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Abstract

We calculate in the two-loop approximation s-channel discontinuity
of gluon-gluon scattering amplitude with gluon quantum numbers in ¢
channel and negative signature in the Regge kinematical region. As-
suming that the asymptotic behaviour of the amplitude in this region
is given by the Reggeized gluon contribution and using this discon-
tinuity we find the gluon trajectory in the two-loop approximation.
Coincidence of the result obtained in this way with the two-loop cor-
rection to the trajectory extracted from quark-quark scattering ampli-
tude confirms the gluon Reggeization beyond the leading logarithmic
approximation.
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1 Introduction

Perturbative QCD combined with the operator product expansion and im-
proved by the renormalization group is successfully used since a long time
for study of hard processes[1]. The applicability of the perturbation theory
for description of these processes is secured by smallness of the strong cou-
pling constant a,(Q?), where @ is the hard scale (typical virtuality). For
semihard processes [2] the c.m.s. energy /s of colliding particles is much
larger than Q, so that a new important parameter appears: ¢ = Q*/s. At
very high energy this parameter becomes so small that one needs to sum up
terms of the type a?[In(1/z)]™. In the leading logarithmic approximation
(LLA), which means for the scattering channel considered here summation
of the terms with m = n, this problem was solved many years ago [3]. Now
the results of LLA are widely known and used for description of experimental
data. However, LLA has two serious shortcomings.

Firstly, unitarity constraints for scattering amplitudes with vacuum quan-
tum numbers in ¢ -channel don’t work in this approximation and, as a result,
the Froissart bound oyo: < c(ln s)? is violated. The total cross section oot
increases with increasing of energy as power of s being calculated in LLA:

A 1)
tot -\/]Tf_;’

with the exponent :
w{.:g—Nlnﬁ s (2)




for the gauge group SU(N) (N = 3 for QCD). Here g is the gauge coupling
constant (a; = ¢2/4n). In terms of parton distributions this means their
sharp power increase with decreasing z. The behaviour (1) contradicts the
unitarity and should be modified at asymptotically large energies. This prob-
lem is extremely important from a theoretical point of view and became the
subject of many papers (see, for example, [4]). From a practical point of view
it seems more important to improve the second shortcoming. The matter is,
that dependence of &, on virtuality is beyond the accuracy of LLA. Therefore
numerical results of LLA can be change strongly by changing a scale of the
virtuality. It diminishes the predictive power of LLA, which is used now for
caleulation of structure functions in the small z region (see, for example, [5]).

The scale of the virtuality in the coupling constant argument can be
fixed, the uncertainties of LLA predictions can be removed, and the region of
applicability of these predictions can be determined by radiative corrections.
Therefore the problem of calculating of radiative corrections to LLA is very
important now. =

For solving this problem the key point can be [6] the gluon Reggeization,
which was proved [3],[7] in LLA. The gluon trajectory

i) =1+w() (3)
in the one-loop approximation is given by [3]: ;
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where D is the space-time dimension (D # 4 is introduced to regularize
Feynman integrals), ¢ is the momentum transfer and t = ¢ ~ q¢3. The
integration in (4) is performed over the (D —2) dimensional subspace, which
is orthogonal to the initial particle momentum plane.

The problem of calculating next-to-leading corrections can be turned into
calculating corrections to the kernel of the Bethe-Salpeter type equation for
the -channel partial amplitude with the vacuum quantum numbers [6]. This
kernel is expressed through the gluon trajectory and the Reggeon-Reggeon-
gluon vertex. Corrections to the vertex were calculated already [8]-[10], there-
fore, the calculation of the two-loop correction w(?)(t) to the gluon trajectory
appears to be the most urgent problem.

In this paper we present results and details of the calculation of the two-
loop correction to the gluon trajectory for the case of QCD with massive
quarks. The paper is organized as follows. In the Section 2 we discuss the
method of calculations. In Section 3 we calculate the contribution of the
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two-particle intermediate state to s -channel discontinuity of the gluon-gluon
scattering amplitude. An analogous calculations for the contributions of the
three-gluon and quark-antiquark-gluon intermediate states are given in the
Sections 4 and 5 respectively. The final result for the two-loop correction

to the gluon Regge trajectory w(®)(¢) is presented in Section 6. Section 7
contains a brief summary.

