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Abstract

Collisionless damping of an one-dimensional packet of Langmuir
waves that is localized in the direction of its propagation is described by
using quasilinear equations. A peculiar minimum principle is proposed
for reducing this quasilinear problem to a simple graphic analysis of
the initial spectrum of the packet.
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1 Introduction

There are many examples when the quasilinear approach appears as very
useful to determine the turbulent transport of particles in chaotic electro-
magnetic fields (see, e.i. [1, 2]). But quite often the complexity of problems
studied does not enable one to advance further than the qualitative estima-
tions. In this paper we consider a problem of another kind. Making certain
simplifying assumptions, we can find the accurate solution of one quasilinear
problem.

It is well-known that in the spatially homogeneous case, the result of inter-
action of one-dimensional Langmuir waves with resonant electrons depends
on the level of spectral energy density of the oscillations [3]. If the spectral
energy density is small, then the waves are damped exponentially and the
distribution function of the resonant particles remains undistorted. (It is ob-
vious that this result is also valid for the wave packets which are localized in
space). But if the energy density is large, then the amplitude of oscillations
vary only slightly and the formation of a plateau in the distribution function
takes place. The spatial boundedness of the packet changes essentially this

- result.

The damping of the localized Langmuir wave packet has been studied for
the particular case of the parabolic distribution of the spectral energy density
[4]. It has been shown that the interaction of resonant particles with Lang-
muir oscillations results in decreasing the packet length at a constant rate.
The purpose of this paper is to find the time evolution of quasilinear packets




with generally shaped spectrum. We shall show that the character of damp-
ing of such packets differs essentially from the case of parabolic spectrum. As
in paper [4], we assume that the spectral energy density of Langmuir waves
W varies in space only in one direction, which coincides with the sense of the
electrical field of oscillations. The distribution function of resonant particles
- f is supposed not to depend on spatial coordinates aft the initial instant.

The contents of this paper are as follows. Sec. 2 contains a set of basic
quasilinear equations and formulation of the problem. The damping of the
packets with the paraboliclike spectra is investigated in Sec. 3, the damping
of the packets with generally shaped spectra is studied in Sec. 4 and finally
all the results are briefly discussed in Sec. 5.

2 Basic equations

Within the quasilinear approximation the influence of the oscillations on
the resonant electrons causes their diffusion in the velocity space [3, 6]:
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here the quasilinear diffusion coefficient D is proportional to the spectral
energy density
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' e, m — electron charge and mass respectively. In could plasma the group
velocity can be neglected and evolution of a Langmuir wave packet in time
reduces to its Landau damping

. (2)

where w, — electron plasma frequency , n — plasma concentration. For our
purpose, there is no need to distinguish between a spectral energy density
and a quasilinear diffusion coefficient; only the latter one will be used in
following. In the one-dimensional case there is one-to-one correspondence
between the wave vector of oscillations k and the velocity of the resonant
particles v = wp/k and the latter we shall further use as the independent
variable. .

In order to easily visualize the main features of the damping processes of
the packet we assume that the oscillations are generated homogeneously In

the half-space > 0 so that the initial coefficient of diffusion is

D, Dles = 1@D@), 1) ={ o T4 (9

Here the function Dg(v) is considered not to vanish in a narrow interval Avg of

phase velocities near some value vo. It is also supposed that the unperturbed

distribution function of resonant particles fo(v) can be approximated by the
linear function in this range of velocities:

- : dfo

fo(v) = fo(vo) + fo(vo)(v = v0),  fo(wo) = —=

o (4)
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It will be recall that there are two time scales in quasilinear problem. The
first scale is the characteristic time of diffusion of particles in velocity space
r Avd
dif =
'™ (Do)

({Dy) is average value of the function Dg(v)). The second scale 1s the char-

acteristic time of the damping of oscillations
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We suppose that the level of oscillations is so high that the diffusion time 1s
much less than the damping time:

TR

Under initial condition (3) it is evident that the distribution function f
remains always unperturbed in half-space # < 0 while this function has a
?plateau” f = fo(ve) on velocity interval (vo — Avg, vo + Awg) at sufficiently
large positive #. The half-space x < 0 is a peculiar kind of reservoir of the
unperturbed resonant particles. There is a steady flow of "fresh” particles
from here into the region occupied by oscillations. These particles take up
energy from the oscillations that causes the erosion of the packet and, roughly
speaking, the motion of the leading front as a whole with a velocity vg, ~
(Tﬂﬁj)”u-

