A |
*H g 2 { of Russian Federation
Ugo

Russian Academy of Science
Siberian Branch
- Budker Institute of Nuclear Physics

C. Hamzaoui, M.E. Pospelov

ELECTRIC DIPOLE MOMENT OF

NEUTRON IN THE
KOBAYASHI-MASKAWA

MODEL WITH FOUR GENERATIONS
OF QUARKS

S " Budker INP 95-22
v /?/?” udker

HOBOCUBHUPCK




Electric Dipole Moment of Neutron in the
Kobayashi-Maskawa Model With Four Generations of
Quarks

C. Hamzaou
Département de Physique, Université du Québec & Montréal,
Case Postale 8888, Succ. Centre-Ville,
Montréal, Québec, Canada, H3C 3P8.

M.E. Pospelov
The State Scientific Centre of Russia Federation
The Budker Institute of Nuclear Physics, SB RAS
630090 Novosibirsk, Russia

ABSTRACT

We show that the existence of a possible fourth heavy generation of quarks
gives rise to a significant enhancement to the neutron electric dipole moment
in comparison with the Standard Model prediction. The smaller degree of
suppression in this case is linked to the presence of the operators of dimension
< 6 which enter into the effective Lagrangian with coefficients proportional
to the square of the top quark mass. Numerically, the enhancement is mainly
associated with chromoelectric dipole moment of the s quark which appears at
three loop level, of the order a,am,m;]/my, from the CP-odd combination
of mixing angles between second, third and fourth generations. Its value is
calculated explicitly in the limit of large masses of the fourth generation of
quarks. The corresponding contribution to the electric dipole moment of the
neutron is 5 - 10~3% . ¢m in the most optimistic scenarios about the values
of the Kobayashi-Maskawa matrix elements. The additive renormalization of

O-term in this model is estimated as 10~ 1%,
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1. Imntroduction

'Tl}e Kobayashi-Maskawa (KM) model looks now as the most natural de-
scription of CP-violation. It describes properly CP-odd phenomena in the
decays of neutral K-mesons and predicts extremely tiny CP-odd effects in the

ﬂfj,vnur-cmlserviug processes. The current experimental limit on the electric
dipole moment of neutron (EDM) [1],

dy/e < 107* em, (1)

exceeds the realistic Standard Model prediction for this quantity by seven
orders of magnitude. However, this gap between theory and experiment is of
great use for limiting a new CP-violating physics beyond the Standard Model.
The purpose of this work 1s to consider the electric dipole moment of neutron
in the model with an additional heavy generation of quarks preserving the
same KM origin of CP-violation.

The reason for introducing an extra heavy generation of quarks into
physics comes from a relatively large mixing in B — B meson system [2].
Its existence is, of course, questionable. However, the set of constraints on
mixing angles and unknown heavy masses can be derived from the low en-
ergy phenomenological data. The analysis [2] shows that the existence of
additional heavy quarks with masses not lighter than m; is not excluded. We
would use the conclusions developed in the work [2] for possible values of KM
matrix elements in terms of the Wolfenstein parameter A = |V,,4| = 0.22.




Let us denote the fourth generation flavours as (h g). Then the best
scenario about a large mixing between the third and fourth generations con-
sistent with current experimental data is given by:

[Vas| ~ [Vigl ~ O(A) (2)

This scenario is quite natural if we assume the masses of h and g quarks
lying below the perturbative unitarity limit of 500 GeV. Using the unitarity
conditions for the KM matrix and already known values of matrix elements
we deduce the following:

]ch|”|vfm|”6(}‘2)5 |Vhd|~|Vug|~O(A3). (3)

The enlarged KM matrix of this model possesses 9 independent parame-
ters which include six mixing angles and three CP-violating phases. To avoid
the uncertainties of reparametrization, we would describe all CP-odd flavour-
diagonal amplitudes in terms of imaginary part of three independent quartic
combinations of KM matrix elements:

(Vi VisVis Vea) ~ O(N); Im(VVis Vi Vi) ~ O(T);
Im(V;3 Vi Vi Vi) ~ O(0°) (4)

All other rephasing invariants could be reexpressed using these three combi-
nations and moduli of KM matrix elements only.