2 Method of calculation

For getting the correction w[ﬂ](t) to the gluon trajectory it is sufficient to cal-

gy ‘B’
culate the two-loop contribution to the s-channel discontinuity [( A{S_})A ]
AB

: % AIB-F

of the amplitude (AE_ )) o of the elastic gluon-gluon scattering A + B —
A'+ B’ with gluon quantum numbers in the ¢ -channel and negative signature.
Ass_ummg that an asymptotic behaviour of the amplitude in the kinematical
region (s = +(p,4 _+p3)2 — 00, t = (par—pa)? -fixed) is given by the Reggeized
gluon contribution, this amplitude has the factorized form:

e a0 )
N (BN R

where T'4, 4 are the vertices of gluon-gluon-Reggeon interaction (GGR ver-

tices) and w(t) is the gluon Regge trajectory. In the helicity basis the GGR
vertices can be presented in the following form [9],[11]

Lorg = 9(G'IT*IG) [Brginra (1+T52M) + 8r0r-2aTS2M] . (©)

Here (G'|T°|G) = T, are matrix elements of the SU(N} colour group gen-

erators in the adjoint representation and Fgg(t) are the radiative corrections
to the helicity conserving LLA vertex [3]. In the following we will use one-loop
approximation for these corrections.

It is convenient to extract from the amplitude the part conserving helici-
ties of each of colliding particles (A4» = A4, Apr = Ap) and to take its average
over these helicities. Let us define the value A; by the following relation:

&
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The factor ZD_-IETE appears here on account of taking the average, because

the number of helicity states in the D-dimensional space-time is equal (D —
2). Calculating RHS of Eq.(7) with use of the representations (5) for the
amplitude and (6) for the vertices we obtain:

Pl (“—?) (W) +wOOrRn +eP0. @

So, the two-loop correction to the trajectory Q{E}( t) 1s expressed through the
two-loop discontinuity A, and the one-loop contributions to the trajectory

w(1)(t) and to the GGR vertex F( 4(t). The gluon trajectory in the one-loop

approximation [3] w(1)(¢) is presented by Eq.(4). The corrections [‘{ }( t)
depend on the definition of §-symbols in Eq.(6). These symbols have a l1tera,l
sense only in the physical case D = 4 and only for a suitable choice of relative
phases in spin wave functions. It appears convenient to use the definitions:

6).’,}. = —-Eir(pg)ﬂ*zx (pG: )gi‘i‘: ;

5y _» = eX(Pc)e"s (pa)( gL + (D - 2)“‘**). (9)

Here e5(pc), eg:(pg:} are polarization vectors of gluons G and G’ with he-

licities A and A correspondingly, ¢ = (pG — pe') is the momentum transfer
(¢> = t) and 1 and L’ mean orthogonal components to the (pa,pB) and

(par, pp) planes respectively:

gi-i' — Pﬂpp’ﬂ,vgﬂﬂ’ ‘Ii‘ = n:r,qu: q{Jx'* = Pja'uqua
PHY — gpw i pippﬂ +p5p3 PL“" = g_uy i pi‘puﬂ‘ +pg’p;f : (10)
(papB) (pA"PB-')

The tensors P and P’ are the projectors on the subspaces orthogonal to the
(pa,ps) and (par, pp:) planes. For D # 4 the definitions (9) differ from those

used in Refs. [9],[11], causing a difference of our vertices I‘( }(t) in comparison
with [9],[11]. Besides that, Refs. [9],[11] contain misprints in final expressions,

therefore, we present here recalculated vertices I‘E;(_;(t) They can be written
as the sum of gluon and quark contributions:

With the choice (9) the helicity conserving terms which we are interested
in are given by

uon 2 r ( D) A 1) D
pGliar 40 (H—14 [ (3~-)
9D —2)*+8 |
— 9 (_ 2 2) o 1,5}(1)] i 4(1(3 - 1)()Dt 2)} , (12)
where t(z) is the logarithmic derivative of the gamma function:
_ (=)

and
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where the summation is taken over the quark flavours, m; is the mass of the
quark flavour f. For the sake of completeness we present here the helicity
non conserving terms also:

=il 2N L8 F)TH(2 2 1)
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From Eq.(8) we have:

W) = A, — (w“}(t))zln (-%) — oaT () D (2). (16)

Consequently, we will know the gluon trajectory with two-loop accuracy after
calculating of A, . This discontinuity can be found from s -channel unitarity
condition. In the approximation accepted here only two-gluon, three-gluon
and quark-antiquark-gluon intermediate states can contribute to the unitarity
relation, therefore

A, =A,29 53{391 + A,(QQ0) (17)

Details of calculation of these three contributions to A, are presented in the
next three Sections.

3 Two-gluon intermediate state

The contribution of the two-gluon intermediate state to the discontinuity can
be obtained from the relation

: (29) .
(=] : ) G1Ga 4+G1G
(AO) | = [ metoa +poinanpe B YD AGP A G
(18)
where the summation is performed over colour and spin states of intermediate

gluons, Pé_} is the projector on the colour octet state and negative signature
in the t -channel, d®, is the two-particle phase space element . For n—
particle state

D <(D) O
4Dy (P;p1, -y Pn) = (21)78 Zp, HQE @D-T

—

19)
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The two-loop contribution to the discontinuity can be presented as

(=) A’B".{EEJ 3 '
[(.«43 )AB] - (two-loop) =

&

2 f d@gP }Z (A*EEE,*)[BW“)RE (AGlgz)(%ﬂe—foop]‘ (20)
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Due to intermediate gluon identity the integration in Eq.(20) is performed
over only half of the phase space volume, where the angle #; between mo-
menta of gluons A and G is smaller than 7/2. Seeing that in essential region
of the integration

Ipg, 1|, IPGar] ~ lgil, (21)
we can take the amplitudes in the r.h.s. of Eq.(20) in Regge asymptotic form.

