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Abstract

This note is devoted to the calculation of the two-loop O(GrMpg?)
radiative corrections to the Higgs decay width H — v~ for large values
of the Higgs boson mass My within the Minimal Standard Model. The
use of the Equivalence Theorem makes it. possible to reduce the problem
to the consideration of the physical Higgs boson field and the Goldstone
bosons wt,w™,z. We present analytical results for the varions two-
and three-particle absorptive parts of two-loop contributions, using
dispersive techniques, analytic results for all but one of the dispersive
contributions. The typical size of the correction is ~ 30 percent for a
Higgs boson mass of order 1 TeV.
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1.Introduction

The neutral scalar Higgs boson is the essential ingredient of the Standard
Model of the electroweak interactions. The Higgs boson mass is a free pa-
rameter in the Minimal Standard Model and until now we do not know much
about its value. Experiments exclude a Higgs boson lighter then ~ 65 GeV.
Also theoretical arguments based on perturbative unitarity suggest that the
upper bound on the Higgs boson mass is O(1) TeV °.

It is widely believed that the properties of the Higgs boson can be inves-
tigated at the Next Linear Collider which will be able to operate in different
modes (e*te™, et~ v, 49). In particular vy collisions are well suited not only
for the observation of the Higgs boson signal but also for studying its prop-
erties (for a review see Ref. [2]).

As is known for a long time the H~+ vertex serves as a “counter” of the
particles with masses larger than the Higgs boson mass: if these particles
acquire masses due to the standard Higgs mechanism, then they do not de-
couple from the Higgs boson and provide a constant contribution to the H+y~y
vertex. Therefore, the H+vy vertex can provide us, in principle, with unique
information about the structure of the theory at energy scales unachievable
for modern accelerators.

A similar point also shows up in some other aspect: it turns out that the
H~+vy vertex is very sensitive to different anomalous couplings in the massive
gauge boson sector of the Standard Model (SM). All these properties make the
H~v interaction vertex an extremely interesting object from the theoretical
point of view. In order to exploit the possibility to look for deviations from
the SM predictions for the H+yv vertex, one needs quite accurate predictions
for this vertex within the framework of the Minimal Standard Model.

©This statement is also supported by lattice investigations [1]

3




At the tree level the H~+y vertex is absent in the Standard Model. At the
one-loop level the W-boson and the top quark contribute to the effective Hyy
form factor. This one-loop result can be found in the text books [6]. Note for
the time being that the contributions of the W and {-quark loop to the H~yy
vertex have different signs and hence tend to compensate each other. For
realistic masses of the W-boson and the top quark this compensation occurs
for Higgs boson masses ~ 600 GeV.

The QCD radiative corrections to the H~yy vertex were calculated recently
by several groups [3]. These corrections are negligible below {1 threshold and
are large above the threshold. As for the size of the other SM radiative
corrections, we do not know much about them at present. Recently the
corrections of order O(G pm,?) were evaluated in the limit of a small Higgs
mass [4]. In this paper we consider the leading O(GrpMpy*) SM radiative
corrections in the limit of large Higgs boson masses. We show that this
correction has the same order of magnitude but the opposite sign as the
QCD correction in the interval 0.5 TeV < my < 1.5 TeV and blows up for
larger Higgs boson masses.

The technical tool which results in great simplifications of the calculations
is the use of the Goldstone Boson Equivalence Theorem (ET) [5].

The organization of the paper is as follows: in section 1 we discuss the
one-loop calculation of the H++y vertex in the framework of the ET; section 2
is devoted to the two-loop calculation: we briefly discuss the renormalization
procedure and present results for the imaginary and real parts of the Hyy
vertex: in section 3 we discuss our final results and make some concluding
remarks.

2. Lowest order Hvy~y vertex.

The interaction of the Higgs boson with two phﬂtnn-. can be described
with the help of the effective Lagrangian:

LRI i
L:mF{S)FHVF#yH ; {1)

In this equation F(s) denotes a form factor which contains all information
about the particles propagating in the loop. In the Minimal Standard Model
the form factor F'(s) obtains contributions from the top quark and W -boson

kK2, v S

Figure 1: Generic lowest order graphs. The dashed lines correspond to pho--
tons, heavy solid lines are Higgs bosons. The particles inside the loop (light
solid lines) are W boson and top quark.

