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Abstract

It is shown that in plasmas with a supersonic ion beam there ex-
ist nonlinear waves, multisolitons, which are localized in the direc-
tion of the sell propagation and are comprised of a finite set of equal
plane solitons. Multisoliton stability is studied in the framework of the
Korteveg-de Vries equation. Analysis is based on the description of the
adiabatic interaction between solitens and ion beam.
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1 Introduction

[on-acoustic solitons in plasmas are objects that behave themselves, in many
aspects, not as waves but rather as particles. Their dynamics is a matter of
many studies (see, e.g., the survey [1] and cited literature). It is well-known
[2] that a soliton interaction with resonant ions could lead to a coalescence of
the solitons in a nonlinear structure referred to as a collisionless shock wave.
With a neglect of a dissipation due to particle collisions, such a wave presents
an infinite set of equal solitons located behind the shock front. The existence
of this front is provided by a collisionless dissipation resulting in a partial
transfer of energy to the resonant ions.

In the present paper the interaction between a finite set of solitons, cited
below as multisoliton, and an ion beam is studied. Analysis is carried out for
the case when the soliton velocifies are close to the average beam velocity.
The latter causes the resonant “multisoliton-ion beam” interaction. It is also
presumed that the ion beam is sufficiently weak, so that to be unable to
modify essentially the dispersion of an individual soliton.

The further discussion is scheduled as follows. In the next Section the ion-
acoustic multisoliton is introduced and its basic characteristics are computed.
Section 3 contains analysis of the adiabatic interaction between two KdV
solitons with close amplitudes. In Section 4 the problem of multisoliton
stability is treated. Multisoliton dynamics is shown to be similar to that of
an oscillatory system with several degrees of freedom. Section 5 is devoted
to final conclusions.




2 Ion-acoustic multisoliton

Multisoliton is a localized nonlinear wave composed of a finite set of coupled
plane solitons with equal amplitudes (see Fig.1a). In plasma with an ion
beam, the multisoliton propagates with a phase velocity equal to the average
beam velocity. For more clarity of presentation, standard arguments of the
jon-acoustic soliton theory are restored below,
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Figure 1: Multisoliton composed of four solitons. (a) - Spatial distribution
of the potential; (b) - Phase trajeclories of the resonant beam paricles in the
frame of reference associaled with the multisoliton. Particles reflect from the
leading and the back muliisoliton fronts.

Consider that ;ﬁla.sma is neutral outside the multisoliton, so that the elec-
tron density n., is equal to the combined densities of the bulk plasma ions n;
and of the beam ions npo. The electron density is governed by the Boltzmann

equation: . : : R
| n. = negexpled/Te), (1)

here ¢ is the electrostatic potential; e, T, are the ion charge (e>0,7; =1)
and the electron temperature, respectively. Cold ions of the bulk plasma are
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described by the hydrodynamic equations:
dv v e ¢

ot or T oo 2)
On; Onjv
AT T v (3)

where m;, v, n; are the ion mass, the velocity and the density. For the wave
propagating with the phase velocity ug, the relationship between n; and ¢ 1s
given by
n; = el . (4]
\/1 — 2ed/m;ul
To determine the density of the beam ions, consider the reference frame
associated with the wave. Away from the multisoliton, the distribution func-
tion of the beam ions fg(v) is assumed to be symmetrical with respect to the
average beam velocity. Suppose that the average beam velocity is equal to
g and that the following relations are obeyed:

Ty
m;v°

< €Pmazx . (5)

Eﬁbmax il

Here ©# = v — ug is a deviation from the average velocity and ¢4, 1s the am-
plitude of the solitons, which compose the multisoliton. Inequality (5) states
that all beam particles are reflected from the leading and the back multisol-
ton fronts (see Fig.1b), so that there are no beam ions in the “internal” region
of the multisoliton. Besides, as it follows from (5), the velocity spread in the
beam is taken to be not too small. The above-listed assumptions allow one to
consider zero potential outside the multisoliton, to circumvent the treatment
of passing beam particles, and to simplify the multisoliton dynamic analysis.