(29)
Moreover, for the discontinuity [(Ag" )AB ] without helicity change only

&

(Barn} (ene—loop)
helicity conserving parts of the amplitudes (AE BGF) ; (AG G’)

with the octet colour state and negative signature in the correspondmg t
channels contribute in the unitary condition. The reason is that the Born
amplitude is real and in the Regge region it conserves the helicities of each
of scattered particles; besides that, it contains in this region only the colour
octet state with negative signature in the ¢ channel, as well as the real part
of the one- loop amplitude. Consequently, we can use the representation (5)
for them. It gives us the following equality:

PS'“) Z (A*i}gf){ﬂwn}ﬂg (Aﬂng)(a“e_hap}

AA;-:AA =
J.B,F=}|.B

NN ) o x [0t () +2rie], 2

where ¢, = (pg, — Pa)?, ti = (PG, — pa+)?. Taking into account, that with
the required accuracy the phase space element can be written as '

. _ 1 dP-2)gy,
d®; (pa + PB; PG, ), PG.) :_'E;F(éﬂ.)ﬂ_—li'_’ (23)

with q; = pg, — pa, and expressing ¢;, 1] through the integration variables,

h = ‘ﬁl: t) = (";"1 TF ‘;).Ef.i _ (24}

we obtain the contnbutmn cf the two—gluon mtermedlat.e state to A, in the
following form:

2 (D-2)
ﬂ{ﬂ s (Qw;;t 1 _g(tﬁ ] ?52 [ (”( ‘i'l)ln (‘11) o 2F ( ‘Il)] (25) -

Seeing that the transverse momenta are spacelike, we passed to integration
over (D — 2)—dimensional Euclidian vectors and omitted the sign of the

~ transversality.




4 Three-gluon intermediate state

The contribution of the three-gluon intermediate state to the discontinuity

A'B'
[(AE;_)) o ] of the elastic gluon-gluon scattering amplitude is given by

' 1g'1(39)
ian |
: - GiGa 4+GiGaC
e ? ] d®3 (PA +PBEPGUPG2,PG3)P5{ )ZAE.IB SGBA A}Hra 2, (26)
where the summation is performed over colour and spin states of the interme-
diate gluons. Since we are interested in the part of the amplitude conserving
helicities of each of the colliding particles and take an average over these
helicities, with account of the gluon identity we can throw away the factor %
in the Eq.(26) and integrate over such part of the phase spase volume, where

two of the intermediate gluons, for definiteness the gluons G and (3, have
emission angles with respect to momentum of the gluon 4, 6, and 3 corre-

spondingly, smaller than m/2. The gluon G2, consequently, has the emission

angle larger than 7/2, because of momentum conservation. Therefore, we
have: ;

(=) A’F ) (=) GGG G036
[(«43 )AB ] — q f d®3 Py .ZAAE 2 EA*A%EP C (27)
! (81,635 %) ;

In the integration region , which can give a contribution of the required order,
intermediate gluon momenta are limited[12] :

[io |~ lgol- (28)

Here and below k; is the momentum of an intermediate gluon G; , ki = pg; .
The amplitude AibG“G’ in the essential region of the integration was
calculated in Ref.[12] and has the following gauge invariant form

261
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where A; is defined by the convolution
Ay = a*Pey €] v€3p) -~ (30)
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in which e4,e; and es are polarization vectors of the gluons A, G, and Ga
correspondingly and

H P v .,,F 3 :
e _ Pl [PBPR PRI —kSPp | Papp _ Paki (1 el ) .

s | Pas? 5138 Basty ts ti  $i3

5% +pipi]+kulp"ﬂp'é _ PBk? — k3pp (1 L )4

to513  taly | Bas?ty sty i i 13

PEPﬂ] Y [Ptékf = kgpﬁﬂ o PﬂPpB] e [(tzﬂa —13)pB

stalq §138ty stalq 2 8138l9 3

(i+ 1 ) Paky 511:3]“-‘_ L K bl f_s) bR . Gibd.
ti  s13) i tasiz) = 2 t183 1) sta  taly

fo0 BN K17 geer bl Bapp o KR |
(t} & 313) tg] o 2 [_ sto % fgtl ¥ ig&‘lg] . (31)
In the last formula we used the notations:

(k1,3 g pB)?
S ]

s=(pa+p8), Bis= t1,3 = (k1,3 — pa)’,

ta = (ks —pB)* 813 = (k1 + ks)?, | (32)

which are connected by relations
! t ; .
B1+ﬂa=1+—§, siz =t — 11 —t3. (33)

The amplitude AE}EFG’ can be obtained from Ai}f"‘g’ by evident substitu-

tion ' : i

A— A, B—B. (34)

Using the form (29) one can easily perform in Eq. (27) the summation

ovet helicities of the gluon G as well as over colour states of all intermediate

gluons, projecting the result on the octet colour state with negative signature
in the t -channel. Taking Ap = Ap: and averaging over Ap we get:

R IO\ L0 e
D—QZ[(‘AS )AB }
AB
= {75 4 T5: 3 16g° N 25° / dﬁ-ngiA;*, j (35)
Gudsgd) - MM
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3 Ap=Ag:




where A’ can be obtained from A; by the substitution (34). Since the am-
plitude A; entering in Eq.(35) is gauge invariant we can choose the most
convenient gauge for the gluons A, Gy and G3. We use the following gauge
condition: : 3

(esp) =0, i=4,1,3. (36)

Together with the relation (kie;) =0 1t gives that the polarization vectors
can be presented as

_ 2(kiyein) _
€ — Sﬁi PB e 1, : : (ST)
where k4 = pa, B4 = 1. It is easily to see that
Siaiel =P ~ (38)
Ad

where the projector P*” is defined by Egs.(10). Using the form (30), (31) for
the amplitude A; , the representation (37) for the polarization vectors and
Sudakov decomposition for the momenta of the gluons G1,Gs,

ki = Bipa + aipp + kiy, saifi= —k;] (39)

_with account of their on-mass-shellness, we obtain with the required accuracy

1 ' & :
.,,41 =g [—ﬁlﬁg(eilegl)(fﬂle,{l) +ﬁ1(€AJ_EIJ_)(RJ.ﬁ5L)+133(3AJ_€5J_)K

‘ il (ks — Ba(k1 + ks))
> (RLE“’)]’ = ( t15 3 B1P3s13 )J_' (40)

The analogous expression for Aj takes the form

I 1 o * ] * * -*
Ay = ~%0 [—ﬁl 33('E1J,53.1_)(R'.L_ﬂ4u )+h1 (EA‘lE'li)(Rieﬁ'L)+ﬁ3(EA"l €3 )%

(1 = Ba)par — k1) | (ks — Ba(k1 + ks)) v
% RJ' E*_ } _Rf il ((( : + = : 41
(B “')] i t1 5 p103513 L (41)
where the invariants t},t5 are obtained from t1,%s (32) by the substitution
(34). Performing in the product A A," the summation over helicities of the
gluons G1,G3 with the help of (38) and averaging over A4 = A using the
relation : Gl

Zf‘;ﬂ(ﬁ)ﬂﬂtm’) = Lp (42)

#EY
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which is valid in our approximation, we find

1 . =1
= Yo A4

= !
J\AFEAA 4t2t2\

(1= Bs)* + B3 + (1 - B5)"B3) (RLR]) -

(43)
Putting (43) in (35), calculating the product (RLR) and taking into ac-
count, that the phase space element in the essential region of integration can
be written as

= £ dg: 1
ddg = 7"k, d° ks ﬂlﬁaa 45(27)(2D-3)’

(44)

with 8y = 1— ,33, we get for the three-gluon contribution to the discontinuity
A, the following expression:

Al39) — g' Nt
; 2(27)2(P-1)

/dﬂ-ﬂmdﬂ—ﬂm % ((1 - Bs)*(1 + B3)+ .
23 ot 4 [ 1 .iz . ty ]
el tat (ﬁltl)(ﬁlﬂ)-!_(ﬁlfl)(5153513)+(ﬁlﬂ)(ﬁlﬁEsli’:) il

The upper and lower limits of the integral over B3 are defined by conditions
g1 <Fandf3< 3 respectively. With the accuracy required the upper limit

2
\/ E% /s
In terms of the integration variables the invariants in Eq.(45) have the
following form: |

in can be put equal 1, and lower limit is equal

wi -0 B9

= —, L gy =(ky+Ek3)},
Ve B 2= (ki dFaly

(ks — Ba(ks + k3))3 ._

ok ks —q), f1a=— 46
2 ( 1 3 Q)J_ 13 | ﬁ]ﬁﬂ» ( )
Using this form, making a change of the variables

1, =k, g2 = (ka+ks)L (47)

and throwing away the subscript of B3, one can write Eq.(45) as

oL /dﬂ~2qudﬂ-2m

1 | |
i Af i s Lo
=G 0D | T im-0L ) B (1-B°(+8)+

13




+(1 - B)B) ( Gl
¢l (-1 -Pol

ik 423 s (2 — )% )
0 (-10-9e) @-0-80i(@m-10-PFAe)y/

where By = \/—(g2 — q1)3 /s . The integration over the Sudakov variable g
in Eq.(48) can be performed in the following way. The integration region can
be divided into two parts:

- (48)

SR T : '
[-]+]
Bo Po
where
fo << 6 K 1. (50)

Calculating the first integral one can neglect 8 where it is possible, and get
the following expression for the corresponding contribution to AP

(5(391) e QdNEt -/dD-E‘Iu.dD_EfIﬂJ.
s AER)R D 23 (g2 — 9)%

% ( gi o g23 = (92 — Q)i ) (51)

?13_ (g1 — Q)i thi (g1 — qz)i (g1 — Q)i (01— Qz)i '
To calculate a contribution of the second integral in the RHS of Eq.(49) to
AB?) we change the order of integrations in Eq.(48) so that the integration
over 3 becomes last. After that, by virtue of convergency of the integral over

orthogonal momenta , we can make the substitution ¢ — (1 — B)q1 in this
integral, leading to its factorization: :

(]
lﬂ(—ﬁ;)

(ﬁ{ﬂ'ﬂ]) . g4N:‘£t .dﬂwquidﬂ—ﬂqzl ¢
2

s T 2(2m)2P-D | g% (g2 —q)?
i ( a1 L U o (02 = 93 —-) X
2 3
a2 (@m-9>  @i@m-e) (@G- ¢); (a1 — 02)}

x 5] Pa-pP (-PPO+8)+67). (52)
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In the limit § — 0 we have
/ d 1
[Fa-pP (@ -870+8)+F) =n () +vw-we-2
J :

1 1
g TR 4 VR T T 0 Y

For the total contribution of the three-gluon intermediate state to the dis-
continuity AP = (&Eag])l + (&Eag))z we obtain using Eqgs. (51-53)

Al TN f i P © (3 In (—_S
5 2(2x)2(P-1) 3(32 - §)* \2 (g1 — 2)°

(53)

) +¥(1)—¢(D—-2)
25 1 + L ) X
(D-3)(D-4) (D-1)(D-2)
=2 ] - i 9
s 42 (42— @) ) _
% 7 % 7 o i — — 3 5‘4
(ﬁ(ql —9? @@ —a)? (- DN - @) (54)
where the integration over ¢, and gs is carried out in (D — 2) -dimensional
Euclidian space.

5 Quark-antiquark-gluon intermediate state

The contribution of the @QQg — intermediate state to the discontinuity
A'B' .
(.A(S*)) ] has the same form as one of the three-gluon intermediate
AB
state (26) with evident changes. The essential kinematical region consists
of two separated parts. In both of them transverse momenta of produced
particles are restricted:

{lels poJ_l O ;":“.11 (55)

where pg and pg are the momenta of the quark and antiquark correspond-
ingly, but in the first part the produced quark-antiquark pair moves in the
same direction as the gluon A (fragmentation region of the gluon A), while
in the second - along B (fragmentation region of the gluon B). Both re-
gions give equal contributions to A, therefore we will consider only the first

15




of them and duplicate its contribution. The production amplitude in this
region takes the following form:

Aiga = 2g T,géh,zﬂﬁ(z}q) [fz: = (éas — PB (2(pg + Pg)ea)) Thct
1
tgtq tatg
(56)
where the i, and A, are the colour index and the helicity of the intermediate
gluon, t¥ is the colour group generator in the quark representation, m 1s the

quark mass and we use invariants:

to = —2(pepa), tg =—2(0apPa), sqq = (Pa+pg)’ itz = (k2—pp)*. (57)

In the last expression ko is the momentum of the intermediate gluon.

Summing the product AQQG % A* ff%{? over polarizations of the intermedi-
ate particles and projecting on the octet colour state with negative signature
in the ¢ -channel, we obtain for the contribution of QQG— intermediate state
to the helicity conserving part of the discontinuity

)

A Sn R
g22 (g2 — 0)3 (( TR 2( 5— — 2B0(1 ﬁq)) (S"lS_L)). (58)

In this formula we have used the following notations

1 1
e ((m2 (g1 — (1—Bo)g2)%) (m?— fhi")r) ”

2¢°Nst [ d®qq
e c 2 g)
JnAjz-\A"""TA*ATB'Bg ( —2mt— ) (D 2) o

Agi=AB

-‘] (QQ9)

( L . 1 )
(m? = (q1 — (1-_',&3)*12)3_) (m? — (4’1—(1-’ﬁq)‘l’)i) :
e (_ g1y (g1 — (1 —Bq)e2)L )
Lo U2 —ad) " (m?— (@ — (1—Be)e2)}) /)’
i (-# (1 —(1-Bo))r (@1 = (1= Ba)e2). )
TN (o - 0-Be)d) T (m? - (- (- Fe)n)i)/’
2pBDQ) 0 2(pBpg) '