The lowest order contribution to the H~y~vy vertex is given by the graphs
shown in Fig.1. The analytical results for the fermion and spin-one boson
contributions can be found e.g. in [6]. In the limit when the Higgs mass is
large in comparison with the mass of the particle propagating in the loop,
the contribution of the fermions to F(s) is suppressed as (%ﬁ]‘g while the
contribution of the W-loop results in a constant :

35 SRS St . (2)

This asymptotic value can be obtained using the Goldstone Boson Equiva-
lence Theorermn which states that in the limit of a large Higgs mass Mg > Mw
the leading O(GrMpy?) contribution to a given Green’s function can be ob-
tained by replacing the gauge bosons W, Z by the corresponding would-be
Goldsone bosons w, z of the syminetry breaking sector of the theory. The
Goldstone bosons can be taken to be massless with the desired accuracy [5].

The interaction of the would-be Goldstone bosons with the Higgs and
photon fields is described by the Ugps(1) gauged linear o-model:

: 1 e i
L. = 1w} (D”w) —3#z3“3+§3FH6“H— %MHEHE
Mg? Mpy? 1 bt
e BT ) = ——(®*+ H*)H — 7 Fw F* 3)

Here D, = 0, —ieA, is the Ugps (1) covariant derivative, My is the mass
of the Higgs field, v is its vacuum expectation value and & is ‘the triplet of
the Goldstone bosons w*,w™, 2. The Feynman rules for this Lagrangian can
be found e.g. in Ref. [7]. e :

Let us first reproduce the result of Eq.(2) using the Lagrangian of Eq.(3).
It is straightforward to write down the sum of the Feynman graphs shown in
the Fig.1 ( neglecting for the moment the contribution from the top loop).
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The contribution to the form factor F(s) can be conveniently obtained by
contracting the one-loop tensor amplitude with the tensor (the notations for
outgoing photons are clarified in Fig.1):

d* = g™ ki ky — ki ko" (4)

In spite of the fact that the sum of these graphs should be ultraviolet finite,
we need to regularize at interinediate steps of the calculation. For simplicity
we adopt dimensional regularization, working in d dimensions. At the end of
the calculations we shall put d equal to 4. After some algebra one finds for
the sum of the lowest order amplitudes:

d%q 1
(2m)* (k1 + 9)°(k2 — ¢)°

From this equation it is seen that the leading order calculation amounts
to the calculation of the divergent part of the massless two-point function.
Using well-known results for the two-point function in Eq.(5), we obtain the
asymptatic result given in Eq.(2).

It is also possible to calculate these graphs using dispersion relations. In
order to do this, we need to cut the graphs shown on the Fig.1 in all possible
ways, calculate the contribution of the cut graphs to the imaginary part of
the F(s) using unitarity relation and finally integrate the imaginary part of
the F(s) along the cut. As our Goldstone bosons are exactly massless, the
cut goes from 0 to oo in the complex s-plane. If we cut the graphs of Fig.1,
the imaginary part of F(s) is given by the convolution of the decay amplitude
H(s) = wtrw™ with the amplitude wrw™ — 4v. Note that conservation of
the total angular momentum requires equal helicities of both photons in the
final state.

It is not difficult to see by exact calculation that the amplitude wtw~ —
vy vanishes for massless wt and 3~ bosons in the equal photon helicity
configuration. Therefore the imaginary part of the F(s) is zero and one fails
to reproduce the result of the direct evaluation of the Feynman graphs. To
find a way out of this paradox we need to investigate the amplitude wtw= —

M= M,,d,, = Mg*2ra(d — 4)s / (5)

v+ more carefully. For this aim we introduce a mass for the Goldstone bosons

which now serves as an infra-red cut-off. The amplitude is then:

g 2m?s?