2. Standard Model prediction

Let us start from the Standard Model (SM) prediction for the electric
dipole moment (EDM) of neutron. The violation of the CP-symmetry in the
Standard Model originates from the sole complex phase in the KM matrix. To
lowest, quadratic order in the weak interaction all CP-odd flavour-conserving
amplitudes turn to zero trivially. The point is that in this approximation
those amplitudes depend only on the moduli squared of elements of the KM
matrix, so the result cannot contain the CP-violating phase. In the next,
quartic order in semi-weak coupling constant g, the expression for EDMs
of quarks vanishes at two-loop approximation without hard gluon radiative
correction taken into account [3]. It can be shown, however, that the inclusion
of one hard gluon loop prevents EDMs from identical cancellation.

The values of EDMs to one gluon loop accuracy was calculated first by
Khriplovich [4]. We quote here his result:
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where Gp = V2¢2 /(8 M?) is the Fermi constant and m; is the mass of i-
flavoured quark. 6 denotes here the only possible CP-odd invariant of 3 by 3
KM matrix. The analogous result for d, is much smaller being proportional
to mf.

Formula (5) was obtained in the limit of the effective four-fermion con-
tact interaction which is valid when all quark masses and characteristic loop
momenta are much smaller than masses of SU(2) gauge bosons. This is not
exactly true in general because the top-quark does not satisfy this demand.
However, we could use the expression (5) as a good estimate for EDM of
d-quark in the Standard Model. The reason being is that m; enters to (5)
under logarithm only and may be replaced by my,.

The EDM of neutron in Standard Model, however, is much larger than
EDMs of its constituents due to the so called ”long distance” effects [5, 6, T].
The most reliable estimates according the rules of chiral perturbation theory
predicts the EDM of neutron at the level dy =~ 2-107%?¢ . em. The two
orders of magnitude enhancement here is basically due to a smaller number
of closed loops and bigger factor connected with strong interactions.

Our basic idea is to extend this consideration to the case of KM model
with an additional heavy generation of fermions. The reason is that instead
of one CP-violating phase, the enlarged variant of this model possesses three
CP-odd parameters and additional flavour’s combinations in the amplitudes.
It may cause the contributions to EDMs being proportional to the square of
the mass of the top-quark. As a result, short distance contributions to EDMs
of quarks would be suppressed not by G%m? but rather by a,Gp.

In general, the problem of EDM calculation should be divided into two
independent parts. First, we construct a low energy effective Lagrangian in
terms of u, d, s quarks, gluons and external electromagnetic field. Then, we
recalculate this Lagrangian to the EDM of neutron using all available methods
for doing low energy hadronic physics. The second part is independent from
the concrete model of CP-violation at high energies. It is clear that in our
case the possible enhancement should be associated with effective operators
of low dimension, not bigger than 6. It is easy to identify all these possible
structures. Integrating out ¢, b, t, g, h quarks and SU(2) gauge fields, we




construct a low energy effective Lagrangian in the form:
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e Z 9 a4 ft'a '}“5% o Z E*Tzkr':" Y5di, (6)

where (Fo) denotes Fy,7,7, and the summation is held over light flavours:
i = u, d, s. The first term in (6) represents the induced f-term, perturbative
contribution to the total #-term of the theory. The next operator of dimension
6 was introduced originally by Weinberg [8]; the SM value of corresponding
coeflicient ¢y was calculated in [9]. Other terms in (6) with dim=>5 are the
operators of EDMs and chromoelectric dipole moments (CEDM). The dimen-
sion 5 of these operators in some sense is fictitious because of a chirality flip
making coefficients d; to be proportional to light masses m;. Therefore, both
d; and d; are suppressed by at least two powers of heavy mass corresponding
to the weak interaction scale. Other CP-odd operators of dimensions higher
than 6 are unimportant in our consideration because they are suppressed by
additional powers of heavy masses.

