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Abstract

The first in m/M and fourth in Za (pure recoil) correction to a
hydrogen energy level is found. This correction comprises two contri-
butions, one coming from the atomic scale, the other from distances of
the Compton wavelength order. Two different perturbation schemes
are used to calculate the former. One of them exploits as unperturbed
the solution to the Dirac-Coulomb problem, the nucleus’ slow motion
being the source of the perturbation. The alternative scheme treats
both the electron and the nucleus as slow, while relativistic effects are
considered perturbatively. The short-distance contribution is found in
the Feynman and Coulomb gauges. Recent results for P levels are
confirmed, in contrast with those for S levels. Numerically, the shift
equals 2.77 kHz for the ground state and 0.51 kHz for 25 state.
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1 Introduction

To determine the proton charge radius with a percent accuracy from the value
of the hydrogen Lamb shift, the latter should be known both experimentally
and theoretically with a precision of one kHz. Recently completed calculation
of the order ma*(Za)® corrections [1] leaves among the effects of possible
phenomenological interest the pure recoil correction of the order m*(Z«)®/M
arising due to interference between the nucleus’ recoil and relativistic effects
in the motion of the electron. The present paper is devoted to the calculation
of this correction for an arbitrary state of the hydrogen atom.

Recently this correction for P statés was found [2]. In those states, as
well as in all states with nonzero angular momenta, the correction proves
to be sa'turatﬂ:ed by -a contribution coming from the atomic scale. Hence
one can use there the standard quantum mechanical perturbation theory
for the effective operators describing relativistic effects. Matrix elements of
the effective operators arising in the perturbation theory converge at small
distances thus testifying a posteriori that the used ’nonrelativistic’ approach
1s correct at the given order of « for states with nonzero [.

An attemipt to apply the same approach to S states, whose wavefunctions
do not vanish at the origin, leads to matrix elements diverging at small dis-
tances. In fact, among the effective operators one finds those depending on
r as v~ and even r~* [2]. As for the latter, for S states the operator r—*
is equivalent (modulo a nonsingular operator) to the sum of operators with
the radial dependence =2 and §(7)/r. It was shown in Ref.[3] that loga-
rithmically divergent contributions are mutually cancelled. This cancellation
means that for the states with vanishing angular momentum, the correction
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we discuss splits naturally into two contributions — those of large and small
distances — each gaining its value in its own scale. To calculate the former,
one can use again the nonrelativistic approach, whereas the short distance
contribution, residing in the Compton wavelength order scale, calls for a true
relativistic approach.

The closed expression for the first recoil correction to an energy of the
relativistic electron moving in the Coulomb field is outlined in Sec.2. This
expression is used in Sec.3 for the evaluation of the long-distance contribution.
It proves that the relativistic approach is more efficient even at the atomic
scale. The contribution of short distances is found in Sec.4 employing the
Feynman gauge. Sec.5 is devoted to checks of the obtained results. The long-
distance contribution is recalculated there using the nonrelativistic approach,
while the short-distance one is found in the Coulomb gauge. Finally, in Sec.6,
we give the numerical values for the energy shifts and compare results of the
present work with those obtained earlier in [2, 4].

Throughout the paper the relativistic units i = ¢ = 1 are used. Since we
do not discuss radiative corrections, Z is also set equal to unity.

2 Methods of Calculation

One of the perturbation schemes we use at the present work starts from the
Schrodinger equation in the Coulomb field, when both particles are consid-
ered as nonrelativistic in the zeroth approximation. To account for relativis-
tic effects, a kind of the operator product expansion is built by calculation
of scattering amplitudes for free relativistic particles. Thus arising effective
operators are then the subject for the ordinary perturbation theory .of the
nonrelativistic quantum mechanics. This approach is rather well suited for
long-distance contributions, which are due to effective operators saturated
by nonrelativistic region and having non-local kernels. Formerly it was used
in calculations of i) logarithmic in « corrections to the spectrum of the two-
body system [5], ii) the order ma® corrections to the positronium F levels 6],
and iii) the order m?a®/M corrections to the hydrogen P levels [2]. Unfor-
tunately, this approach becomes very tedious being applied to short-distance
contributions, when effective operators with local kernels are represented by
a number of diagrams. :

