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ABSTRACT

We study the correlations in the time delay in a model of chaotic
resonance scattering based on the random matrix approach. Analyti-
cal formulae which are valid for arbitrary number of open channels and
arbitrary coupling strength between resonances and channels are ob-
tained by the supersymmetry method. We demonstrate that the time
delay correlation function, though being not a Lorentzian, is charac-
terized, similar to that ol the scattering matrix, by the gap between
the cloud of complex poles of the S-matrix and the real energy axis.
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1 Introduction

The duration of particle collisions is an interesting and important aspect of
general scattering theory which is in a sense complementary to the energy
representation ordinary used. A collision is characterized in this case by
the time delay of particles in the region of interaction. Wigner [1] was first
to consider the time on which a monochromatic particle with given angu-
lar momentum was delayed during its elastic scattering. He established the
connection of this time to the energy derivative of the scattering phase shift.
The sharper the energy dependence of the phase shift is the longer is the time
delay.

Later on Smith [2] extended the time delay concept on many channel
problems introducing the time delay matrix

Q*(E) = —ih {% ZS““(E+%)S“‘ “*'(E"g-)} ; (1)

in the channel space. Here S is the scattering matrix and the summation
index c spans all of M open scattering channels. The matrix @ is hermitean;
its diagonal element Q¢ coincides with the mean duration of collision (time
delay) in the c-th entrance channel. Generally speaking, the delays are dif-
ferent in different channels e. Taking trace of the Smith matrix, one arrives




to the only weighted-mean characteristic
i
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of the duration of collisions. Eq. (2) is just the many-channel version of the
well-known simple Wigner formula. (Here and below we set # = 1)

The time delay turns out to be especially pertinent concept for the chaotic
resonance scattering encountered in atomic, molecular and nuclear physics
[3, 4], as well as in the scattering of electromagnetic microwaves [5, 6, 7] in
resonance billiard-like cavities. The quantity Q(E), being closely connected
to the complex energy spectrum of resonance states, shows in its energy
dependence strong fluctuations around a smooth regular variation. The two
kinds of variation on different energy scales are naturally decomposed

Q(E) = (Q(E)) + Qu(E) | (3)

with an energy or ensemble averaging. By this, the slow energy dependence
of time delay is revealed whereas the two-point autocorrelation function

€

Ca(B,¢) = (Qu(B+2)Qn(E—2) = (QUE+S)Q(E-)) —(Q(E+

MNQE-S)
(4)
is used to characterize the time delay fluctuations.

To the best of our knowledge, the first consideration of these fluctuations
has been made numerically as well as analytically in [8] and [9] in the frame-
work of rather peculiar model of resonance elastic quantum scattering on a
leaky surface of constant negative curvature. The noteworthy feature of this
model is that the poles of the scattering amplitude turn out to correspond
to zeros of the famous Riemann {-function. The real parts of the poles are
therefore supposed [10] to be chaotically distributed similar to the eigenval-
ues-of the Gaussian Unitary Ensemble whereas all their imaginary parts (the
widths of resonances) are the same. The latter very specific property partly
deprives the model of its interest since actual single-channel widths are known
to undergo quite large fluctuations [11].

The width fluctuations are suppressed when many channels are open. In
this case semiclassical approximation can be as a rule expected to be valid.
The semiclassical analysis of the time delay in terms of closed periodic orbits
is given in [12]. It is in particular emphasized there that only the tail of the
correlation function (4) corresponding to the very large values of € can be
immediately related to the (short) periodic orbits. Quite opposite, the central
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peak near the point € = 0 is formed as a result of a strong interference of many
orbits. Therefore, its width describing the long-time asymptotic behaviour
of the Fourier transform has no direct connection to the classical escape rate
and has rather to be calculated on the pure quantum ground. This is in line
with the results of the analysis [13] of distribution of the resonance widths in
the three discs scattering problem.

