-1P+'hfj— * kiq4-kip-°

K; are the single photon emission collinear factors:

: 1+ (1 — z2)? v+ (4 + 22)°
5 - oo g 31
Kp_ =Kp, ra(1l — z2) e zafypy + z2) o
K, _ntptz)

* zo(ys + z2)

The quantities R; could be taken from paper [10], they are the known ac-
companying radiation factors:

Ry = R[s(1 = z2),t',u', 8", (1 = z3),u(1 — 25)], (32)
Rp, = R[s(1 = 22),t'(1 — 22),u'(1 — z2), 5", 1, u],
R, =R, vt il oy
1 N n
Ry R[s,t’t—g,u',s't—z,i,ut—g],
: Y2 Y2 Y2

where function R has the form

st w0, 1,u]l= [ss'(s> + 8"y + /(12 + ¢/ )+uu'(u2+u’3)]; (33)

Ftti‘
s=(ps +p-)°, & =(g3+¢) t=(p-—q-)%
' =(p+ —g+), u=(p- —q3)*, ' =(py—q-)

And finally we déﬁued

bp. = 6 (p_(1— 22) + py — g4 — g- — k1), (34)
11



6p, = 6N p- +p4(1— 22) — g4 —q- — k1),
R R
Y1

8o = 6%(p- + P+ =g+ — ¢-

5 -|- £
3 - g =¥y)-

6oy = 6P +p+ — 04

Performing the integration over the angular variables of the collinear pho-
ton we obtain

atl d3q_d%q d%ky

{}kﬂ

0 dzaV{Kp_[Rp_8p_ + Rp,0p,] (35)
16swd g2 g &y

dos. =
| S : S
+“A’¢+RQ+6Q+ + =Ky Ry 8 }
Y2 i}
To see that the sum of the cross sections (26) and (36)

(36)

dos.
)

da?! =g, +de|(d01

does not depend on the auxiliary parameter 6o 1t is convenient to represent
the terms entering eq. (36) in the form:

1 1 1 "
VR, b_ = k- Up_p_Op_p_ + m:“p-m bp_py T H‘:“”v-q— bp_q- (37)
l r
+ Oy qibpge T IVR_Gp Y,
k1q4
]
[VR},_éﬂ_]f = VRP-—‘SP— o z E}:ﬁ?-—‘h 'Sp-q.-a i = P—s P4y 9= 4+,

and the similar expressions for the other terms from eq. (36). Integrating
VR, b,_]’ over the angular variables we can integrate over the whole phase
volume for k;, i.e. we will obtain a finite contribution in the limit ¢y —.0.
Using the explicit expressions for the quantities

Upig; = (V Ry, k1qj)lkig;—0, (38)

which are listed in Appendix B, we can see the cancelation of the terms L -1
from eq. (26) with the terms

Lk?‘i‘:‘.} 0,
27 kg
12

G (39)

P B

which appears from 16 regions in the semi—collinear kinematics.

In conclusion we note that the leading (~ (aL/7)?) due to the emission of
two hard photons contributions to the inclusive on the scattered electron cross
section, which could be obtained from eq. (36) by integration over photon
energy fractions, is the relevant ingredient of the Drell-Yan representation
(other ingredients are the virtual corrections):

1 1 1 1
d d
dg(pqtp_'_;q_,q_” =/dzlde:.rD(ZlHB)D(zzrﬁ)f?‘[ __34 (40)
0 0 0 o D %
douli 2 a8 o ShypaiWE el
xdoo(p-z1,p4+22; 9 yl,q+m)ﬂ(zg,ﬁ) (zq.ﬂ),
where
al 1 alL.2
D = (1 — — Pl - — (2)
(z.8) = 6(1 - 2) + SZPDE@) + 5 () PO +... (41)

1 4 22
1—1=2

P“](z) =0(1l-2z2-—1n)
1

@y = [ Y pwyypdy.

@)= [ ZPOmPOE)

r

+6(1 - 2)(2Inn+ 2o,

And the cross section dog in the Born approximation is given above (see eq.
(16)). .

The results of the numerical integration of the differential cross section
(eq. (36)) in the experimentally accessible region

A<e. el ﬂg{ﬂ_,3+{ﬂ—ﬂu (42)

as a function of A, 8y, /5.
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Appendix A

We present here the list of integrals (see eq. (22 - 25)).

Ag &b Ln 1 Ig{l e '.1:1)2
A2A1 i 1'1:!:2(1—’.171)2 [ELD.’-I]] 1y

rira

-1+ ], (43)
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Lg 1 zz(l—2)%, m? Lg
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. R iy R Bysne i o .'131)1) )Bﬁ_“_ [5] F.A. Berends, R. Kleiss, Nucl. Phys. B 228 (1983) 537.
: AR+ (gt ml)z)};} ; AR + (g2 + 21)?) [6] F.A. Berends et al., Nucl. Phys. B 264 (1986) 243.
Pt = : P44+ Pott T ; : -4
;1@2 +21) + 4 L 7] V.N. Baier, V.S. Fadin and V.A. Khoze, Nucl. Phys. B 65 (1973) 381;
3 _ 4yt (n + I1)?)'3 ) _ My + (n + ::1)2)8 ;
D o) P e Upog. = St Pyg— [8] N.P. Merenkov, Sov. J. Nucl. Phys. 48 (1988) 1073-1078.
A1+ (1 =z)Y) 414 (1 -21)%) [9] E.A. Kuraev, A.N. Peryshkin, Yad. Fiz. 42 (1985) 1195.
Uq""g‘" o T Bq-g-!-} .Up-i-p— - T (1 — ) BI}_II+! (44:)
2 : i : [10] F.A. Berends et al., Nucl. Phys. B 206 (1982) 59;
N L S YT v =Mt -a)) Phys. Lett. B 103 (1981) 124.
-P+ _,,:1(1 2 11'1) 4- g4 -9+ T P=pPg>

414 (1= 2,)?) 41+ (1=21)%)
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