Some comments should be made at this point. We do not add to (6) CP-
odd mass operators of quarks ig;ys¢; because they could be incorporated to
the #-term by mean of the chiral rotation. Other flavour conserving CP-odd
operators of dim=6 built from four quark fields are suppressed in comparison
with CEDMs. The last fact refers to our concrete model of CP-violation.
Because of the V - A character of the theory, eflective operators are originally
formulated in terms of left handed fields. In its turn, CP-violation may only
arise through the chirality flip which gives extra powers of light mass and
affects the suppression of four quark operators. This last remark is connected
with the so called ”axial polyp operators” introduced originally in [10]:

EPQ_':'T_H{G;W: ﬁu]Tﬁ‘Ii- (T)

This operator is identical to CEDM one if we assume the equations of motion
to be preserved:

i‘T;: Duqi = Mig; (8)

Further analysis is recalled to single out leading operators in (6) and find
corresponding coefficients.

3. Flavour’s structure of L,/

We start investigating the coefficients in (6) by determining the flavour’s
arrangement along a fermion line. Let us denote by f the Green function
of f-flavoured fermion. Then a CP-odd amplitude for fermionic operators in
quartic order in semi-weak constant could be written in the following form:

> im(V Vi Vig Vig) FiklS. 9
3.k1

For pure gluonic operators the corresponding structure looks as:

> ilm(Vyy VieVii Vi) Sk, (10)
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where the cyclic permutation of the kind fjkl = Ifjk = kifj = jkif is
allowed.

In three generation formulation of KM model one has the only source of
CP violation which fixes unique flavour structures for both type of operators
[4]. In the four family case, the number of CP violating phases is three. Their
concrete choice could be done in a different ways complicating our analysis.
However, 1t does not affect the main property responsible for the cancellation
of EDMs at two loops. It is easy to see that independently on the number of

families the expression (9) is antisymmetric under the interchange of flavours
j and I:

Zﬂm[%}l’}ﬂ’};ﬁj) fiklf =
§okd

- Zﬂm( S VikVirVig) FGRL= Lk . (11)
j‘ k1

This antisymmetry is sufﬁment to set to zero both EDM and CEDM of quark
to two-loop approximation [3].

It is useful to classify a variety of CP-odd amplitudes by mean of dynam-
ical arguments. The enhancement of the short distance contributions to the
Lers which we expect to get is closely related to the fact that all characteris-
tic loop momenta are comparable with the weak interaction scale. Therefore,
inside the loops, we are legitimate to put all quark masses to zero except
my;, my and my. In other words, inside the loops, we are able to identify
propagators of light quarks:
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I
=
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=
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-

(12)




It should be mentioned here that ¢ and b quarks play a twofold role. They
are considered as heavy quarks at normal hadronic scale and almost massless
inside loops, at the scale of weak interactions. This réquirement immediately
leads to the vanishing of pure gluonic operators as well as EDM and CEDM
of u-quark. Indeed, applying the unitarity condition for the KM matrix

ViuVar + Vi, Ve + ViuVok = Sur — Vi, Vi (13)
we perform the summation over j and [ in (9) explicitly:

D im(ViLVirVii Viu) ujklu =
dukl

= > im(V,, Vor Vi Vyu Ju(Dkg — gk D)u = 0. (14)
k

For s and d quark operators the situation is quite different. An analogous
procedure for them leads to the following combination:

%Z il (Vi Ve Vi Vag ) fltkh — hkt + Ukt — tkU + hkU — Ukh]f,  (15)
. _

where f = d, s. :

Now we will concentrate on s-quark operators because its mixing with
third and fourth generations is a priori bigger than that of d-quark.

Taking the last sum over k we obtain:

%In:.(w;mgv}:g Vis )5 X
X [t(g—D)h—h(g—D)t+U(g—D)t—t(9—D)U+h(g—D)U —-U(g9—D)h]s. (16)

The rephasing invariant combination of KM matrix elements in (16) to a
good accuracy coincides with that responsible for CP-odd B} meson mixing:

Im(V;3 Vig Vit Vis) = —Im(V5: Vis Vi Vs ), (17)

and the resulting expression takes the form:
i * *
Tm(VisVes Vi, Vhs )s X

X [t(b— g)h — h(b— g)t+U (b= g)t —t(b—g)U +h(b—g)U —U(b—g)hls. (18)
It may be of the order A% and it makes the electric and chromoelectric dipole
‘moment of s-quark the most important between other CP-odd operators.
For the d-quark all considerations presented above are valid with the only
replacement in rephasing invariants:

Tm (Vs Vis Vi Ve ) — Im(V;5Vis Viy Vaa) ~ O(X7). (19)

4. EDM of neutron

When the flavour structure is fixed, it is possible to find the relative mean-
ing of different operators for the EDM of neutron using order of magnitude
estimations for corresponding coefficients.