L + .- o
d* M, (W w™ = yy) = ie G =mie =h)

(6)

where m is the mass of the Goldstone bosons and ¢ and u are. the Mandelstam
variables of the process.

It is then straightforward to calculate the imaginary part of the F(s) to
the lowest order. One obtains

: 5 4m? 14
ImFO)) = ~mda* 2 tog (122 %

where [ is the velocity of the (massive} Goldstone boson. If we put the mass
of the Goldstone boson equal to zero in Eq.(7), the imaginary part of F(s)
1s zero in accordance with the previous statement. However, the lower lirnit
in the dispersion integral is 4m?. In fact, if we consider the imaginary part
given by Eq.(7) in the dispersion integral, we can see that in the limit m — 0
the imaginary part of F'(s) turns into a d(s)-function.

Hence, the correct procedure consists in evaluating the dispersion integral
with finite Goldstone boson masses and taking the limit m — 0 only after
the integration over the cut has been performed.

In this way, we obtain the same result as in Eq.(2) for the real part of
F(s), as has been obtained from the known complete expression for F(s)
in the large Higgs mass limit or from the direct evaluation of the Feynman
graphs with massless Goldstone bosons. ,

The reason why we have discussed the one-loop calculation of the H~yy
vertex in some detail is two-fold: first, it serves as a reference point - to justify
the use of the Equivalence Theorem for the two-loop calculation; second, in
our opinion this calculation shows some unexpected properties ( for instance,
the evaluation of this one-loop result through the dispersion relations is very
similar to the evaluation of the axial anomaly through the imaginary part of
the triangle graph [8]. However, we have failed to find deep reasons underlying
this similarity).




3.Two -loop contribution to the Hyy vertex

‘3.1 Renormalization

In this subsection we briefly discuss the renormalization procedure which
is needed for the evaluation of the two-loop graphs. First note, that as the
H~~ interaction is absent in the SM lagrangian, the two-loop graphs must be
finite after we renormalize all subdivergencies. In other words, to make our
two-loop amplitude finite, we need only one-loop counter terms. The latter
are constructed according to the following procedure.

The ”matter” part of the Lagrangian (Eq.3) contains two independent
parameters: the mass of the Higgs field My and the vacuum expectation
value v. We fix the one-loop counter-terms by requiring the mass of the Higgs
field and the vacuum expectation value to be exact one-loop quantities. This
requirement eliminates all tadpole graphs and provides us with the counter-
terms for all other divergent subgraphs. For instance, self-energies of the
Goldstone bosons must be effectively subtracted on mass-shell. Further we
will need the counter-terms for the vertecies Hwtw™ and Hzz which can
also be obtained from above requirements.

The next point is the renormalization of the ywtw™ vertex. As this ver-
tex is convergent, its renormalization is fixed by the renormalization of the
Goldstone boson wave function which in turn is fixed by the renormaliza-
tion of the self-energy operator for the Goldstone boson. This procedure is
compatible with the electromagnetic Ward identities of the gauged o-model.

3.2 Two-particle cuts.

In this subsection we compute the contributions of the two-particle cuts
of the graphs presented in Figs. 2-5. The simplest (quasi one-loop) contri-
butions are given by the set of Feynman graphs shown in the Fig.2 and the
two-particle cuts of the graphs in Fig.5.

The graphs shown in the Fig.2 are quasi one-loop graphs. As the Hwtw™
vertex diverges at the one-loop level one needs to bring in counter-terms which
can be obtained according to the recipe given above. It is also convenient
to consider simultaneously the graphs shown in Fig.2 and the two-particle
cuts of the two-Higgs-two Goldstone boson vertex graphs presented in Fig.5.
Summing up the contributions of Fig.2, the two-particle cut contributions of
the graphs shown in Fig.5 and the one-loop counter-term for the Hwtw™
vertex, one has:

b d

Figure 2: “Quasi one-loop” two-loop diagrams. Heavy solid line denote Higgs
bosons. thin solid lines denote w*,w™,z goldstone bosons of the ET. Dashed
lines are photons.

F =2(£¥U—)2(2*Mf3’w) (8)

Next we discuss the contribution of the graphs shown in Fig.3. Note that
we are considering only two-particle cuts in this section.