An alternative approach deals with relativistic light particle (electron)
moving in the field generated by the slow heavy one (nucleus). In the zeroth
approximation, the heavy”particle holds still being a source of the Coulomb
field. Wavefunction of the system reduces to that of the light particle satis-
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fying the Dirac equation. To first order in the heavy particle’s inverse mass,
the perturbation operator coincides with its nonrelativistic Hamiltonian:

(P’ o [epi’(ﬁé)) v
. M ' (1)

Here P is the operator of a nucleus’ momentum. The vector potential A acts
at the nucleus’ site.

Unfortunately, one cannot calculate an energy shift induced by the per-
turbation (1) straightforwardly, i.e. taking merely its average. In fact, the
operator (1) depends on the nucleus’ dynamical variables while the argument
of the unperturbed wavefunction is a position or momentum of the electron.
To overcome this difficulty we use the gauge invariance of observables in the
quantum electrodynamics [7]. Being reexpressed in terms of electron’s vari-

ables, the average value of (1) should be retained gauge invariant. The new
form of the average is now nearly evident:

AB;us'= —% / % ((7- D) Grsw (7~ ﬁ}) : (2)

Here § is the electron momentum operator, D is the integral operator de-
scribing the transverse quantum exchange. It has the kernel!
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In (2), G i1s the Green’s function for the Dirac equation in the Coulomb
field, the average is taken over a Dirac-Coulomb eigenstate with an energy
E. Actually, the ”seagull” part of (2), that of the second order in fj, emerges
naturally as a counterpart of the A2 term from (1) when we take the ex-
pectation value of this term over fluctuations of the electromagnetic field.

All the other terms provide the invariance of (2) with respect to the gauge
transformation,

p—exp(i¢(7)y,  D—D +i[p, ¢]. (3)

One can easily convince oneself that just the same result can be obtained
from the formula (11) of [7] with the help of the Dirac equation.

1Tn what follows we will write often a kernel rather than an appropriate operator for
the sake of brevity.




The first attempt to obtain the relativistic expression for the recoil correc-
tion to hydrogen energy levels was undertaken in Ref.[8]. Complete expres-
sions for various contributions in the Coulomb gauge were originally derived
in the framework of the quasipotential approach in Ref.[9]. The sum of those
contributions can be convinced to reduce to the right-hand side of (2).

3 Long-Distance Contribution

Present section is devoted to the calculation of the contribution to the energy
shift which is saturated by the atomic scale and can thus be called the long-
distance one. To check the results, two approaches described above have been
applied in parallel. Here we describe in detail how the second, relativistic,
approach works. The procedure of comparison with the results of the more
cumbersome nonrelativistic approach will be postponed until the Section 5

3.1 Pure Coulomb Contribution
In the relativistic approach the pure Coulomb- contribution,

1 d{.l..- 1

AEc = -+ (ﬁGb+uﬁ) = 537 WA+ = A_)p), (4)

can naturally be represented as the sum of two terms [8],

’ 1
AFc =( — d
o= (L) - 37 A )
Here A, and A_ are the projection operators to sets of positive- and negative-
energy Dirac-Coulomb eigenstates respectively. With the aid of the Dirac
equation the mean value of p?/2M can readily be reexpressed in the following

form [9]:
. m? — E% .. m# E a o’
£ = + 21 ——=-08)—+ A (ﬁ)
2M 2M 2M m v _
As for the second term in (5), responsible for virtual transitions into negative-
energy states, the simple analysis shows that it doesn’t contribute to the order

of interest at the atomic scale. Actually, the trivial power counting on the
right-hand side of the obvious inequality,

7.1 ™)

[{(PA-p) | <

where C is the Coulomb potential, shows that at the atomic scale, the prod-
uct of commutators is already of the sixth order in a, so that the projector
and the wavefunctions can sufficiently be replaced by their nonrelativistic
counterparts. Since there is no negative-energy states in the nonrelativis-

tic approximation, the atomic scale contribution to the initial average also
vanishes in the order we consider.