First we take an electric dipole moment of d-quark. Combining together
all phase space factors, coupling constants and taking into account (19) we
get the following estimate:

1 m2
I !
. 47 47 1672 my (20)

In the next section, we will find that this estimate is reasonable. Now using a

simplest constituent model, we obtain the corresponding contribution to the
EDM of neutron at the level:

dy ~dg~e-3-107em. (21)

It turns out that it does not exceed the Standard Model prediction. The en-
hancement in comparison with SM value of dg is just two orders of magnitude
instead of m?/m? ~ 10%. It can be explained rather trivially. In contrast
with the SM result (5), the estimate (20) does not possess any logarithmic
enhancement. Another origin of this deficiency is related to a smaller value
of a, in (20) and smaller numerical factor in comparison with that of (5).

In the same manner we estimate the chromoelectric dipole moment of
s-quark:

= Y. (¥ :-'}‘12
dy ~ 1 VsV, ——
m(vh 10 Vho Vi )f—l A 1671' 7712
1. m2
L Qs Ay i,
47 47 1672 e *m2 (22)

The renormalization to hadronic scale does not seriously change this estimate.
The recalculation of the contribution of this quantity to the EDM of neutron
is a separate problem. Here we use the result of Khatsimovsky, Khriplovich
and Zhitnitsky [11] which does not exhibit any additional suppression of the
contribution to NEDM from this operator:

dy :—%JE ~e-5-1073%m. (23)

This estimate shows that the four-generation formulation of the KM model
in the most optimistic scenario about possible values of CP-odd rephasing




invariants leads to the electric dipole moment of neutron two orders of mag-
nitude bigger than its SM value. The electric dipole moment of s-quark
appears to be of the same order of magnitude as d,. However, its contribu-
tion to NEDM seems to be suppressed in comparison with that of CEDM
operator [11]. |

It is useful also to estimate values of other terms in L.;;. Both the
induced f-term and Weinberg operator turn out to be suppressed by the
ratio m?/mZ. It means also that the characteristic loop momenta could
range widely, from m; to electroweak scale. Therefore, it is quite possible
that these contributions would match also a large logarithmic factor so the
total suppression would be of order m/m2 log(m2 /mi) ~ 1/40. Thus, our
estimate for the induced value of @-term is:

Y il
l as ay mymj

D N it
847 47 ml

log(m?2 /m?) ~3.10713, (24)

This value is just three orders of magnitude smaller than the current limit on
the total #-term. Its contribution to the EDM of neutron could make sense

only after specifying a mechanism of CP-strong puzzle solution. It is clear

that the popular elimination of #-dependence due to axions makes the EDM
of neutron unfeasible for (24). There are, however, some alternative solutions
for CP-strong problem which assume the f#-relaxation at tree level only. This
solution makes the most important the #-term contribution to the EDM of
neutron. : .

The last operator of interest is the Weinberg operator. Its distinguishing
feature is the existence without hard gluon radiative corrections taken into
account [9]. However its numerical contribution to EDM in the four-family
case is unlikely to exceed 10™33e.em. The additional smallness here is related
to the strong suppression from the renormalization to hadronic scale.

5. The limit of infinitely heavy m; and m,

We now check if the estimate (22) is correct enough and prove the absence
of exact cancellation or additional suppression at three loop level.