The potential ¢ is time independent in the chosen reference frame, and
the stationary distribution function f can be found from the consideration
of its constancy on the particle phase trajectories:

f.z fﬂ(un & VIE_E-I' 2e¢‘:/m,} :

Hence, the density of the beam ions is expressed as

- 0
ny =2 f fo(uo — /72 + 2ed/m; )di , B = \/26($max — ¢)/mi . (6)




The potential ¢ is evaluated from the Poisson equation:

2 g
850 —4me [ i

e
dz? V11— 2ed/m;ul kil (E) e n.;,] : (7)

Multiplying (7) by ¢’ = d¢/dz and integrating it from x to infinity, one
comes to the equation:

(s ]

12
%; L W) =e f m'ds, (8)

I

W($) = niom;u’ (1 i \/1 . ?eqﬁ/.n.’f,,-ug) AT (exp Gf’) 2 1) )

In plasma without resonant beam particles, solitary waves, described by (8),
present conventional ion-acoustic solitons with supersonic phase velocities,
¢s < up < 1.6¢,, where ¢, = +/T./m; is a sound velocity. The presence of the
ion beam leads to the qualitative changes. The matter is that the resonant
particles, being reflected from the multisoliton leading front, increase their
velocity in the laboratory frame of reference. The corresponding energy,
which is taken off per unit time, can be evaluated as

0

g / dv'v' fo(uo — v')m;[(uo + v')? — (g — v')*]/2 . (10)

On the contrary, while reflecting from the back front of the multisoliton,

the resonant particles give up the same energy ¢. The multisoliton presents a

series of solitons that transmits the energy from the fast particles, which catch

it up, to the slower particles, which multisoliton catches up with. Formally,

this fact follows from (8) having regard that the integral I in the right slde
of (8) is a constant proportional to g,

ﬁbmum
I=- ] déns= -2 (11)
Ellp :
0

in the region between the t-:-.ps of the first and the last solitons where n, = 0.

Equation (8) amounts to the implicit form of the energy balance equation. Its
elementary integration shows that the potential is a periodic spatial function
between the regions of the beam reflection. The maximum and the minimum
potential values are to be found from the same equation

W(¢) = —q/uo , (12)
6

while the spatial period is given by

¢m'l}¢

A= g9 : (13)

JJ BRW = g/uo)

The total number of the potential oscillations is arbitrary being defined by
initial conditions. |
For an ion beam with a low density,

nb[]/”e[] < {uu;’c3 S5 1)2 St : (14)

that is actually treated in this paper, the value ¢,, 4. is close to the amplitude’
¢(9) of the ion-acoustic soliton propagating with the phase velocity ug in
plasma without the ion beam:

ey E¢{G} St {Hﬂ/ﬂs - I)Te :

The value ¢y is equal to

‘;‘J’mt’ﬂ ZN 2 q ¢mar 1
( 77 )  1—c2/ud (ﬂengHg)ﬁ( T ) : (15)

and the spatial period is evaluated as

Pmax

Ay [ag2 : (16)
8| W]

Pmin[2
In the latter formula one can neglect the difference between n;g and n. in
the expression for W (see (9)). It is remarkable that for the fixed phase
velocity up, all basic multisoliton parameters are determined by the intensity
of the energy exchange ¢ and are independent on the beam density. In the
same way, contrary to the common considerations [3, 4], the parameters of
a collisionless ion-acoustic shock wave are mainly governed by the intensity
of a collisionless dissipation at the shock front and slightly depend on the

density of the resonant ions.

3 Adiabatic interaction of two solitons

Before treating the multisoliton stability problem, let us clarify certain prop-
erties of the “soliton-soliton” interactions. For the computational simplicity,
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we restrict ourselves to the long wave limit, assuming soliton amplitudes to
be small, e¢ < T.. In this case equations (1-3), (7) reduce to the Korteveg-de
Vries equation [5]: -

oy  0p [ 10%

+¢€+26£3:0, (17)

where the following dimensionless variables are introduced:

2
Ly S {.uz 533 dre nin
e 1 e 5
P> pi m;

Tub = €¢/Te: & =Wpi($/cs ""t)a

Consider a collision between two solitons with close amplitudes. At the
initial moment the solitons are supposed to be widely spaced. All information
about further evalution of such a system can be surely gained from the exact
solution of the KdV equation. It is more convenient for our purposes, how-
ever, to invoke the direct description of the interaction between the solitons,
based on the proximity of their amplitudes.