It 1s now generally acknowledged that the random matrix theory [14] rep-
resents a suitable and reliable foundation for description of local properties
of dynamical quantum chaos [15]. We therefore use below a random ma-
trix model of chaotic scattering to calculate the time delay autocorrelation
function. We suppose as usual that the number N of resonances is asymptot-
ically large and use the powerful supersymmetry technique [16] first applied
to chaotic scattering problems in [17]. As to the number M of the (statis-
tically equivalent) scattering channels, it can be small or large or can even
scale with the number of resonance states. One can treat the latter two cases
14, 18, 19] as a "semiclassical limit” in the matrix model. We show kere that
the time-delay local fluctuations are governed, similar to those of S-matrix
[19], by the gap between the real axis and the upper edge of the distribution

of resonance energies in the complex energy plane. We compare this result’

with that obtained in the framework of the periodic orbit approach.
It the next section our statistical matrix model is briefly presented. The

connections of average time delay with the resonance spectrum and S-matrix -

fluctuations are elucidated in sec. 3. After a short description in sec. 4 of the
supersymmetry method which we use the main analytical results for the time
delay correlation function are given and discussed in detail in sec. 5. Some
numerical results shedding additional light upon properties of the time delay
correlations are gathered. We close with a brief summary in sec. 7.

2 The Res.onance_ Mat_rix Model

Accordingly to general scattering theory, the evolution of the N-level unstable
system formed on intermediate stage of a resonance collision is described
120, 21, 22] by the effective Hamiltonian

H=H-

The Hamiltonian (5) acts within the intrinsic N-dimensional space but ac-
quires, due to the elimination of continuum variables, an antihermitian part.

The hermitian matrix H is the internal Hamiltonian with a discrete spectrum
whereas the rectangula,r N X M matrix V consists of the amplitudes V.¢ of
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transitions between N internal and M channel states. These amplitudes are
real in T-invariant theory, so that the matrix W, similar to H, is real and
symmetric. As usual, we neglect the smooth energy dependence of V' and W.
The dimensionless parameter v characterizes the strength of coupling of the
internal motion to the continuum.
The poles of the resonance scattering matrix in the complex energy plane
are those of the Green’s function [20, 21, 22]

G(E) = (E—H)™* .' 3 (6)

They coincide with the eigenvalues &, = F,, — ‘5 sy the effective Hamilto-
nian H with E, and I';, being the energy and width of n-th resonance state.
It what follows, the properties of the spectrum of complex energies &, play

the crucial role.
The intrinsic chaoticity of the internal motion of long-lived intermediate

system manifests itself by chaotic fluctuations in resonance scattering and
demands a statistical consideration. The random matrix approach extending
the well-known [11, 14] description of chaotic bounded systems has been
therefore worked out in [23, 17, 22]. It 1s usually assumed that the hermitian
part H of the effective Hamiltonian belongs to the Gaussian Orthogonal

Ensemble (GOE),

A7 2
(Hﬂ.m> = U$ {Ifann’m’) = F(énn’émm’ +6nm*§mﬂ.*) . (f)
In the limit N — oo eigenvalues of H are situated in the interval [—2A, 2A]
with the density given by the Wigner’s semicircle law. Following [22], we sug-
gest the transition amplitudes V° also to be statistically independent Gaus-

sian variables,

™

A
(Vﬂﬂ> = U: (K‘?Vf’i) e Eﬁﬂbénm . (8)
We will use below the ensemble (7,8) to calculate the average quantities
defined in (3,4).
3 Time Delay and Resonance Spectrum

Since we have neglected smooth energy dependence of the effective Hamilto-
nian (5), the poles &, in the lower part of the complex energy plane are the
only singularities of the resonance scattering matrix. Due to the unitarity

condition their complex conjugates &£ serve as S-matrix’s zeros. These two
conditions result in the representation

| E-&
det $(B) = [T 7—" - (9)

n

Substituting eq.(9) in eq.(2), we come to the important connection

= 1 ] Pﬂ-
Q(E) = —2Im {Htrg(g)}:E Z(E—En)u%rg (10)

between the time delay and the trace of the Green’s function (6) of the
intermediate unstable system. The time delay is entirely determined by the
spectrum of complex energies of this system. The collision duration directly
reflects the statistical properties of resonances. This is in contrast to the
scattering amplitudes S°¢ which explicitly depend also on the transition
amplitudes V7.