Let us start with the graphs shown in Fig.3(a-b) and consider the two-
particle cuts which lie to the right of the virtual Higgs boson line. The cut
contribution is given by the convolution of the one-loop H — wtw™ ampli-
tude (with the Higgs boson in the t-channel) with the Born amplitude for
wrw™ — yy. As we know from the discussion of the lowest order vertex, the
latter is singular for small values of s. Unfortunately, the one-loop correction
to H — wtw~ is also singular for s = 0 if the Goldstone bosons are exactly
massless. As before we have to introduce a mass m for the Goldstone boson
to handle this infrared divergence. Note at this point, that the ET theorem,
guarantees the existence of a smooth limit as m — 0. Hence, we expect that
the sum of all two-loop contributions will not be sensitive to the details of
the infrared limit of the theory.

Evaluating the Hw*w™ vertex in the limit mg >> /s, m we find the
following result:

Mul /M 2 Mo '
= (4 (1o () -0s(125))
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Figure 3: Abelian (QED-like) two-loop diagrains, Line drawings as in Fig.2.

Putting everything together the imaginary part corresponding to the
“right cut” graphs of Fig.3(a,b) i1s given by:

Mt 4 1473
3 e :

Inserting Eq.(10) into a dispersion integral we can evaluate the contribu-
tion of these cut graphs to the real part of the F(s) and get:

Mg\*® My? 4 w2 |
F[Ej_ “+ lo Sy e
2(4'31'-!;) (1 l.g( m? ) 3 (1 12)) : (11)

Another possibility to cut the graphs Fig.d(a,b} is to cut to the left of the
virtual Higgs line. We divide the integration region in the dispersion integral
into two parts introducing an arbitrary scale g. The scale y can be chosen
to satisfy the following inequalities:

m& p€ My.

If we are interested in the contribution from the “high — energy” part of this
graph, we can put the masses of the Goldstone bosons equal to zero. For the

10

“high—energy” part of the imaginary part of F(s) we obtain:

Mg f Mg\° =
Pty 204 ( 2 L
= 2 drv / 3 ¢
4+ My s
A=1[8s—4(s+ Mg?)lo (L-T-")—HIM 7 (_._.) 12
( ( ) ¢ My* ik Mpy* )

Inserting this expression into the dispersion integral we can evaluate the
contribution of the "high-energy” part to the real part of F(s), where we
must remember that the lower limit for the integration of the above quantity
1s given by pu.

Performing the integration, we get:

Mg\* /1 2 getwliog
F3) = of ZZH - ‘t e ol i T
(4m; 4 log Mpy? 2 i 6 = ZC(J) (3
Next we have to find the contribution of the “low-energy” region of this
graph to the F(s). We do this by expanding the amplitude in terms of powers
of %‘?— and +3-.

My _
T}ﬂe result for the imaginary part reads:

Mg\*p s 2 1
ImFG® = —aMg?( 2L ) 2 {2 2 iy it
m TMpy i i 2—!—4171 5 log 15 (14)

Inserting (14) into the dispersion integral and integrating from 4m? up to
p* we find the “low-energy” contribution to the real part of F(s):

Mu\%/( 1 2 55
F3) — (_” S e A
: 4 4 log m2. 6 18 %)
Finally we have to sum the ”"low-energy” and ” high-energy” contributions
and get:
Mg\*( 1. My® 13 « 3
2O _ 2(_H e S g i
amv It 3Tyt L)

The next two-particle cut contributions that we have to consider are ob-
tained by cutting the graphs presented in Fig.3(c,d,e). The calculation pro-
ceeds in complete analogy with the case considered in details above. The
result of our evaluation is:

Mg\ ( 3. Myx® 2 3
FHJ:Q(.._{’_ e S LR
P 4l-::ng : 5 +2C(3}+3 (17)
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We mention that the graphs Fig.3(f,h,g,1) have no two-particle cuts due to
on-shell renormalization of the Goldstone bosons. e
If we sum F(). F®) and F) we see that the sum is finite in the limit

m — 0 in agreement with our expectations:

2 )
F 4 g 4 pl) =9 Eﬂ. (3((3) e £ §) (18)
4 . 3

To recapitulate, Eq.(18) contains the contribution of the two-particle cuts of
the diagrams in Fig.3.