3.2 Magnetic Contribution

After performing the integration over w, the expression for the amgle trans-
verse, or magnetic, contribution,

AFby=— | — 7
M= 3 | om <ﬁG D+D G”) ; (8)

turns into

AEy = —-——R [m)( m| |m) (m| 4Aray
% Me<( bt Epy ZEEH ) e

where ), denotes the sum over discrete levels plus the integral over positive-

energy part of the continuous spectrum, while " _ stands for the integral over
negative-energy continuum.

For the transverse photon momenta in the atomic region, k ~ ma, one
can expand the first term in (9) to the power series in the ratio (£ — E,,)/k.
To zeroth order (in the approximation of the instant exchange), we have:

L 47 @ m?> a?\ « Aw@L
() =g (2 (R -2) F+ e (San)

(10)

The sum of the first term and (6) has very simple form [9],

m?— E* . m?a’
SM_ _ IMN? (11)

where the standard notations for the Dirac-Coulomb problem are used,

N=yV({+n)+a?, 7v=Vk?-a?

n, is the radial quantum number, k = —1 — &l. Notice that (11) reduces to
the lowest order result for the states with n, = 0 only.

7




As far as we are seeking only for corrections of the even order in «, the
next term of the expansion to be considered is

o Ard
AFEre = “_P'ERE <ﬁ;(Em v E]Elm) (?Hl ?::k >
= “%Re<[H=[H:ﬁ]}ﬁ+ 4sz>} (12)

where H = @p+ fm+C is the Dirac Hamiltonian in the Coulomb field. This
term describes the effect of retardation. Implying the corresponding operator
by its kernel, we have

Ak 4k (&k
[H,ﬁ]ﬁﬂ?ﬂ'—} [H:[Haﬁ]]:ﬂr_-k(—gml

To the lowest nontrivial order, matrix elements of @’s over positive-energy
states can be replaced by the appropriate Pauli currents:

AFE;e & —

M\ k2 2m k4 2m (13)

a? <4ﬂ£? 205k — k' Ar 2P, + iF X i’>
Here &' = q — k, § = p' — p, while p and p’ are the arguments of the
wavefunction and its conjugated respectively. Being converted to the spatial
representation, the average above equals

a? L1 98 425
f#ﬂ»et = T M <—2PEP Pz oy (14)

Strictly speaking, in (13), the integral over k has an infrared divergent part.
It is omitted from (14) since the photon momenta k ~ ma?® contribute to
the previous order correction. ‘To make sure that this is correct, one can
regularize the divergency supplying the photon with a mass A such that
ma? € ) < ma. The term proportional to 1/A and omitted from (14) can
be easily checked to cancel the respective term in the difference between (9)
and the expression obtained from (9) by the replacement k—+/k? + A%. On
the other hand, just this difference determines the low-energy contribution
to the order ma®/M correction.

The last of contributions due to the single transverse exchange is gener-
ated by virtual transitions into negative-energy states and is covered by the

8

last terms in (9) and (10). The inequality similar to (7) shows that the non-
relativistic expansion of the last term in (9) starts with the seventh power of
«. As for the negative-energy contribution to (10), to the lowest nontrivial
order it reduces to

a’ Ay S Ark a’ 4:?Tft";¢:E47TEE
i 2mM< o el Ryl (e v (15)
yielding in the spatial representation

n BT <?i4 L. 4”“5(’7)>. (16)

T Am2M r

Taken over S states, this average is logarithmically divergent at small dis-
tances (linear divergencies cancel each other). An ultraviolet divergency will
be discussed later for the tofallong-distance contribution to the S level shift.
In fact, due to the gauge dependence of an individual contribution (e. g.,

-(16)), its divergent part alone has no physical meaning.