The ensemble averaging of eq.(10) gives

2

(Q(E)) = — Reg(£) (11)

where m < 1 is the ratio M/N and the function

g(E) = m:ﬁ% (tr G(E)) (12)

satisfies the qubic equation [19]
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The (unique) solution with a positive real part has to be chosen. It can be
seen from the consideration given in [19] that this real part is close to 2-7p(E)
with p(E) being the projection on the real energy axis near the scattering
energy E of the density of resonance levels in the complex energy plane.

On the other hand, averaging the eq.(1) directly, we express (@) in terms
of the two-point S-matrix correlation function [17, 19]. In the limit of a large
number of statistically equivalent channels, M > 1, scaling with the number
of resonances N

s(E)—

dCs(e)

| i de{E)

de

(@) = —i

(14)

e=1{ e="0




Here [19]
il'(¢)

= ————T(e)= K(e)T 15
with the two smooth functions defined by [19]
A1 4 2
2 gle/2) [1 + vg(e/2)]
and we set E' = ( for the sake of simplicity. The quantity
Cs(0)=T(0)=T (17)

coincides with the transmission coefficient 1 = 1—|{S)|?. With eq.(15) taken
into account we obtain from (14)

(Q) = _de‘ZS) e IT_U (18)

=1}

where we have designated I'(0) as I'y.

As long as the typical values of the quantity I'(¢) are small as compare
to the parameter A characterizing the scale of the smooth e-dependence of
the function 7 (¢), the two factors in the r.h.s. of eq.(15) have quite differ-
ent energy scales. Only the first fast varying factor K'(¢) describes the local
fluctuations whereas the second one corresponds to the joint influence of all
resonainces giving rise to the processes with a very short duration. The latter
came out from eq.(lS); The average time delay of a non-monochromatic spa-
tially small wave packet caused by the formation of a long-lived intermediate

state [3, 26] is determined just by the factor K (g) [19]

dK (e z
e o (9)
_ e=0
This implies the connection [19]
AN 2mp '
— == 3 i 2
() = (@ = o0 g(0) ~ 272 (20)

4 The Supersymmetry Method

Now we calculate the correlation function (4). Taking into account the rela-
tion (10), one can cast eq.(4) into the form

8

Cq(E,E)
i |

£ £ € €
= Re{{trQ(E+§)tr§T(E—§)}-(trg(E+§))(tr§T(E—-2-))} . (21)
We also define the normalized quantity

i CQ(E} E;I'
(Q(E)*

The terms containing two Green’s functions with poles at the same side from
the real energy axis are omitted in (21). We will briefly return to this point
later.

In the limit ¥ = 0 when the system gets closed the correlation function
(21) becomes proportional to the GOE density-density correlation which con-
sists [14] of the singular term 8(wpe) and smooth Dyson’s function — Yo (mpe).
Coupling to the continuum leads to appearing of a new energy scale caused
by the decay processes. This scale is defined [19] by the quantity I'(e) from
eq.(16). One can anticipate a qualitative changing of correlation function to
occur on this scale. For larger distances the influence of the antihermitian
part should fade away and asymptotics of Cg for ¢ — oo is expected to
coincide with that of the Dyson’s function —¥5(wpe). |

To perform the ensemble averaging in (21) we use the modification worked
out in [19] of the supersymmetry technique [17]. Using the integral represen-
tation of Green’s function as a multivariate Gaussian integral over commuting
and anticommuting variables, one gains the possibility to accomplish the av-
eraging exactly. With the help of Fourier transformation in the supermatrix
space the integration over initial auxiliary supervector is then carried out.
Going along this line, one arrives finally at :

Kq(E,e) (22)

E .N2

2)} = ———(str (on1 ) str (om2)) ¢ - (23)

R tim
(trg(ﬂ+2}tr§ (E :