Next we are going to discuss the two-particle cut contribution correspond-
ing to graphs presented in Fig.4(a-b). Similar to the situation discussed above
there are two possible ways of cutting these graphs, i.e. to the left and to
the right of the virtual Goldstone boson line.

-

-—— =

c

Figure 4: Two loop diagrams with triple Higgs coupling. Line drawings
explained in Fig.2

We start with the contribution of the right-cut graph. Its contribution
is given by the convolution of the correction to the Hw*w™ vertex and the
wtw~ — vy amplitude! In this case the Hwtw™ vertex is not singular
for s = 0 when the Goldstone bosons are massless. Hence the contribution
of this “right-cut” graph is simply given by the product of the lowest order

12

wtw™ — vy and the Hw*w™ vertex calculated for s = 0. One obtains:

2
Fiﬁ}:-z(MH) .3 (19)

4y

The contribution of the “left-cut” graphs is also calculated straightfor- -
wardly 7. After a little algebra we find the following result for the imaginary
part :

3r f My EMH4 (1—%—,5;;2 : (1+BH) )
(6) — b 4,5 il 2N &
ImF 5 (47“,) 2 208y log g 2 (20)

AMy?

is the velocity of the Higgs boson in the intermediate state. Note, that the
dispersion integral starts at the point s = 4My?. The result of the integration

1s given by: | ;
M # - 1b
5 - (411'11 ) ( i 6 4 ) (21)

The next step is the evaluation of the contribution of the graph presented
in Fig.4(c). There is only one possibility to obtain a two-particle cut from this
graph — it is the cut with the two Higgs bosons in the intermediate state. The
evaluation of this cut is much more involved due to its non-planar topology.
Some details of our evaluation of this graph are given below.

First, after cutting the graph, we face the necessity to evaluate the box
graph. Contracting the box amplitude with the d,, tensor (defined in Eq.(4)),
we find the following representation for the box graph contribution:

1 2s ~sm? 4 (Jt'l«i',[,r2 - t)(MHZ - u)
~ | dyd
(47)* / e (y(y, D 9%(y, 2)

In this equation

Towdyy =

) @

"There is one subtlety in this discussion. Considering this cut graph more carefully we
find both real and imaginary parts originating e.g. from the imaginary part of the box
graph HH — 4. For our purposes we need only the real part of the amplitude, which (
after being integrated over the intermediate particle phase space in the unitarity relation)
results in Eq.(20). As for the imaginary part of the box graph, it will be exactly canceled
by the imaginary part of the three particle cut. In the latter case, the imaginary part
comes from the pole of the virtual Higgs boson propagator, which comes into play when
total energy of the process is larger than 2My ( see also the discussion after Eqs.(38) and

(39)).
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where s,t,u are the usual Mandelstam variables and the function g(y, 2)
reads:

)y + (t — m?

The y and z integrations in Eq.(22) extend from 0 to 1. After integration
over y and z we get the following result for the box graph amplitude:
tu — ng

M=d4ra-i{ —] 2|log’
e 1(47“:) (Ug ({t—MHE)(u-ﬁefH?}
tu — My? _ t — Myg?)®
Hiz( o z)‘l'bi:a Sl B
(t—Mg)(u— Mgg~) itu— Mg

] u—MzY 1 ( e ))
L — = | : 23
¥ ( tu— MH4 =+ 2 = Mﬂq ( ]

In this equation Liy(x) is a Spence function as defined in reference [9]. To
calculate the contribution of the box to the imaginary part of the formfactor
we have to integrate Eq.(23) over two particle phase space. In doing so, it is
convenient to introduce a new variable 0 < z < 1 according to:

gy, z) = m? + (u — m? )z + syz

) — 4Liy(1)+

s __(l—l*;n':]2
MHE = x

(24)