3.3 Seagull Contribution

Again, taking the integral over w in the expression for the double transverse,
or seagull, contribution,

v BT e
AE; _—Mfﬁ<DGE+wD>, (17)
we obtain
(o g an |m){m| (1 + E=2=E -
Afe =2 4y Z k' k 4y e 18
ST oMY T —~ (Em —E+F)(Em —E+Fk) k o sl G18)

where the ellipsis stands for the negative-energy part which differs from the
positive-energy one by the overall sign and signs before k and k. One can
easily check that the linear in k/2m terms in the expansion of the negative-
energy part cancel each other. But just these terms at the atomic scale could
produce the energy correction of the necessary order. Hence it remains to
consider the positive-energy part explicitly written in (18). In the leading
nonrelativistic approximation, ;

a’ [dmdy . Amag
&ES+=2M< k2 Ay k2 )’ (19)
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we again replace matrix elements of &’s over positive-energy states by the
Pauli currents, '

(20)

o o [an 25" 4iF x K 4x 25, + i x k
5+~ oM \ k72 om % om !

and perform the Fourier transformation to obtain
CL R I e
= p—p+ — — —— ). 2l
Alsy 4m M <2pr2p+ pl 21 (41

3.4 Total Long-Distance Contribution
Summing up (14), (16) and (21) we arrive at

3 <2E + 4”5(ﬂ> . (22)

4m>M rd r

Expanding (11) to the power series in a® and evaluating the average in
(22) we obtain the long-distance contribution for a state with nonzero {:

i mzaﬁ 1 # Ok Y 3
>0 = Hud \SeP T W - DR +3) | B
1 (K +1) 1 |
¥ 2 5 2
A (- ) Ya) @

For [ = 1 it reproduces the result of the paper [2]. As previously mentioned,
the effective operators of the order under consideration contain singularities
insufficient to compensate the vanishing of a wavefunction with nonzero [ at
r—0. That is why (23) is the total sought-for correction to ! > 0 levels.

For S states the first term in (22) evidently vanishes due to the angular
momentum operator I annihilating their wavefunctions. It is interesting to
note that a naive generalization of the result for states with nonzero I to S
ones leads to the error — the vanishing of the angular average is compensated
by the linear divergency of the radial one.

As for the second term, which formally contains the linear divergency, it
is just a remnant of the short-distance contribution to the previous (fifth in
a) order correction. To make sure that nothing is lost in the sixth order,
let us regularize the ultraviolet divergency by subtraction of the potential
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generated by the massive transverse exchange (the photon mass A > ma),
from the potential of the ordinary transverse exchange entering (15):

4y AT & o ey
k2 i Bi2e s k2 4 \2°

(24)

By going to the spatial representation we obtain the regularized version of
the singular operator:

. L %4#6(:‘-’).

r

Being averaged, it gives the energy correction of the order mAa®/M. The
latter should be cancelled by the linear in A term in the expansion of the
short-distance contribution to the order m?a® /M correction, calculated with
the massive propagator of the transverse quantum (actually the expansion
parameter is A/m < 1). Along with linear in A/m correction, one could
expect the correction linear in &« = ma/m. However the expansion parameter
at large distances is (p/m)? ~ a® so that the operator we discuss does not
contribute to the order of interest. On the other hand, a linear in a correction
to a local (ox 6(7)) operator can arise as an ordinary radiative one. In this
case the correction is completely saturated by small distances. The next
section 1s devoted to the calculation of such corrections.

So, in S states the long-distance contribution is exhausted by the m*a®/M
term from the expansion of (11),

2.6
1d ma® 'l 3 2 1

It vanishes in the ground state only.

4 Short-Distance Contribution

As we have mentioned in the Introduction, the long-distance contribution for
S states is supplied by a short-distance one residing at scales of the Compton
wavelength order. Since two contributions are well separated, each of them
1s gauge invariant, so that evaluating the short-distance one we can use a
different, more appropriate gauge. Rather naturally the mostly convenient
gauge is the Feynman one. The main formula (2) can be rewritten in this
gauge by application of the Dirac equation or directly from the eq.(11) of [7]:
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= a’ dw 49 & g?
Al _ﬁ/ o <J.:-'? 13T .02 (“ 4 E) Cotw

&._E 4
Wl EE+AE—w2 |’ (26]

Momenta of the photons are assumed to flow both from the nucleus to the
electron. The photon mass A is introduced to establish control over in-
frared divergences reminiscent of lower-order and long-distance contributions.