The expression of interest is a three loop integral where quarks and SU(2)
gauge bosons with comparable masses are involved. To simplify the problem,
we impose on masses an artificial condition

m;, mﬁ 6o 35 11 e Sk s (25)
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which would allow to use an effective scale separation. This limit in general
breaks the perturbative unitarity and forces us to take into account further
electroweak loops. However, it may be used to estimate the first coefficient of
perturbative series. In our case it brings some important simplification to the

 problem of the loop calculation. The most important contributions are then

associated with longitudinal parts of W-boson’s Green functions. Indeed, if
the limit (25) is held, all characteristic loop momenta could range between
m; and heaviest masses. From that scale, according to our assumption, m,,
could be regarded as a small mass and 1/m2 in the longitudinal parts of
W-propagator makes its relative contribution to the effect to be enhanced
in comparison with that of Feynman parts. Thus, it is clear that the quan-
tity of interest, d,, will be proportional to the factor m?/m} and we omit
possible contributions of order 1/m? and 1/m?. In other words, it means
that in t'Hooft - Feynman gauge we take into account only diagrams with
charged scalar Higgses and neglect those with W-bosons. The accuracy of
the assumption (25) for real massive parameters is presumably about 1/4 if
we keep masses of heaviest quarks around 500 GeV and it is sufficient for our
purposes.

Two different possibilities of W-bosons attachment to the fermion line
are depicted in Figs. la and 1b. These skeletons should be dressed by one
hard gluon loop and external soft gluon leg. Our calculation of the CEDM is
based upon the external field technique proposed by J. Schwinger for QED
and then extended on to the QCD case by Novikov, Shifman, Vainshtein
and Zakharov (see for ex. the review [12]). It can surely be applied to this
problem because all loop momenta are much larger than the characteristic
hadronic scale. The technique deals with the operator

. j i c
(elPuly) = (=liDul) = (i + AN -y (20)

where Af(z) is the gluonic field. Then the quark propagator taken in the
background gluonic field reads as:

(vac|Tq®*(z)3" (y)lvac) = (2, ali( P —m) ™ |y,b) =

0

= (z,a|(P - m)éE = ig;/Z(GO‘) S50 |y, ), (27)

where P = Yu Pu. The field strength originates here as a result of commuta-
tion of two P’s: it g
[PF-! 'PU] o éysGiUE = igsepu- (28)
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Using this technique, it is easy to demonstrate the vanishing of CEDM
at two loops. This cancellation occurs before the last integration over a
momentum of outer W-boson loop. The part of the amplitude of interest,

~ Fig. la, comprises mass operator between two propagators antisymmetrized
in masses:

L o~

P . P
gl = (mj = m), - (29)

P —m}* P —m}

The sum over i and j is performed according the prescription (18). Here I
denotes the mass operator taken in the background gluonic field. It possesses
V - A gamma matrix structure and allows for the expansion in series of
external field operators of increasing dimension with some invariant functions
depending on P? as coefficients. The explicit antisymmetrization in masses
in (29) leads to the following expression for this amplitude:

~ ~

9 P P

[m_?_mf) 3

(P* - m2)(P" —my)

(P - NP —m})

The commutator in this expression cou]d be calculated for all operators en-
tering to I'. It could be shown that the result of commutation starts from
operators with several powers of field strengths or field derivatives. There-
fore, the two-loop amplitudes cannot induce CEDM (see Ref.[9] for details).
Clearly, at three loop accuracy this commutator must be a source of hard
gluon field which compensates some extra dimensions. Another point of hard
gluon attachment is not fixed and all other fermion lines should be expanded
up to the first order in its field. The similar procedure could be performed
over diagrams of the second type.

It is clear that the result of integration may contain some power of
log(mZ/m?) or lng(mg,/m?). Naively we can regard this logarithm as a big
parameter and calculate all diagrams in the ”Leading Logarithm Approxima-
ti-:}n To this approximation we believe that log(m} /m?) < % lug?{mh/mt)

< 3 log *(m3/m?). It is not true for real values of our masses However
to obtain an order of magnitude, we put all % log" equal to 1 in the fi-
nal answer. The reason for assuming this art1ﬁc:al condition is to simplify
the set of multi-loop calculation reducing it to the consequence of factorized
integrations. _

It turns out that the logarithmic accuracy allows to find all relevant opera-
tors in I' expansion and single out leading diagrams for the rest of amplitude.
We start from the smallest distances determining the internal mass operator

12

£, (P)?] . 5 o(30)

s

Feg, Ty b

' for diagrams in Fig. la and one of mass operators in Fig. 1b. These
distances are associated with the propagation of g and h quarks respectively.
The V - A gamma-matrix structure together with gauge invariance give three
possible operators:

- 1

B m2 (CDP + ClTuQaD G;w =+ GEQJT;:{PM Gaﬁ}fﬁvaﬁ)

L5
2

= (OD + O + C}z), (31)

The choice of these operators is not unique. We could use another basis;

{}3, P2}, for example instead of J-:‘S, etc. However, the expansion (31) ap-
pears to be the most convenient. The first term in this series, O operator,
identically vanishes being substituted into (30). For the second type of dia-
gram this operator gives m? being applied to the s-quark wave function and
therefore can be omitted as well. Two other operators in this series enter
here with numerical coefficients ¢; and e¢p whith no momentum or mass de-
pendencies. They could be calculated from the expansion of mass operator
in P at P? € m?.

-~ 2 8 — 1. z 1 o 1 &l 1—
2m2 J (27)%¢2° 2 §—-m §-m G-m §-m~ 2
| (32)
We used here the W-boson’s Green function in the unitary gauge:
i z'g;-“"' B q.ﬂ QIFE/?TLEU ~ i q#qﬂ (33)

2 TR
gc —ms ms, q

It is easy to see that the logarithmic divergence of (32), converting to
log(m?/p?) after applying GIM mechanism, is associated with the Og op-
erator only. The straightforward calculation leads to the following result:

c1 7o A | Co )
e — —— T s s 34
m2 4m 12’ m2, 47 48’ Sl

We are left with two-loop expressions which could give a square of loga-
rithm in the final answer. This means that the integration over a momentum

13




flowing at the t quark line should be performed in last turn as we integrate

from small distances to large ones. The corresponding diagrams and top -

quark propagation are shown in Figs. 2a and 2b. The blob represents op-
erator I'; dashed line here is the hard gluon propagator. It is clear that to
logarithmic accuracy, the result of hard gluon loop integration may be pre-

sented as an effective vertex of W-boson with a fermion line changing the
flavour from t to s.

ng.l.‘Z a

The position of external gluon field is not indicated in Figs. 2 and all

propagators should be taken in the background gluonic field. At first look,
the perturbative expansion breaks the main advantage of the calculation in

the external field - we have to fix explicitly the gauge of SU(3) field. This
problgm could be resolved by dividing the four-potential Aj, into two parts:

Ay = (A7) ext + Gy (35)

where (A} )ez1 is the vacuum field while a2 denotes the hard gluon field. It
is a matter of convenience to choose an additional term fixing the gauge of
ay 1n the following form (so called background gauge):

1 o :
=2 E(Df‘r!ﬂ#)z, '. (36)
* where Diaf = 0uaf + g, f**°(AY)erial. It is easy to see that the gauge

invariance for (Aﬁ}mi field is still preserved. The hard gluon propagator in
the external field in this gauge takes the form [12]:

] 1exp {iq:t:}dqlf(Tﬂ; (z)ay(y)) =

Juv . P e 2 g pae ] . .
= (95 =g " A ) o+ VG, + Dexpligs),  (3)

where we have omitted the subscript ”ext”. This form of propagator is very
useful for our problem and it allows us to calculate CEDM covariantly without
fixing the gauge of external field.

14

To reduce the number of diagrams the limit of large N, 1s used. In that
limit combinations t*¢%¢%; ifete¢?4° ~ £¢® are much larger than o =
zi7t’. It means in particular that the external chromoelectric field can not
be attached to the fermion line inside hard gluon loop as it shown at Fig.3.
The accuracy of this approximation is presumably ﬁ = 1/9 and it is within

the errors connected with previous assumptions.

— & T N
Fig_.?)

Let us first evaluate the contribution to this vertex from the operator
Oy ~ 7,D,G,, which is a usual ”penguin”. By virtue of the equation of
motion

D, Gy, = —9sq7s1%g (38)

and Fiertz transformation this operator generates a close fermion loop as it
is shown in Fig. 4. The use of this equation is valid if the characteristic
momenta inside this loop could be regarded smaller than my(m,) which is
satisfied to logarithmic accuracy. Both topologies of W-boson attachment
generates a nonvanishing contribution to CEDM of s-quark. It turns out,
however, that to logarithmic accuracy there is a cancellation between these
two types of diagrams and therefore penguins operators cannot contribute to
the effect at the level of log”(m3 /m?). It is possible to demonstrate that there
is a nonvanishing contribution from these operators beyond this logarithmic
approximation with a dependence of mi/m; parameter. It requires tideous
true multi-loop calculations which is beyond the scope of our purpose.