Here the shorthand (...). is used to denote the integral
(e = [dleldi] exp{-N£(o,))...) (24)

over two 8 X 8 supermatrices o and ¢ with the measure defined by the La-
grangian [19]




1 ho '
Llo,0) = a.str oo —%E strio — ;Z—str (g0)

- %siﬁr In(c) + -gi str In(14+yon) — %s str (on) . (2.5)
The diagon_a,l supermatrices appeared above are equal to
= diapCh be—1i—0 4y i1y
m = diag(1,1,0,0,—1,=1,0,0) 1, = diag(0, 0,1,1,0,0, T A

We have set here to one thf- GOE parameter A.
The supermatrix o can be decomposed in the following way [17]

o=Thor Ty " (26)

where 74 is a non-compaect transformation whereas the matrix op is diag-
onalized by a compact one. This implies corresponding decomposition of
integrals in the r.h.s. of (24) -

o / oAl s e N s )

< [duexp{=NLulom TI.) (27)

The Jacobian F(or) depends only on the eigenvalues of ¢g; dp is the invari-
ant measure of the manifold of non-compact transformations Ty, At last, the

Lagrangian (25) is splitted on two parts, Lg and £, given by

Lr(c,6) = istrof — LEstrop — istr (ogd) + Lstr In(6) ,

(28) .

Lu(or;To) = -—-%E str (URTLTI??TG) + 5 str 1n(1+7crHTﬂ""1nTg) .

Only second part depends on the non-compact variables. The first one is
invariant under transformation Ty since 1t 1s fully absorbed by the appropriate
transformation of . One can easily verify that corresponding Jacobian is
equal to unity.

Since the number of resonances N — 0, the integrations over o and &
can be carried out in the saddle-point approximation. At the same time, one
has to integrate exactly over non-compact variables as long as the number
of channels M is finite (m = 0). The saddle-point approximation becomes
valid for the latter integration when the number M also tends to infinity (m
is finite). We will consider the both cases mentioned. To simplify formulae
we restrict our further consideration to the center of GOE spectrum E = 0.
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(1,1,—-1,-1) and

5 Time Delay Correlation Function

Let us first consider collisions with a fixed number of channels M. The

logarithmic term in £, being proportional to the small ratio m does not

influence then the saddle-point equations in the (og, ¢)-sector. In particular,
the term in (13) containing this ratio has to be omitted. The saddle-point
equations are trivially solved in this case and at the point F = 0

¢ =—icy' . ocp=1. (29)

With integrations over o and & being done, the correlation function (4)
reduces to the integral

e ; M
Kole) =2 Re/d,ustr (kep)str (kas) exp{%wps str ag —.é—-str ]11(1+%T&1)}
| (30)

over the invariant measure of the non-compact manifold of Ty-matrices. Here
a5 are the 4 x 4 supermatrices defined in [17], the supermatrix £ = diag

_ e |
e 51

is the transmission coefficient (17) calculated in the limit of m = 0.
The further calculations go along the line described in details in [17] and
lead to the result

1 oo £
: 1
Kgle) = 3 /d}‘ﬂ dA /df"izﬂ(}im A1, A2)(2X0+A14+A0) % cos{mpe(2Ag+A1+A0) }
B 0

(1—T;‘lu)2 M/2
: [(1+m)u+m)] S

where
(1—20)A0|A1 = Ag|
[(1+A0)A1 (1 + A2)A] /2 (Ao +A1)2(Ao+A2)?
The dependenc;e of the function Kg on openness of the unstable system

is fully contained in the last factor in (32). If at least one of the quantities
M or T is equal to zero the threefold integral reduces to the single one [16]

p(Ao, A1, A2) =

(3]

a 1 (s u]
Eﬂ)(g) = /dtt (1 -3 ln{t—{—l)) cos(frpst)+f (2 L .;_111 %) cos(mpet)
0 2 -