Those divergencies arise in the process of the approximate evaluation of the

integrals in (26).
Taking the wavefunctions at the origin and replacing the Green’s function
by the first term of its expansion in the Coulomb field, we have

3 2 = —
g B8 B e
me \'pP= P w p?—-Q2 q°

m+w+pfm+ap ., P 47
2 2 : “_E = ). k27

Here ¥? = [(0)|?, the angle brackets denote integrations ever p and p’;
¢=p' — p;and

VEVWI-A, Q= V2w +w?

Contrary to the case of large distances, in the deep relativistic region the
opposite order of integration is suitable — first over p and p”’, and then over
w. As for the former, it becomes rather trivial after conversion to the spatial
representation. Preparatory to such the conversion, it is'convenient to express
all the scalar products containing different momenta in terms of their squares.
Then some of the denominators can be cancelled. At this point we can drop
those terms which do not contain € in their denominators. In fact, the only
scale leaving in such terms is A so that they cannot produce a short-distance
contribution. In the spatial representation the initial two-loop integral with
zero external momenta turns into a simple one-dimensional integral over r.
The contour of the resulting w-integration encloses the cut between the points
—2m and —A in the complex plane. After this last integration we obtain

3,42
QEG_—;M(.{*

——S—fm % T 28
Mm \e 3m/e); Jfz(z?-1) Re= g} (28)
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where € = A/2m.

If the Green’s function is taken to zeroth order in the interaction, we have
to use the Dirac equation in order to account for the momentum dependence
in the wavefunction:

a3Y? [ dw [ 47 S 47 o lf)
&Eﬂ"_g M _/21ri<p’4(2m+up)q3-—\/'2 (ff'!"u"

m+w2+,6m?.+&';'}'(&,_£') 24?r 2>. .(29)
p°—Q Wil P

Using the same procedure, we take —r/2 as the Fourier transform of 47 /p*.
The linearly divergent constant we thus leave aside is actually proportional
to 1/ and contributes to the previous order correction. The result of the
integration 1s

3y? 1 il
ﬂEtp:TrQT’D ( + — -

8 fm dx
Mm 22 ¢ 3Imfel)y Jz(z2-1) :

Regulator-dependent terms in (28) and (30) arise from the integrals saturated
by the region of momenta p ~ A and frequency w ~ A (or Vvm}) and are
thus the remnants of the previous orders corrections or of the long-distance
contribution. Truly relativistic contribution comes from the region p ~ w ~
m and does a0t depend on the infrared cutoff:

(30)

2 06 5
AE* = T&:a (4 In2— “'2-’) S1o.- (31)
It is pertinent to note here that this result is truly short-distance, i. e.
it does not contain hidden long-distance contributions, which naively could
arise due to cancellation of the same nonzero powers of A from numerator
and denominator — all positive powers of the photon mass were dropped
out in the process of calculation. On the other hand, an emergence of such
contributions would be self-contradictory. Actually, if an integral is saturated
by distances of 1/A order, then at p ~ A, the integrand denominator has at
least one power of momentum more than the product of the numerator and
the measure of integration. In other words, any ”long-distance” contribution
(determined by the scale of ) has to contain a positive power of the photon
L]

mass in its denominator.
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- 5 Checking of the Results

5.1 Lung—Distance Contribution

To be certain that the long-distance contributions are found correctly, all of
them were rederived in the framework of the nonrelativistic approach which
exploits the Schrodinger equation as a starting point. For the states with
nonzero angular momenta we used the following procedure. All the contri-
butions prove to have the same analytic structure in K, namely

m?2ab
= e X
where
S f o LT L L S
2 e SR T k12 (k+1/2)2  k+1  k+3/2
1 ' b_”‘q
Syl 2
+nﬁ:3( +n+1/2)
1 Cy/2 C_1/2 C_3/2 d
+ﬂ2,ﬁ:’(CN+E—1JZ+H+1/E+H+3/2 +;1§, (32}