Fig. 4 o

A similar cancellation between two topologies occurs when we substitute
(), operator and look for the effective vertex of W-boson with fermion. This
operator, however, generates additional diagrams which should be taken into
account as well. The first one represents a two loop mass operator inside
W-boson loop (Fig. 5a); the second is the flavour changing mass operator

15




inside gluonic loop (Fig. 5b). The crosses here indicate the chirality flips on
the fermion line. |

—lf::;;l_ et o

- ¥ j o
Fig. 5 Q T b

The calculation of inner mass operator depicted in Fig. 5a in use of
operator O3 is simple. To logarithmic accuracy, it is given by

2

ca aN, m
-~ my log(—1)g,(Go)

e
my 4w

1—'}'5
2 1

where p is the momentum flowing at the fermion line. It ranges between
m; and the lightest mass of fourth generation quarks. The summation over
flavours annihilates all other structures without the chirality flip. The only
structure which does not vanish is the operator (39). Let us assume for the
moment that mj < m?2. Then this sum takes the form:

(39)

3 m? m2 m?
[(Go), p i — log(—Z) — g 1 A
(G081 mm —mp) o8 T
2 2 o
?nh my " i mh
B —mD (= m2) Oz )) ~[(Go), pllog(—3),  (40)

where we have neglected a further noncommutativity of momenta resulting
from operators of dimension higher than that of CEDM. It is very natural
that the logarithm is cut off at the lightest mass between m,, and my. The

last integration is also trivial and gives the CEDM operator of s-quark with
a coefficient

Gra,N. 1 comom? 1 m3 (m?

7 T : T 1052('#)- (41)
V2 4m 1672 m2 2! m;
The last graph given by Fig. 5b contains flavour changing mass operator.

Its value at the incoming momenta k, which is much larger than m,, before
the renormalization is given simply by:

— Im(Vi5 Vio Vi Vs )

M(E) = B (8)(1 — y5) = S22 M pog( 2y L2 (42)

where A is the cut-off. The on-mass-shell renormalization prescription with
respect to different masses to the left and to the right from the mass operator
could be found in Refs. [3, 9]. In our case this prescription looks trivial be-
cause both these masses are negligibly small in comparison with electroweak
scale: |

awgmﬁ"'

& 2 : k2 1-— s
M, (k) = k(f(*) = f(k? = 0))(1 = 75) = =7 o-klog([5) —5— (13)

47 4 m2

The remaining integration over k ranging between m, and mp(my) is equiv-
alent to that performed several steps eatlier, in (39). The corresponding
contribution to CEDM of s-quark differs from (41) by the factor -3. Com-
bining these two numbers together and taking into account the value of the
coefficient c», we obtain the final answer for the CEDM of s-quark for very
heavy fourth generation, to double logarithmic accuracy and in the limit of

large N,:

G agty BN, m? 1 . E(mﬁ(mg))
ﬁm‘s (47)* 12 mg, 2! & m? 7

do = —Im(V5 Vio Vi Vis) (44)

mj (m3)

Substitution of N, = 3 and % log®(™%7%) ~ 1 to this formula yields the
estimation of CEDM close to (22).

6. Conclusions

We have demonstrated a new interesting feature of the model with four
generations of quarks incorporated into the same KM mechanism. The en-
hancement of neutron EDM in comparison with SM prediction comes from
small distance effects which provide a regular factor of order m?2/m?2. The re-
sulting value of EDM in this model, however, is just two orders of magnitude
larger than corresponding SM value. The reason for that is in the numeri-
cal importance of large distance contribution in SM which is two orders of
magnitude bigger than that coming from EDMs or CEDMs of quarks.

The estimation of relevant operators in the effective Lagrangian performed
in this work allows one to consider the influence of the fourth gemeration
on other low-energy CP-violating observables such as T-odd form-factors of
heavy nuclei. This problem deserves special consideration.
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