Bq = @1 =pg, 2=pQ+pg  (59)
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1 1
—— ¢4 (po —Pa +m)pp (tAt*)———pp (Pa — g + m) éa (tt") | v (pg) ,

The phase space element in the gluon A fragmentation region has the form
(44):

2T 1

dfq
dQ(QQﬂ) o 4(2?1,)2{1}_1) 2,

BoBq’

Seeing that regions of small g and B give negligible contribufions in
(58) (in contrast with the case of the three-gluon intermediate state, where
regions of small B; and’ 5 give contributions, logarithmical growing with s),
we can put the upper and lower limits of the integration over (g in (58) equal

dP~%q,,d° gz, 3@ =1-—P0a; (60)

to 1 and 0 respectively. Due to this circumstance &EQQS} doesn’t contain a
dependence on s at all and is a function of the variable t = (par — pa)? only.

Comparing Eq.(58) with account of (59)-(60) with Eq. (7) we can present
the quark-antiquark-gluon intermediate state contribution to A, as

(@Qg) _ _ 9Nt d” %92 ((Q@0)(2Y_ 94(@09)
A@ y}._ e /g‘g(ﬁ—q'jﬂ( Q49 () - 2299 (&), (61)
where
: : :
(QQ39) = R L s e i
a 7(q ) Q(E?r)ﬂ 1(D 2 ?[!dﬁ( ( 25'(1 ﬁ))
-t 4Pt
—4m$p(1 — ﬁ)) + ]
f /(ﬁ'qumﬁ) ((,ﬁ_-g@z+m?) 3 /(fﬁ+m§)2
(62)

The summation here 1s performed over quark flavours.
After integration over ¢ the expression for a{?29)(¢?) takes the form

g’ (2- 3)

*WZE (5=3) )

i

g
d:clda:gﬂl—:r:l——mu] D—4
+]] I e
Sl

2- L.
m.‘r = Ilﬂrﬂ)

u||::

-1

a{QQy}(q-ﬂ) = i

7 @&(31 + z5) (252 — 221 + 22)(1 — 24 — 27)) —4mi(l — z1 — 22)
. ( ,f _|-q 1:1132)

1

BE




6 Two-loop correction to the gluon trajectory

With help of Eqs.(17) and (25) the two-loop contribution to the gluon tra-
jectory (16 ) can be written as

() = 4,09 + A,(Q90) _ (w(l}(t)) In ( t) — 2rP @) (t)

2 D-2 '
g“Nt dP-2)g, +
+or | gamap 0B (g) +2eCd]. @

Here the discontinuities A,%) and A,(9%9are given by Egs. (54) and
(61)-(63) correspondingly, one-loop contributions to the trajectory w(1) and

to the GGR-vertex I‘(G'Ig. - respectively by Eqgs. (4) and (11)-(14). So, the

expression looks rather complicated; but there are a lot of remarkable can-

cellations between various terms in it. Let us demolnsl;rate these cancellations.
Firstly, let us consider the contribution to the r.h.s. of Eq. (64), connected

with quarks. It is given by the discontinuity A, (@QQ9) ( 1)-(63) and the

terms containing the part FH}““WH (14) of the vertex P (11) Using the

representation (4) for w(1), we can present this cnntrlbutmn in the following
form: '

(two—loop) Ng*t dﬂ_z 2 '
R L B G R NC)

where
FO) = a99(g?) + TGP ) (66)

It appears, that the sum of the term a(@29)(¢?) (63) and such terms in

I",:g'g(““”k}(—qﬂ), which are presented in Eq.(14) by the double integral and
by the term without integration, is zero. Indeed, let us present this sum as

2
2(—;)@;3@9); then

B(q®) = _4[‘( );[(33 2; )%—2+/1j dzida.0(1 — z1 ;a:;) .
0 0

x((a-D)(z_’:;““) + (ﬁ:";) (’”;1"")+ (ﬁ::) X
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X Ll 2 . 2
(mf e @2312?2) |

Due to symmetry of the integration region of the double integral in the RHS
of the Eq (67) with respect to exchange ; ++ z2 we can rewrite the expression
for B(¢*):

B(%) = -4 Fg_;Z[( )(m,)%‘%j/ld 1dza0(1— Il—xg)x.

x( (- 5o D200 %)
2-L2 2-2
( (m} +:f31:1m2)
(2 - 2) Pz1 (252 — 2211 — 21)) — m} (5 —2) (6 —2D)(1 - ml))]

3__
(mf; +_§?a:11:g)

0 ((D=2)z1422) ri(1—z,1) r2(1—z2)y (D—3}m§(2—w1—mz)
= = +
Z( . )] (67)

‘m?f +§Ef1$2)