Let €; be a normalized soliton velocity defined as

'f,:EH;'/CH—}..

Suppose that at the initial moment the soliton velocities €10 and €20, €10 <
€99 < 1, are close to each other,

de = €00 — €10 ¥ €10

so that the second soliton is moving to gain on the first one. In the reference

frame, moving with the velocity € = ( €10 + €20 ) / 2, the potential ¢ 1s a
slowly varying function of time:

oy, 9y Y

gr n 5 on’

with n = &€ — €7 as a new spatial coordinate. At every moment, the solution
1 of the equation for the potential

8 Oy 18°%¢

or 6?} ¢8n 2 O3 i (18)

could be approximately presented as a superposition of two terms, which
relate individually to the pure soliton solutions:

i,bﬁi,f)l-l-djg,
8

b= 290 SO (o [ —dar-m), 9

where 7;0 are the initial coordinates of the soliton tops. The nonlinear interac-
tion of the solitons manifests itself primarily in slow varying of their velocities
and, hence, of their amplitudes. To compute this varying, one should invoke
the energy conservation considerations and integrate the equation (18) from
n' to +oo, then multiply the result by 20v/0n’ and integrate it again from 5
to +o0. Finally, one comes to the equation similar to (8):

(57)
2 \ 0y
,"bﬁ

W) = —e® + o (21)

The expression for I(n) takes the following form:

I(q):—?fﬂ d*8¢f d” _w/ dn f da‘f”’z. (22)

Let n in (20) be equal to nm, that corresponds to the minimum value ¥nin
of the potential between the solitons. From what follows we’ll see, if at the
initial moment the solitons are located far from each other, so that

W(¥) = I(n), (20)

with

P ﬁbmar e

then this inequality will be satisfied for all ensuing moments. Acounting for
this, one obtains, using (20-22), the relation similar to (15):

+00 6;!)2 )2 dfa;..
m;’gﬂnz/ /d e _12\/' ~

MTm

dl}
¥ 7321

(23)

where 5
o / [e1(r) e dr + i
0

is a coordinate of the first soliton top at the moment 7. Similarly, integrating
from —o0 to fm,, one derives for the second soliton:

R o T 0w J—dznz
mint= o j T f U= oY g e
- 00 - : .
9




where 72 is a coordinate of the second soliton top at the moment 7. As it
follows from (23) and (24), the amplitude of the first soliton always grows
up while the amplitude of the second one drops down. Using asymptotic
behaviour of (19), one can express t,in as a function of the distance
[ = n; — n2 between the solitons:

Ymin = 24ce™™ | (25)
with k = \/€/2. Having regard to (25), equations (23), (24) can be rewritten
as

d*n AV (1 — n2)
EHT:? T 61;:1 ' (25)
d? aV(n —
7322 S fie (ﬂl 1’;.'2) (2?)
dr dns
where
Vi(l) = 16efe28" (28)

The integration of these equations reinforces the well-known result that the
collision of two KdV solitons leads to the velocity exchange between them. It
should be particularly emphasized that the given above analysis allows one
to extend this statement not only to KdV but to a wide class of solitons. !

Thus, the nonlinear interaction of two solitons with close amplitudes can
be treated in terms of the repulsion potential between them. The distance of
the soliton closest approach to each other is still far in excess of the soliton
scale-length:

8 |
lin = £ 1 In EE— e (29)

This ensures the validity of the presented analysis. It should be also marked
that since the interaction potential V declines steeply as the distance between
solitons increases, the nonlinear interaction of several solitons reduces to the
pair interactions between neighboring solitons.