Then, the contribution of the box to the imnaginary part of the formfactor is
given by:

IMF(?}="2§ (MH)E MH4(]—1:

. 1+ 22
(ZIUgJ(I) - 21 i log(z)

2 \ 47y s2 \l14=2
2
—27° = 2) + 8Liy(—2) + 2%— — 2log?(x) + 8log(z) log(1 + J:]) (25)

Finally, in order to obtain its contribution to the real part of F(s) one
needs to integrate the imaginary part along the cut. It is clear from the graphs
Fig.4(c) that the cut goes from 4Mg? to co. Performing this calculation we
find:

M 38 23 2 11
(M = — L5 bt Gice Sl S
F 2(4??”) 2( ¢(3) + 2_{\/* 5" +\/§Tr 5 +8€1)
(26)

14

L T

Here the constant C 1s :

1
i f gpiog@log@® +z+1) _ 4404609 (27)
0

14z

The result Eq.(26) completes the list of the two-particle cut contributions.

3.3 Three-particle cuts. :

This subsection is devoted to the discussion of the three-particle cuts.
First, we consider the graphs corresponding to Fig.3(f,g,h,1)). We remind
the reader that these graphs have no two-particle cuts due to the on-shell
renormalization of the Goldstone bosons. In order to evaluate the three-
particle intermediate state contribution, we have to consider the convolution
of the two processes H — wtw™ H and (Hw')w™ — 4y. As indicated by
bracket the latter process can be viewed as the annihilation of the massless
particle w~ and the massive particle (Hw') into two photons. It is not
difficult to calculate the d*¥-contracted amplitude for (Hw*)w™ — vy which
reads:
Mg?

M# ((Hw"‘}.-w‘ = 7Y) dpp = ie? E

(28)

It is then clear that the problem of the calculation of the imaginary part
for this cut contribution amounts to the problem of averaging the virtual
Goldstone boson propagator on the left side of this graph over three-particle
phase space. Performing the integration we find:

Mg (Mg \*2n s
I, S H o o 2 9
ImF\® = 5 (411_1?) 33( 2(s MH)+[S+MH )]{}g( Hz))
(29)

We finally substitute this expression into the dispersion integral and in-
tegrate along the cut going from s = My? to s = co. The result of this

integration is:
Mg\* (13 =
F®&) — 9 s
(411‘1:) ( 8 6 ) e

Next we discuss the three-particle cuts of the graphs Fig.3(a,b). Cutting
these graphs along the three particle intermediate state contributions, it is
easy to see that these graphs produce exactly the same result as the graphs
discussed previously (Fig.3 f,h,g,i).

A more non-trivial situation arises for the three-particle cut of the graphs
shown on Fig.3(c,d). In this case the complexity stems from the fact that
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the amplitude to the right of the cut does not have a simple form as in
Eq.(28). The way we proceed is the following: as before we first contract this
amplitude with the tensor d,,, and then perform the phase space integration
over the momentum of the decay products of the virtual Goldstone boson.
Then we obtain the following representation for the imaginary part of F(s):

) [P ()

where @ = k) + k3 — ps and TI'»(Q) is given by

ImF':g} =

1 Q*— Mpy?
P = —
2(Q) 8 Q?
Integrating Eq.(31) we obtain the following result for the contribution of this
graph to the imaginary part of F(s):
2 4
ImF® = _o-(Mu\ Muy it
m zﬂ'(-ﬁhm 1o3 A (32)
A= 23102(&)—-6 2My? - — My?
( g MHE ( 8 ~+ 2Mpyg )iDg MHE —|~8{S Mg )

-

d &

Figure 9: Two-loop diagrams with two Higgs - two Goldstone boson inter-
action vertices.