Constants a, b, c,d evaluated in the nonrelativistic approach for individual
contributions as their asymptotic values at k—oo or residues at correspond-
ing poles were then compared with the respective results obtained in the
relativistic approach. In the process of comparison, a number of ’nonrela-
tivistic’ contributions breaks down into groups according to the meaning of

respective ‘relativistic’ ones. For example, the retardation part of the mag-

netic contribution (14) comprises three terms in the nonrelativistic approach:
&E%JC, ﬂEf&{:C and &Ef.ﬂ (notations are from ref.[2]).

As we mentioned earlier, S states should be treated separately in order
to avoid fictious contributions arising due to the compensation between van-
ishing angular averages and linearly divergent radial ones. All the ultraviolet
divergencies in S states are checked to cancel each other. To this end we
regularize the effective potentials which are too singular at r—0 and ensure

~ that the total long-distance contribution for S states is independent of the
regularization parameter.

3.2 Short-Distance Contribution

In order to compare the results of the present work with those of [4], the
short-distance contribution was calculated using the Coulomb gauge also.
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A mass of the magnetic quantum was used as the infrared reg_ula.tc:-r.‘ The
scheme of calculation is completely analogous to those used previously in the
case of the Feynman gauge. The short-distance contributions are:

rady? 1
Co=0y= 5 (33)
Tad? A 3
e el iy 34
rady? A
st L : 35
3.2
B T{i (41n2 —2), (36)
Tady? A
g Chlil 37
S Mm ol 2m o

Here C, M, S denote Coulomb, magnetic and seagull contributions respec-
tively. It is easy to check that the sum of these contributions coincides with

(31).

6 Conclusion

Numerically, the correction to the energy equals 2.77 kHz for the gmuPd
state and 0.51 kHz for the 2S5 state. Being somewhat less than thg naive
estimate (m2a®/M ~ 10.2 kHz) it nevertheless is quite comparable with the
accuracy of the near future measurements. It is also interesting to not_e that
the cnr;ections to 25 and 2P levels (with the radiative-recoil correction to
2P level [2] taken into account) are rather close to each other, so that the
correction to their difference, 0.04 kHz, can be considered as negligibly small
at the present level of the experimental accuracy [10].

Let us now set up a correspondence between the results of the present
work and those of the other papers. The result for J. Zif) level_s appears to
be firmly established [2, 11]. For S levels our result is cnnt:radlctory to the
recent results of the analytic [4] and numerical [11] calculations. ‘

To elucidate the origin of the disagreement, we consider _l,h::a correction to
the ground state energy. It is easy to verify that our short-distance results
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(33)—(37) are in one-to-one correspondence with respective “high-energy”
contributions from [4]. A similar statement is true for long-distance con-
tributions (low- and intermediate-energy ones in notations of [4]), with one
exception. The coefficient —2 from Eq.(68) of Ref.[4] for the intermediate-
energy contribution to the retarded exchange by the magnetic quantum, dif-
fers from our result, -1 (in the same units m?a® /M), which arises after trivial
averaging in (14) over the ground state. Unfortunately, we have not managed
to reproduce the coefficient -2 starting from Eq.(67) of Ref.(14). Further-
more, several arguments can be brought forward, that the result (68),[4] for
the retardation contribution looks at least suspicious. In particular, the log-
arithmic divergency in the order m?a®/M is known to appear due to the

relativistic corrections to the instant transverse exchange. The result of the

present work concerning the origin of this logarithmic divergency and the
value of the corresponding coefficient is contained in (16) and is in complete
agreement with those of Refs.[5] and [12]. As for the effect of retardation,
it gives rise to the finite contribution only (in accord with (14)). But it fol-
lows from the result of Ref.[4] that just the retardation is the source of not
only logarithmic, but even the linear divergency at small distances, while the
long-distance relativistic correction to the instant transverse exchange does
not contribute at all.
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