(68)
Using the identity :
(D — 4)z, D (D — 4)23 (%— 1) (D — 4)z,
2-2 7 9z N =%
(m? + q'gml;rg) % (m? + 2%z Ig) e (m? 4 ﬁgmlmg)
2 (2 9) (D= 4)s
S ( 2 )( )z2 (59]

3-£ ’
(m? + ﬁ'ﬂrlﬂ:g)

for the first term in the double integral in (68) and replacing 2 by z; in
the numerators of the last two terms of the r.h.s. of this identity due to
the symmetry of the integral discussed above, we can present B(3?) in the

following form:

1—1.71

B(é“’)=—4——w—r(§:f;)¥[(§--)( )‘f‘ /d:nlfd:ﬂgx

8 ((6=2D)(1 —z1) + (D — 4)(z2 — z1)) &2 — 221 (1 — 21) + %]
K 3.1?2 ne Q =t 5

(mf —i—t';ﬂ:tzimg) o
(70)
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Now the integration is performed easily, leading to B(¢%) = 0. Consequently,

only the first term in I‘(G?[q“m'kj(—ée) (14) does contribute to f(?)(7?) (66),
and therefore for the quark contribution to w(*)(t) we obtain from (65):

w(@)(t)(two-faap] i g‘itf dﬂ-;ql : 1 8T (2 £l %) J
_4 @2m)" 1 @ (g1 — ‘ﬂz (4#)%

1
xNZ[dzﬂ:(lmir)[ s = % P_"
e 2-3
5o (mf, + 2z(1 — a::)) - (m? + gie(l— J.'I))
i L iy
The remaining contributions to wfz](t) (64) are pure gluon ones. Evidently,
there must be cancellations between them, because a dependence on s must

vanish in (64). Using the representation (4) for w(!), we can perform the
cancellations explicitly and obtain:

w(y)(t)(“”"‘”ﬁ i g*N*t / dP=2¢,dP~2q, 3
4(271-)2(1}—1] {qu—;%
¢°

=t (§ - §)°
o 1 | el
_2
+ = 2 - o
((eﬁ-—@j (q-a_g*)”(ﬁJrﬁ“@z) (ab(l) 2% (D - 3)

B O P R S T 0

Remind, that 1,;‘)(.?:] is the logarithmic derivative of the Gamma-function.

The total correction to the gluon Regge trajectory is given by sum of (72)
and (71). '

ol U [

7 Summary

We have obtained the two-loop correction w(?)(t) to the trajectory w(t) of the
Reggeized gluon in QCD. It is given by the sum of quark M{Q)(t)[iwﬂ—faap}

two—I i 0
(71) and gluon w{f}(t)[ S (72) contributions. The correction was cal-
culattlad assuming that an asymptotic behaviour of the gluon-gluon scattering
amplitude in the kinematical region of asymptotically large energies /5 and

20

restricted momentum transfer v/—% is given by the Reggeized gluon contribu-
tion (5). In this case the correction can be presented by Eq.(16) in terms of
the helicity conserving part of s-channel discontinuity Ag of the amplitude
with colour octet state and negative signature in the ¢ channel, the lead-
ing contribution w(!)(¢) to the trajectory (4) and the one-loop correction to

[ . +
the helicity conserving part of tl1_e gluon-gluon-Reggeon vertex I‘E;g.(t) (11)-
(14). We have calculated the discontinuity Ag using s—channel unitarity
condition.” In the two-loop approximation it can be written (17) as sum of

three contributions: AZ?) (25), AR? (54) and AF? (61),(63), which come
correspondingly from two-gluon, three-gluon and quark-antiquark-gluon in-
termediate states in the unitary condition. The final results (71) ,(72) are
obtained after series of remarkable cancellations. :

By definition, Regge trajectory has to be process- independent. There-
fore, the correction w(?)(t) can not depend on properties of colliding particles
and can be obtained from an amplitude of any process, if the asymptotic
behaviour of this amplitude is given by the Reggeized gluon contribution.
Recently [13] the two-loop correction to the gluon trajectory was calculated
using the quark-quark scattering amplitude. Our result for the trajectory co-
‘ncides with the result of Ref.[13]. The coincidences of these results gives us
a strong confirmation of the gluon Reggeization in QCD beyond the leading
logarithmic approximation .

We used dimensional regularization, keeping the space-time dimension
D # 4. In the physical case D = 4 the two-loop correction to the gluon
trajectory contains ultraviolet as well as infrared divergences. The first of
them are trivial. To eliminate them, it is enough to express the trajectory

w(t) = wM(t) + D) +---. (73)

in terms of the renormalized coupling g, instead of the bare coupling constant
g . For example, in the M S -scheme one has

Cdn g B T ST BT ]
il

where g, is the renormalized coupling constant at the renormalization point
i ' -

Contrary, the infrared divergences are inherent for the gluon trajectory

(let us remind, that they are present already in the leading contribution

w(t) to the trajectory (4)). The reason is that a gluon is a colour object,
whereas we can expect the infrared divergency cancellation for the scattering
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of colourless objects only. The cancellation should occur after substitution
of the trajectory in the equation for the ¢ -channel partial amplitude with
vacuum quantum numbers. We hope to deal with this problem in subsequent
papers.