Since the diffusion time is small, the time derivative of the distribution
function can be neglected in equation (1):
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Taking into account this fact and smallness of Avg, and using the dimension-

less variables :
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we can rewrite the quasilinear equations (1), (2) in the form
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For convenience, we have marked here the flow of the particles in velocity
space j. The function g must be subject to the boundary condition

gle=0 = —u. (8)

while the function D must satisfv the initial condition

D|r=0 = n(¢()Do(u), (9)

The initial function Dg(u) is considered not to vanish only on the interval
(-1,1). In the following, we intend to determine the asymptotic form of the
solution of the simplified quasilinear problem (6) — (9) in large T for any
initial spectral curve Dy(u).

3 Damping of a packet with paraboliclike spec-
tra

To illustrate the characteristic features of the damping processes of the
packet with generally shaped spectrum we consider several simple examples.
Let us clear up first the shape of initial spectral curve that results in the
erosion of the packet occurring by the dissipation wave. While examining
this case it is convenient to use the equation:

dg 0 0D :

which is the consequence of the equations (6), (7) In the wave travelling with
velocity V. '
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and as is seen from (10) there is a direct relationship between distribution
function and quasilinear diffusion coefficient

g= i 6‘(’133;131}} (11)

After substitution of (11) into the expression for flow of particles we obtain
from (7) the equation for the diffusion coefficient in the dissipation wave:
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Taking mto account that at the left of the packet
gl¢=0 = =u, Dl¢=0 =0,

one can find from (11) the shape of the initial spectral curve that results in
the leading front of the packet being dissipation wave:

1 § .
e (13)

'Dﬂ(u.) =
Velocity of the wave, determining by the normalization condition (Dg(u)) =
1, is equal to numerical constant: Vi = 2/3. Analysis of the equation (12)
shows that the diffusion coefficient D proves to be everywhere the parabolic
function of variable u at the initial spectral distribution (13):
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It is clear that going into regime (14) takes place at sufficiently large 7.

It should be noted for following that there is not only the motion of the
leading front as a whole but also its uninterrupted deformation in all cases
when initial spectral curve differs from parabola. The simplest example of
this kind pertains to the deformation of the leading front, which indicated in
Fig. 1. In this example we suppose that the waves in the packet with phase
velocities v & v. (u =~ 0) damp most slowly and the function Dy(u) has even
symmetry and vanishes at points u = 1. At large time the width of the
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Figure 1. The damping of packet with the simplest deformation of leading
front.

front becomes large and all quantities vary smoothly in space. As is seen from
equation (12), diffusion processes lead to the levelling of distribution function

of particles on some velocity interval, where the intensity of oscillations does
not vanish [5]: : '

gluE(—ﬁg’:] ~ Ua Dlue(-—ﬁ,ﬁ] :'/: D:

here & = u((, ) is the right boundary of interval in question. Outside of
this interval the intensity of oscillations is small and attenuated diffusion
processes have no influence on the distribution function:

Glug(~5,3) = —t, Dlug(-a,a)~0

When ¢ increases by 8¢ the interval boundary % increases by du and new
portion of particles is involved in the diffusion. It 1s an easy matter to see
that there initiates the particle flow from the left end of the interval (—, %)
to the right that does not depend on the velocity u at given (:

: T T
j #y(—ujgg = ”E? (15)
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Integrating the equation (7) with the particle flow (15) and taking into ac-
count boundary condition
Dlu:ﬁ: = 0,

we obtain the expression for the diffusion coefficient on the interval (-, u):
D= 'Du{‘tl-) = 'D;](ﬁ} (16)
Thereafter the equation (7) reduces to the equation for interval boundary:

dDo() 0d _Oi

AR (17)

From the last equation it follows that the boundary point # moves in space
with constant velocity, so that at 7 >> 1

] 2\ !
Cm Vi, V(i) =- (.1_‘”3“( )) (18)

i du

It has been supposed above that the leading front is extended with time and
movement velocity V(0) of closing point & = 0 is minimal. Actually this is
true only when

dV(@) ., d (1dDo(@)
— = V() ( ) >0 (19)

w di
for all 0 < @ < 1. In particular, any initial function’ Do(%) that has the neg-
ative second-order derivative decreasing monotonically from the boundaries
of the interval (-1,+1) to its center satisfies the condition (19).