4 Multisoliton stability

In the framework of the KdV equation, the solitons themselves are stable.
The soliton interaction with an ion beam leads, in general, to a production
of a set of baby solitons [7]. In the adiabatic limit [8], however, the only
effect 1s a gradual changing of the soliton amplitude without emission of

1In particularly, to the solitons discussed in [6] for a collisionless plasma limit.
1)

B

e ———

baby solitons. The requirement for the adiabatic limit to be valid implies
that the energy, exchanged between the soliton and the beam in a time-scale
of an ion-acoustic dispersion, should be small as compared with the energy of
the soliton itself. In the conditions (5), this requirement is expressed by the
inequality (14), which is assumed to be satisfied in our discussion. Hence, the
analysis of the multisoliton stability amounts to the study of the temporal
evolution of a system comprised of the ion beam and the interacting solitons
whose amplitudes are close to that one in the equilibrium.
For small amplitudes, equations (1-3), (7) reduce to the equation [9]:

0 Y 18% _ 10w
o Ve tamem . J o

(30)

where' 15 = ny/ng. is a normalized beam density (6). Suppose that due to
initial perturbations, the velocities ¢; of the solitons slightly differ from the
equilibrium value €p. In the frame of reference, moving with the velocity g,
the energy balance equation for the first soliton in multisoliton can be written
in the form similar to (23):

dz?h b

o2, ~ 18v/2¢,

Here ¢; is a normalized energy transmitted per unit time to the beam ions
at the leading front of the multisoliton. Note that §; depends on the velocity
€1 — €p of the first soliton. One can show that for the ion beam with the
average velocity ug = ¢,(1 + €p), this relation may be approximated linearly
as:
1 = go + a(e1 — €o) ,
where o relates to the energy transfer in the unperturbed multisoliton; the
constant a defines the change of this value with the variation of the first
soliton velocity:
do ~ Tipoen < €5,

a~go/veo .

The same modification should be done in the energy balance equation for the
last N-th soliton, with the only difference leading to

gy = Go — a(en — €o) -

Since there are no beam particles in the internal region of the multisoliton,
it is sufficient to consider the interaction with the only neighbouring solitons
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for each “internal” soliton. Using (26)-(28), one can present the following set
of equations describing the dynamics of the solitons in the multisoliton:

d?n, aV(m — n2) 1 (.- dﬂl)
P O L TBy TR )
g V(mi-1—m) OV(mi—migr)
—r=- o = o ki e | (33)
Py OV (gN-1 — ) 1 (., dnn
dra O e vy 18+/2¢o B i ) 0y

where dn;/dT = ¢; — €.

Equations (32)-(34) have a stationary multisoliton solution that has been
derived in Section 1. For small perturbations from the stauonary solution,
these equations can be linearized to take the form:

dzllﬁfh 9 dﬁij‘l o .
e Ve (6m — ém2) — g (35)
d*6n; : '
dTE = —w2(26m; — 6micy — 6Mig1), i=2,..N—1 (36)
d*snn b0 donn
R —w(dny — byN=1) — V T (37)

Here ém; = 1; — n;o is the soliton displacement from the equilibrium position.
Constants w? and v are equal to:
2 4o a qo

W= V= e

18 f £ 181}’ EE{] €n ;

Equations (35)-(37) present the multisoliton dynamics as the dynamics
of a linear chain of equal bodies coupled with springs. Two outer bodies are
also acted upon by a viscous force (¢?* & w?). The spring rigidity as well
as the viscosity coefficient are determined by the intensity of the exchanged
energy ¢q. Such a system is evidently stable. Its eigenfrequences can be easily

computed, and the following estimate is valid for the characteristic damping

time of the eigenmode: |
T~ Nv!

While damping, all energy of the multisoliton perturbation is transferred
to the resonant beam particles. Finally, the multisoliton, being, in general,
displaced as a whole, returns to its previous unperturbed state.
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5 Conclusions

The interaction between of a finite set of solitons with close amplitudes and
a resonant ion beam is discussed in the present paper. As it is demonstrated,
such a system is dynamically equivalent to a trivial mechanical oscillatory
system of equal bodies coupled with springs. One can conclude that the
beam ions, while reflecting from the leading front of the first soliton and
the back front of the last soliton, force the solitons to each other, so that
despite the mutual repulsion between the solitons, they form a stable localized
nonlinear wave that is a multisoliton. Though analysis is carried out for the
KdV solitons, all basic conclusions concerning existance and stability of a
multisoliton allow generalization to some other types of ion-acoustic solitons,
in particular, to the solitons obtained in [6] for a collisionless plasma limit.

Authors are grateful to Dr.Beklemishev for the interest in this work.
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