11




= §(mpe) — Ya(mpe) (33)
which is just the normalized GOE density-density correlation function.
Generally speaking, the threefold integral in (32) can be investigated for
arbitrary number of channels M only numerically using the methods devel-
oped in [25] (see the next section). However, this integral can be simplified
if M becomes large enough. Let the number M grow still keeping the ratio
_m = 0 and the product MT = 2mpI'w (compare with (20)) fixed. The quan-
tity Tw is just the limiting value of I'g with 7" and g calculated in the limit
m = (. It coincides with the well-known semiclassical Weisskopf estimate
[24] of the correlation length of Ericson fluctuations. Then

(=T )
[(1+TA1)(14 e

and one obtains similar to eq.(33)

M{f2
)] S exp{—?rprw (an + A1 +}l:3)}1 {34)

1
Kql(e) = /dtte(‘wrwﬂ (1 5 §hl(t+l)) cos(mpet)

oo

+ /dt e(=melwt) (2 & %mi—ﬁi—) cos(mpet) . (35)

)
This is in close analogy with the consideration of the S-matrix correlation
function made in [25].

A new convergency factor appeared in the integrals in (35) as compare to
(33) where only oscillating cosine cuts the integral in the region of asymptot-
ically large ¢. This makes the function K¢ finite for all values of ¢ including
zero, so that the é-function is now smeared out. The behaviour of Kqg(¢) is
quite different in the regions ¢ < I'yr and € > I'w. In the first one it is
determined by decays and therefore is sensitive to the coupling to the contin-
uum. Quite opposite, for large ¢ the behaviour becomes universal since the
GOE fluctuations described by the Dyson’s function Y> are restored. It is
perfectly reasonable since an Spen system cannot be distinguished from close
one during small time t < T'y;/.

The first v-sensitive domain is widened when the width I'y grows In
the case of small pI'w < 1 (isolated resonances) it is natural to set aside the
contribution of asymptotics of the integrand presenting (35) in the form

1 B
die b Wi
TP (52 + FE / i (
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b
Kol(e) = = gln(i—kl) — l) cos(mwpet)

e
t
+ ]aft kPl (1 B In :-—%) cos(mpet) . _ (36)
2

The Lorentzian contribution with the width 'y, directly traced to the GOE
6-function dominates in the domain ¢ < I'yr. The sum of the integrals in the
second line is negative for all values of ¢ and approaches asymptotically to the
function Y5 from above. We thus come to the conclusion that the correlation
function vanishes at some intermediate point g which can be estimated as

'
et -?*r}" (37)

using the condition

T 0t
7p (3+T%,

~ |Ya(peo)| ~ 1 .

The regime of strongly overlapped resonances, pI'yy > 1, is a most inter-
esting one when the number of resonances M is large. In this case the main
contribution in /K¢ comes from the region of small . Therefore, the second
integral in (35) can be neglect. Dropping then out the small logarithmic term
in the first integral and extending its upper limit to infinity, we arrive at

s e
Epﬂ (52 St PEV)E :

Kole fdtfe( mpLwt) cos('rpst) = (38)

Corrections to this result are of higher order with respect to the parameter
{pl'w)~!. The function (38) is not a Lorentzian at all. Decreasing quadrat-
ically in a small vicinity of the point ¢ = 0, it deviates subsequently from
a Lorentzian, becomes zero at the point £ = I'yy, reaches a negative min-
ima and approaches at last zero from below. Just the correlation function of
such a form with I'y substituted by the classical escape rate was conjectured
in [12] as the limiting classical expression following from the periodic orbit
picture. Certainly, there is no room for the classical escape rate in matrix
model$ considered. One can see that the found form has in fact quantum
grounds.

One should return to the exact expressions (27,28) if the ratio m is finite.
The resonances are strongly overlapped in thls case. The saddle-point is now

found to be
= 1 e = —z'crﬁ OR = g(a/?)n : (39)
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where g is the chosen in sec. 5 solution of the qubic equation (13). The
sequential saddle-point integrations over or,d and then over non-compact
manifold result in the expression

e Sl (40)
M2T2 " " [e +iI(e)] '

where the function I'(¢) defined in (16) is just the one appearing when the
S-matrix fluctuations are considered [19]. |

The explicit dependence on ¢ gives rise to sharp variation of the correlation
function (40) in the vicinity of zero if the typical values |T'(g)] < 1 (see
eq.(15) and the discussion below). As long as the ratio m is small, the
quantity I'(¢) is small indeed and we can neglect its smooth e-dependence
for all e < I'p = I'w. Eq.(40) is equivalent to eq. (38) within this domain.
The asymptotic behaviour for large € also does not change since I'(¢) remains
restricted for all . Some difference can appear only for intermediate values
of .