Let us consider now the example of such deformation that is shown in
Fig.2. In contrast to previous case we supposed that oscillations with phase
velocity v &~ vg (u ~ 0) damp most rapidly. By this 1s meant that there
is peculiar ”dividing” point on the leading front after which the packet is
divided into two arms. At large time 7 the length of arms formed is large
(A(sr ~ 7) and the intensity of oscillations does not vanish now within two
velocity intervals:

(-1,-@), (@+1). (20)
The distribution function has the ”plateau” of its own in each arms:
14+ w4 1
dlactirays 1 glue@ 1) & — 5

and outside of intervals (20) it remains unperturbed. The intervals (20) are
closed at ¢ = Cx ((+ is coordinate of the dividing point) and, as shown in

9




Figure 2. The damping of packet with division of leading front into two arms.

Fig.3, there arises a step in distribution function in center of velocity interval
(=1,+1). The diffusion coeflicient vanishes never within this velocity region
at ( > (. and, as may be seen from diffusion equation (6), the blurring of the
step and the formation of the plateau in the distribution function on whole
interval (—1,+1) occur on small space scale A(, ~ 1 < A(f,. This process
is accompanied by essential dissipation of oscillation energy.

Thus, there is the dissipation wave travelling ahead dividing point with
velocity V.. In this wave the distribution function and diffusion coeflicient
are connected by relation (11). Denoting D, = D((.,u,7) and integrating
equation (11) over u at ( = (. with boundary conditions

.D*|'u:—1 = {]3 ’D* |'1L:ﬂ = U, 1}*1U:+1 = 01

we obtain

Vi = 1/2D(0), (21)

D. = Dy(u) — (1 — |u|)Do(0). (22)

It is remarkable that we have found change of diffusion coeflicient caused by
dissipation wave not solving the equation (12) that governs D on small scales.

10

Figure 3. The distribution function at different points of the leading front:

a)at G=Ci,blat (=0 > L1,¢c) at § = (> Qo

We encounter with a similar situation when we deal with propagation of usual
shock waves in which a change of parameters of medium is not connected with
their microscopic structure.

Knowing the spectrum of oscillations at the point { = (., one can de-
termine the diffusion coeflicient in region { < (. where all functions vary
smoothly in space. Clearly the damping of arms occurs independently of one
another so that we can restrict our consideration to the right arm. Now the
particle flow from the left end of interval (%, 1) to the right depends linearly
on the velocity wu: :

dg 1 du
= —-D—= —=(1 —u)—. 23
]
and integration the equation (7) with boundary conditions
DIN:& = 05 .D|u=l e U,

enables to determine the expression for the diffusion coefficient on velocity
interval (i, 1):

1-u- g

—Do(i), (24)

D = D.(u) —




The equation for interval boundary is

d Dﬂ(ﬁ))ﬁ'ﬁ_lﬁ_ﬁ 5)
S da\l—-u/or 20

Consequently the boundary point & moves in space with constant velocity

and at 73> 1 .
(xV(w)r, V(a)= [2;5 (I;‘?T(?)]_I- | (26)

As one might expect, V(0) = Vi. The proposed pattern is true only when

V(@) _ op2g) 5 (D"(ﬁ)) <0 (27)

dit die \ 1 —1u

for all 0 < @ < 1. In particular, any initial function Do(#) that has the neg-
ative second-order derivative increasing monotonically from the boundaries
of the interval (-1,+1) to its center satisfies the condition (27). In this case
the dissipation wave reduces the density of oscillation energy by 50 percent
or muore.

4 Damping of a packet with generally shaped
spectrum

Summarizing the results obtained above, we can state that in the gen-
eral case the leading edge of the packet consists of the set of dividing points,
smooth arms and closing points (see Fig. 3). Dividing points and associated
dissipation waves move with constant and, generally speaking, different ve-
locities. A similar statement is true for closing points, while the smooth arms
extend more and more with the passage of time.

Now at given values ¢ and 7, the intensity of oscillations does not vanish
within several intervals of velocity u: (i;, @), ¢ =1,...J. At T > 1 the bound-
aries of the intervals vary smoothly in space, so that distribution function has
plateau of its own in each arm:

Ilueq@ian ® ——5 i=1,..1.