Acknowledgments: The authors thank the International Science Foun-
dation (grant RAK000) and the Russian Fund for Fundamental Researches
(grant 95-02-04609) for financial support.

References

[1] G. Altarelli, Phys. Rep. 81 (1982) 1.
[2] L.V. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep. C100 (1983) 1.

[3] V.S. Fadin, E.A. Kuraev and L.N. Lipatov, Phys. Lett. B60 (1975) 50;
E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 71 (1976)
840 [Sov. Phys. JETP 44 (1976) 443]; 72 (1977) 377 [45 (1977) 199).

[4] A.H. Mueller and J. Qiu, Nucl. Phys. B268 (1986) 427; L.N. Lipatov,
in ” Perturbative Quantum Chromodynamics”, ed. A.H. Mueller, World
Scientific, Singapore, 1989; A.H. Mueller, Nucl. Phys. B335 (1990) 115;
E.M. Levin, M.G. Ryskin and A.G. Shuvaev, Nucl. Phys. B387 (1992)
589; J. Bartels, Phys. Lett. B298 (1993) 204; Z. Phys. C60 (1993)
471; S. Catani and F. Hautmann, Phys. Lett. B315 (1993) 157; N.N.
Nikolaev, B.G. Zakharov and V.R. Zoller, KFA-IKP(th)-1994-1; A.H.

- Mueller, CU-TP-640, 1994,

[5] A.H. Mueller and H. Navalet, Nucl. Phys. B282 (1987) 727; J. Kwiecin-
ski, A.D. Martin and P.J. Sutton, Phys. Lett. B278 (1992) 254; W.K.
Tang, Phys. Lett. B278 (1992) 363; J. Bartels, A. De Roceck and M.
Lowe, Z. Phys. C54 (1992) 635; A.D. Martin, W.J. Stirling and R.G.
Roberts, Phys. Lett. B306 (1993) 145.

6] L.N. Lipatov and V.S. Fadin, Zh. Eksp. Teor. Fiz. Pis’ma 49 (1989) 311
[JETP Lett. 49 (1989) 352]. |

[7] Y.Y. Balitskii, L.N. Lipatov and V.S. Fadin, in the Materials from the
Fourteenth Winter School of the Leningrad Nuclear Physics Institute [in
Russian], 1979, p.109. |

22

[8] V.S. Fadin and L.N. Lipatov, in *Deep Inelastic Scattering”, Pro-
ceedings of the Zeuthen Workshop on Elementary Particle Theory,
Teupitz/Brandenburg, Germany, 1992, edited by J.B. Blimlein and T.
Riemann [Nucl. Phys. B (Proc. Suppl.) 29A (1992) 93].

[9] V.S. Fadin and L.N. Lipatov, Nucl. Phys. B406 (1993) 259.
[10] V.S. Fadin, R. Fiore and A. Quartarolo, Phys. Rev. D50 (1994) 5893.
(11] V. Fadin and R. Fiore, Phys. Lett. B294 (1992) 286. '

[12] L.N. Lipatov and V.S. Fadin, Yad. Fiz. 50 (1989) 1141 [Sov. J. Nucl.
Phys. 50 (1989) 712]. '

[13] V.S. Fadin, preprint BUDKERINP 94-103, 1994, Novosibirsk; V.S.

~ Fadin, Zh. Eksp. Teor. Fiz. Pis’'ma 61 (1995) 342; V.5. Fadin, R. Fiore

and A. Quartarolo, preprint BUDKERINP 95-49 (Novosibirsk), CS-TH
12/95 (Calabria University), 1995.

23




V.S. Fadin, M.I. Koisky

Reggeization of gluon-gluon
scattering amplitude in QCD

B.C. ®adun, M.H. Koyxui

Penxezanus aMIJIATY AL
rJIIO0H-FJIIOOHHOTO paccesHusd

Budker INP 95-51

Oreercreennbii 3a seinyck C.I'. Ilonos
Pabota nocrynuia 24.06 1995 r.

Cnano B Habop 2.08. 1995 r.
: Tonnucano B nedats 2.08 1995 r.
PopmaT Gymaru 60x90 1/16 O6mem 1,7 meq.a., 1,4 yu.-u3m.a.
Tupax 250 sk3. Becmiatho. 3akas N 51

O6paborano Ha IBM PC u ornevaTaHo Ha
poranpunte THI[ P® “USAD um. I''H. Bynxepa CO PAH”,
Hosocubupcx, 630090, np. axademuxa Jlaspenmsvesa, 11.