However, for larger values of m the deviation can become noticeable even
near the point € = 0. In this case the next term in the power expansion

() ~To+ e (41)

with respect to the smooth e-dependence should be taken into account [19].
Because of the smoothness, the derivative I'y is small. One can see from
eq.(13) that this derivative is pure imaginary. The form (38) is now repro-
duced again for sufficiently small ¢ , '

ar? rg—sﬂ
g
with -
il S 43
=TIl (43)

It has been proved in [19] that I'; playing the role of the correlation length
of the Ericson fluctuations coincides with the gap between the distribution
of resonance energies in the complex energy plane and the real energy axis.
Therefore we come to the conclusion that the properties of fluctuations both
of the S-matrix and time delay are described by the same quantity, the gap
I'; rather than the classical escape rate.

Until now we neglect the "one-sided” contribution
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Cole) = (@) Kole) =

&y

Re {(0(5)G(-2) ~ (wG(ENG-5)} (49

to the correlation function (4). As long as m = 0, this contribution is of higher
order on the parameter N~!. ‘However, this is not the case when the ratio
M/N is finite. So one has to calculate (44) explicitly. The well-known replica
method [27] turns out to be adequate for the latter purpose. Dropping here
corresponding rather cumbersome expression we only note that the function
ng(s) is entirely expressed in terms of the slow varying g(5) and varies
slow itself. Tt has got no pronounced resonance behaviour a,nd constitutes a
smooth background for the correlation function. Its maximal value reached
at the point £ = 0 looks approximately like

= 1
Kq(0) ~ — e
7plg
2N

mplo € N or Tgkl (45)

so that

i
]

lffa( )/ Kq(0)]

The ratio is small under the condition

implying a clear-cut distinction of the local and global scales [19]. Such a scale
separation is necessary for matrlx models to be valid so far the ﬂubtuatmns
are concerned,

The obtained form of the e-dependence of Cyg is close to that found in
[9] for the Gutzwiller’s model of single-channel chaotic scattering on a space
of negative curvature. The same values of all resonance widths and the
outcoming possibility for resonances to overlap are two specific features of
the model which are in fact in strong disagreement with properties of the
resonance spectra represented by matrix models. In particular, the single-
channel resonances cannot overlap at all in the latter models [22] and their
widths fluctuate strongly. That is why the correlation function [9] differs
noticeably from our result for M = 1 (see below). The situation changes
when the number of channels is large. The width fluctuations diminish with
the number M of channels growing. Since the time delay depends, according

15

e

e



to (10), only on properties of the complex energies of resonances, correlation
functions become similar in the two quite different cases compared.

It 1s worthy of noting that the resonances overlapping strongly suppress
the time delay fluctuations. Indeed, eq.(36) gives for isolated resonances

- 1
Kq(0) = e

whereas

Ll
Rt
Ko(0) = - <

when they overlap. The duration of a collision thus becomes a good definite
quantity in the ”quasiclassical” limit.

6 Numerical results

Excepting a few limiting cases considered above, further analylitical study
of (32) is not possible and one has to use numerical methods. However, the
threefold integral as it stands does not suite for numerical computation. A
very convenient substitution of the integration variables has been proposed
in [25] to overcome all difficulties appeared. Following this author we reduce
the expression (32) to the Fourier integral

Kqgle) = /dt F(t) cos(mpet) (46)
0

with the Fourier transform F(¢) given by a double integral of a smooth func-
tion quite convenient for the numerical work. The asymptotic behaviour of
F(t) can be easily found explicitly

: { fort < 1
F(t)w{ (L= TtaM2 fori Sl " (47)

For a close system (7" = 0) the Fourier transform F(t) tends to the unity
in the large-t asymptotics. This results in the é-term in the GOE density-
density correlation. A singularity still survives even for an open system with
one or two decay channels. The asymptotics (47) implies the square root

or logarithmic divergences correspondingly at the point € = 0 in these two
cases,
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Fig. 1. The time delay correlation function (32) versus z = pe for M =1
and v = 1.0. The dotted curve is the Dyson’s function —Yz(7z).