Broadening of the boundaries of ¢-th interval with increasing spatial coordi-
nate leads to initiation of particle flow from the left end of this interval to

12

Figure 4. The damping of packet with generally shaped spectrum.

the right

1 7
4 S ) 5 (28)
From (7), (28) it follows that the time variation of diffusion coefficient 1s
linear function of velocity u while ¢ lies within 7-th arm. It is not difficult to
find also variation of this coefficient caused by the passage of the dissipation
wave at some preceding instant of time. For this purpose let us note that
distribution function and diffusion coefficient before and after the passage of

the dissipation wave are connected by relationship analogous with (11):

' 1 -
i= - o

a(pH — p)

Ou &
Within the interval %;(¢,7) < u < @;((,7), the left side of the relation-
ship (29) does not depend on velocity u, so that diffusion coefficient changes
abruptly by some linear function u after passage of dissipation wave. This

enables to state that spectrum in given arm differs from the initial by some
linear function of velocity. ‘Taking into account the boundary conditions

Dlg=y =0 Dhisay=0;

2 giﬂ — g&dj =

(29)
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we obtain:

i L
D = Do(u) — ———=Do(i) - = Do(i;). (30)

In view of (28), (30) equation (7) reduces to two equations for smoothly
varying boundaries ;, ;:

O . ., Oil; e 0 Dn(ﬁi)—ﬁﬂ(ﬁf))]ﬂl 31
F*FVEE-—G, Viui, u;) = — [23‘1"15( i, — i b (31)

il ,0ul ) e | d Pa(ﬁi)—DU(ﬁg))]_I 32

Ui — ﬂ;
To make any further progress we shall assume the damping of the packet
to have self-similar character at 7 > 1. Under this assumption, mobile
boundaries of arm have the same velocity at given space point { and given
moment of time 7, so that the differential equations (31), (32) reduce to the
functional ones: ¢
Vi, @) = V(i @) = = (33)

T

If one of boundaries (i.g., the right) is immobile then functional connection
between u;, u} is modified:
V(a;,u; s t (34)
W s — 5 = ol :

The solution of the equations (33), (34) is multiple-valued function & = @(V')
(V = (/7). Our main interest is the inverse function V' = V() determining
displacement velocity of each boundary point in space. It is single-valued and
its extremum points coincides with branch points of function #(V'). Further-
more the function V() has no discontinuities for smooth initial spectra.!
This means, in particular, that immobile boundary of some arm coincides
always with the boundary of initial interval and hence in the equation (34)
we must put

u; = +1. _ (35) -

The boundaries of the same arm are closed at the minimum points of
the function V(&#). These points correspond to the closing points of the
leading front of the packet. Further, the boundaries of the different arms
arise and then come apart at the maximum points of this function. These

1The function D = Dg(u) is assumed to have bounded continuous second-order deriva-
tive on the interval (-1,+1).
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points correspond to the dividing points. Thus, one can extract all essential
information about leading front from equations (33), (34), although they are
appropriate only for describing the smooth arms.

A set of equations (33), (34) has simple graphic solution. Let us draw a

parabola on u-D plane that is tangent to spectral curve D = Do(u) at point
(@, Do()): '

Po(u, @) = —a(u — @) + B(u — @) + Do(), = diﬂéﬁ) , (36)

and let coefficient of square term be inversely proportional to displacement

velocity of point u: a = 1/2V, V = (/7. One can check that this parabola
is tangent to the spectral curve at the second point (a', Dy(@')):

Pﬂ(u!. ﬁ‘) = P&(ui ,&f)!

if and only if the velocities u, @’ satisfy the equations (33). Equations (34)
with refinement (35) mean that the parabola P,(u, @) can pass through points
(=1,0), (+1,0) of u-D plane making an angle with spectral curve.

To determine displacement velocity V' of any boundary point @ of the
leading front one can use peculiar minimum principle. Let us consider a set
of parabolas { P,(u, 1)}, that lie under spectral curve

Py(u,u) < Do(u) (37)

on whole interval —1 < u < +1. Parabolas with great values of coefficient
a are very similar to vertical line segment lying under spectral curve. It
is apparent that they belong to the set {P,(w,a)}; while parabolas with
small values of coefficient a are very similar to straight line that is tangent
to spectral curve at point (u, Dg(u)) and do not belong to the set. Hence
there is parabola belonging to this set - let us denote it by P(u, ) - that
has minimum value of coefficient & = a4 (). Displacement velocity V as
funetion of boundary point @ is determined by formula:

V(@) = 1/20min(d). - (38)

The parabola P(u, @) is tangent to the spectral curve Dy(u) at all common
points except at the boundary ones where these curves can make an angle
with each other. The classification of arising situations by amount of com-
mon points is given below:

1. When the curves P(u, i) and Dy(u) have only one common point (@, Do(#)),

15




they are tangent to each other and have the same curvature at the common
point.2 The point @ is a closing point and its displacement velocity is

V(@) = —[d*Do(@)/da?]".