Integrating Eq.(32) along the cut we finally obtain the contribution to the
real part of F(s) which reads:

Mg\%1 74x2 1 |
F”“=2(gr%) 2 ({——?7—4((3)) (33)
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Next we come to the discussion of the graphs shown in Fig.5. The calcu-
lation is performed in complete analogy with the case discussed previously.
Without going into details we present the result for the imaginary and real
parts of the corresponding cut graphs: The joint contribution of the cut
graphs Fig.5(b,d) to the imaginary part is the same as the contribution of
the cut graphs Fig.5(c,e) and it has the form:

Mg \*My? ((s+ Mu?)(s — My?) : ( 5 ))
] “ﬂj _— — sM l -
L o (41T’LI) 253 ( 2 sl i MHJ

(34)

Upon integration we get for the real part:

(Mg\Z(®* 7
() ol SR U4 L 21 35
& 3(47}"1}) (12 8) (35)

Next, let us write down the contribution of the cut graph shown in Fig.5a:

Mg\ My? ‘
ImF(11) — -211-(41;) 4; B (36)
B={—2sMsu?log S.)ust 210,( 3,-)
( SV H 8 (MHJ H 4 MHJ

+[3 - Mﬁz)(gs i MHE))

Correspondingly, one has for the real part:

Mg\21 a2 17
F“U=2(4$) < (4c(3)+?—-2—) (37)

Next we consider the contribution of the three-particle cuts of the graphs
shown in Fig.4(a,b). The first step of the calculation is similar to the evalua-
tion of the graphs Fig.5(b-e) because the right-hand side of the cut graph is
again given by the simple expression Eq.(28). Performing all further integra-
tions over the phase space variables, we obtain the following representation
for the imaginary part of the sum of these cut graphs:

2
Mg2\"6Mg* /Em VE? - My?
(1)
ImF 2#( 41‘_1}) e dE B, (38)

where F,... 1s given by
: E -8 -+ MHE
maxr — 2-\//.;

17
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One integrates over the energy of the virtual Higgs boson which decays to
two Goldstone bosons. The specific feature of this integral is that, depending
on the total energy of the process /s, the denominator of the integral can
go through zero reflecting the fact that an intermediate state with two ”real”
Higgses can be formed for s > 4Mg?. It is also clear that for our purposes
we have to treat this singularity in the principal value sense.

It is straightforward to calculate this integral and one obtains the following
expression for the imaginary part:

M2\’ 6Mu*1 1 s M2
(12]2_ H H et B 5 t H
ImF 2ﬂ(4ﬂ'ﬂ) p 4( 2103; i 1+ ~ +‘J?(s})
(40)

where the function W¥(s) is defined by:

A K T 31—a
¥(s) = @(4Mpz? — s)5cty (%) (p— =) —0(s — 4MH2)-2— T log(z) (41)

The variable z is defined as in Eq.(24) and @ 1s defined through the relation

§ =2 4MH23*3'?12§

Integrating the imaginary part we finally obtain the following contribution
to the real part of F(s):

Mg\? [ 2 - G iy
{12}:'{ _-—-H m—— el ———— - — y
= ‘3(4;71;) (3 3 Yelns Cf‘*(s) 45

where Cly(yp) is Clausen’s function (see e.g. [9]).

Now we are in the position to discuss the most difficult part of the cal-
culation, namely the evaluation of the contribution of the three-particle cut
given by the non-planar graph of Fig.4(c). Performing the integration over
the phase space, we obtain the following representation for the contribution
of this cut to the imaginary part of F(s):

Mu?\’6My*
Im PO3) — _zﬂ( m) S-(Wi(s) + Wa(s) + Wa(s)  (43)
where W), Wy and Wa stand for:
1 Emn: ,BHE
Wils) =21 21 - —_—
(5) ( og(2)+2)fm L )
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frmes dB 5— E\f3 | (s—Eﬁ+ﬁHEﬁ) (45)
m  JEs—2fsB C\s—Br/a—Pubjs

7 Pman SR (s — Bv5)? )
ﬂ:}(b‘) = —Qf/m db?:w_ﬁ-s—glﬂg ( (ﬁH E-\/{E]E 1 (46')

In this expression F,,q,, is defined through Eq.(39) and By is the velocity
of the Higgs boson:

_AM}
2

In each of the above integrals there is a pole in the integrand for total energies
larger than two Higgs bosons masses. We first evaluate each of these integrals
in the case when s > 4 My~ and then perform an analytic continuation to the
region s < 4Mpg*. We shall not present explicit expression for the imaginary
part of this functions above threshold. If needed, it can be obtained directly
from the integral representation of the above functions. One obtains:

e =4/1

1 Mp 1 5 SR
Wi(s) + Wa(s) = 301~ 220 - 1og (17 + dog” (355 ) -
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Here again the variable z is defined by Eq.(24).
Performing the analytic continuation to the region s < 4My? we find the
following expressions for the above integrals:

1 Mpy* 1 s Lood o N
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b ] =

+3 log(2 siﬂ((p]]) -
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Equations (47-50) provide us with the desired result for the contribution of
this graph to the imaginary part of F(s).

The integration in the dispersion integral has to be done numerically and
we find:

FO3) = —z(ﬁ’i) K, K =0.0678 (51)

v

Summing up all contributions to the real part of F(s) and taking into account
permutations of the photon’s legs where necessary, we obtain as a final result:

6
P F“”+ZF[£)+2-F(?}+4'F{3}+
ix=]

+ 4.F0) 49.p00) Lo, p11) 4 9. p(12) 4 4. p(13)
Mu\®
2-11-3. — 52
(1 302?(4?1_11)) (52)

The result Eq.(52) completes our calculation and presents the two-loop cor-
rection to one-loop result Eq.(2).

I

4. Discussion and conclusions

Let us finally discuss the phenomenological implications of our results.
We begin with a discussion of the one-loop contribution to F(s) in Fig. 6.
As mass parameters we have taken m; = 180 GeV, mw = 80 GeV. Curve
A shows a contribution of the W-boson only, whereas curve B is the sum of
the top quark and the W-boson contributions. Fig.6 shows that:

¢ the contribution of the W-boson to F(s) is slowly approaching its
asymptotic value at mgyg > 600 GeV

e the contribution of the top quark is important until the Higgs mass
reaches the value myg ~ 1 TelV. We emphasize that there is a strong
cancellation between the contributions of the top quark and W boson
for Higgs masses of order mg ~ 600 GeV .
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Figure 6: Absolute value of the one-loop form factor of process H — v,
F(my), as a function of Higgs mass My (GeV). Curve A shows contribution
of the W-boson only, whereas curve B is the sum of the top quark and the
W-boson contributions.
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As a consequence of these observations we expect that, in the two-loop
case, the use of the Equivalence Theorem for an estimation of the EW ra-
diative corrections for the coupling of the Higgs boson to two photons is
reasonable for the Higgs masses above 600 GeV. However, in order to make
quantitative predictions in the region my ~ 600GeV it is important to take
into account the contribution which is proportional top quark Yukawa cou-
pling.

Our numerical results for the leading two-loop EW corrections are pre-
sented in Fig. 7. We show the ratio of the leading two-loop electroweak
correction to the H — vy decay width (see Eq.(52)) and the full one-loop
result (W- boson plus top contribution). One notes that correction to the
decay width is negative and important for mny > 500 GeV. It is quite clear
that the correction is particularly important for Higgs masses of the order
600 GeV', where there are strong cancellation between top and W contribu-
tions to the leading order result for the H~vy~ vertex. This correction blows up
at around my ~ 1.5 T'eV. This general behaviour is quite familiar from pre-
vious studies of the large Higgs mass two-loop radiative corrections [10, 11].

Qur results can be applied to a more accurate estimation of the cross-
section for the reaction vy —+ H — X | which is the basic reaction for the
Higgs boson production at yy- colliders. If the Higgs boson is sufficiently
heavy, than it is the broad resonance with a width growing proportionally
to M}. In this case our results for the radiative correction to the on-shell
value of the H~yy interaction vertex are not sufficient for the description of
the Higgs shape in this reaction. However, we have given also results for
the imaginary part of the Hvy vertex, hence it is straightforward to obtain
off-shell value for the Hy-vertex, where the dispersion integrates have to be
evaluated numerically.
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Figure 7: Relative two-loop electroweak correction to the decay width H —
vy (in percent) as a function of My (GeV).
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