In Fig. 1 the function Kg(z) versus x = pe is plotted for the ca,se.of
single open channel. The singular behaviour near zero as well g GOE—Ijke
asymptotics are shown. The dashed line represents the Dyson’s fumtloﬁ
—Ya(wz). The calculation was made for the value vy = 1; Gnly‘some sma
domain around zero is sensitive to the choice of 7. 'Ithe leIT-Eiatl(}n +funct1on
Fig.1 has little in common with that found in [9]: This dlscrepé,n;y 1s due to
the strong fluctuations of single-channel widths in our model in contrast to -
identical widths of all resonances in Gutzwiller’s one. o .

For M > 2 the quantity Kg(0) is finite and the correlat}cm function
appmachesk, as the number of channels grows, the asymptotics given by (35).

The Fig. 2 demonstrates this for the ratio Kq(s)/f{q[ﬁ) in the case of
overlapping resonances. In asymptotic regime (38) such a ratio is an universal

function of the only variable ¢/T'w. One can see how the exact regult (32)

ets more and more close to this universal behawi_our: ; .
: The Lorentzian peak should dominate the ratio Kq(g)/Kq(0) in the do-

main ¢/Tw < (7pT'w)~ 2 > 1 when resonances are isolated (see (37)). Fig.
3 demonstrates this for two values of coupling constant 7.
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1.0

Ko(z)/Kq(0)

o
=

i 2[ i i i
z=¢/Tw
Fig. 2. Overlapped resonances. The normalized function Kg(e)/Kg(0)

versus z = ¢/I'y for three values of M =5, 10 and 20 (dash-dotted, dashed
and dotted curves) and 4 = 1.0 The solid curve is the asymptotic expression

(38).

10k

Ko(z)/K 4(0)

=
]

0.0

e —— — i ——
- s r
T e e . e e

Fig. 3. Isolated resonances. The normalized correlation function (36) for

pI‘u_r = 0.1 and pT'y = 0.01 (dashed and dotted curves), and Lorentzian
(solid curve).
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Fig. 4. The zero peg of Kg(e) as function of M for three coupling constants:
v = 0.01 (%) (in this case peg has been blown up by a factor 10), v = 0.1 (e)
and v = 1.0 (o). Solid and dashed lines are pI'ys and the dotted curve is the

estimate (37).

As it has been mentioned above, the function Kg(e) vanishes at some
point 9. The position of this point as the function of the number of channels
M at several fixed values of v is shown in Fig. 4 for three different values of
the coupling constant 5. It is clearly seen as the square root dependence for
isolated resonances (see (37)) is replaced by the linear one for overlapping

O11es.

7 Summary

In this paper we have considered the fluctuations of the characteristic time
of collisions in the framework of a random matrix model of resonance chaotic
scattering. These fluctuations are entirely due to the fluctuations of the spec-
trum of complex resonance energies. We calculate analytically the time delay
correlation function and investigate its properties analytically and numeri-
cally for different values of the number of channels and the strength of the

19




coupling to the continuum. For any values of these parameters this func-
tion is far from being a Lorentzian, In particular, it vanishes at some point
which plays a role of the characteristic correlation length of the fluctuations.
In the ”quasiclassical” limit of a large number of strongly overlapping reso-
nances this length is given, similar to that of the S-matrix fluctuations, by
the gap between the upper edge of the distribution of complex energies of
resonances and the real energy axis. We do not expect that this quantity may
-be connected to the escape rate appearing in the classical theory of chaotic

scattering. The latter has been conjectured in [28] to be the semiclassical
limit for the correlation length in chaotic scattering.
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