The parabola 1 in Fig. 5 is tangent to spectral curve at the point that has a
minimal displacement velocity.

—t

1 1040

Figure 5. Application of the minimum principle to analysis of damping of
the packet shown in Fig.4. The parabolas 1, 2, 3 correspond respectively to
situations 1, 2, 3 of presented classification. i

9. When the parabola P(u, @) is tangent to spectral curve at the second point
(@', D(1')), both the points u, @' are boundary points of the same arm and
have the equal displacement velocities (this case 1s illustrated in Fig.5 by the
~ parabola 2). The displacement velocities of all points lying within interval
(i, @) do not exceed V (@), that guarantees a self-consistency of the solution
presented. If @' = —1 or @ = +1 then the parabola and the spectral curve
can make an angle with each other.

2This point coincides with a local minimum point of the second-order derivative of the
function P = Dp().
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3. When the parabola P(u, ) is tangent to spectral curve at three points
(@, D(@)), (v',D(x)) and (uw”,P(u")), all these points have the same dis-
placement velocity. The middle point is a dividing point. The parabola 3 in
Fig.5 corresponds to the case that v’ = —1, 4" = +1.

4. In the special case that parabola P(u, %) coincides with spectral curve on
some interval, all points of this interval have the same displacement velocity.
In particular, coincidence of the parabola with spectral curve on all interval
(-1,4+1) means that all points of the leading front have the same displacement
velocity and erosion of the packet is carried out by dissipation wave discussed
in section 3.

As the last example, let us consider the packet with initial diffusion coef-
ficient having N segments, on which the second-order derivative of function
Do(i) is strictly monotonic. In this case a number of arms, which the leading
front divides into, is not more than (N+1)/2. And the velocity of the slowest
point is equal :
min V(%) = min [—d?Dy(@) /du®] !

The graphic approach enables also to determine the damping of packet in
case, when function Do(#) is unsmooth. For this, it will suffice to note that

~ one can consider such a function as a limit of some set of smooth functions,

each being studied by using the minimum principle.

5 Conclusion

As a result of interaction of particles and waves, there arises a motion of
the leading front of the packet as a whole that is accompanied by the linear
front extension. By applying the mininmum principle, we can describe all
structure features of the leading packet front in detail: motion and position
of dividing and closing points, deformation and form of arms. Our analysis
has been based on the assumption that the damping of the packet has a self-
similar character. Computer simulation of quasilinear equations (6), (7) with
conditions (8), (9) confirms a self-similarity of diffusion processes after time
t >+v~! and numerical results are in good agreement with the analytical
consideration.

Let us discuss conditions of applicability of results obtained and possibility
of generalization of theirs.

When temperature of plasma not being equal to zero, we should take into
account the group velocity of Langmuir waves in the equation (2) [7]. In this
case, it is obvious that the velocity of motion of the leading front as a whole
increases by average group velocity of waves in packet. And deformation
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of the front does not undergo essential changes if dispersion of the group
velocities is negligible:

i.‘l’ta‘_,; ~ Vg4 (ﬁ’ﬂg/t’[}} ot (TTd” )‘L‘g‘

We have dropped the derivative 8f /9t in the equation (1). One can take
into account this term and get the expression for the displacement velocity
of boundary points little differing from (38).

We have investigated time evolution of one-dimensional Langmuir wave
packets with the leading front in the shape of step (3) at the initial instant.
At smooth variation of initial diffusion coefficient on space scale ~ ALy,
entering into self-similar regime described above takes place after time

t > max{y~!, ALo/[(y7ais)v0)]}, (39)

except when the initial spectral curve coincides with parabola. In this case the
velocities of the points of the leading front differ little from one another after
time (39). In consequence of anomalously slow deformation of the leading
front, entering into self-similar regime (14) occurs after time

In (y¢) > max {1, ALy/[rai)vo]}-

As for the back front of quasilinear packet, it remains motionless (at
plasma temperature 7" = 0).
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