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ABSTRACT

Using the expansions of the heavy meson decay widths in the heavy
quark mass and QCD sum rules for estimates of corresponding matrix
elements, we calculate the D*°* decay widths and the BT** lifetime
differences. The results for D mesons are in agreement with the data,
while it is predicted that [['(B°) —T'(B7)]/Tp ~ 4%, and the lifetime
difference of the B° and B; mesons is even smaller. The role of the
weak annihilation and Pauli interference contributions to the lifetime
differences are described in detail. In the course of self-consistent cal-
culations the values of many parameters crucial for calculations with
charmed and beauty mesons are found. In particular, the perturba-
tive pole quark masses are: M. ~ 1.65GeV, M, ~ 5.04 GeV', and the
decay constants are: fp(M.) = 165 MeV, fu(My) ~ 113 MeV . It is
also shown that the nonfactorizable corrections to the B® — B° mixing
are large, Bp =~ (1—18%) . The values of the unitarity triangle param-
eters are found which are consistent with these results and the data
available (except for the NA31 result for the ¢'/e which is too large):
A~0.22, A~0825, p~—04, p~0.2, '
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1. Introduction

It is a long standing challenge for theory to calculate the D and B meson
decay widths. On the qualitative side, two mechanisms were invoked to ex-
plain the pattern of the D meson lifetime differences: weak annihilation (WA)
[1],[2],[3], and Pauli interference (PI) [4], [5], [6],[7]. As for WA, it was ex-
pected that because an admixture of the wave function component with an
additional gluon or the emission of a perturbative gluon, both remove a sup-
pression due to helicity conservation (which leads to Br (7 — ev)/Br (7 —
nv) ~ 107%), the D° meson decay width is enhanced. On the other hand,
it was expected that the destructive Pauli interference of two d-quarks (the
spectator and those from a final state) suppresses the D* meson decay width.
As for WA, there were no reliable calculations at all. For PI, simple minded
estimates (see sect.8) give too large an effect which results in a negative D¥
decay width.

For B mesons, it was clear qualitatively that all the above effects which
are of a pre-asymptotic nature and die off at Mg — oo, will be less impor-
tant. However, because the patern of the D meson lifetime differences was
not really explained and well understood, this prevented to obtain reliable
estimates of the B meson lifetime differences, and only order of magnitude es-
timates are really available: [6T'(B)/T'g] : [6T(D)/T'p] ~ O(fEM2/fAME) ~
o(10~1).

Moreover, as for WA contributions through perturbative gluon emission
(which is formally a leading correction ~ O(Agcp /Mg) to the deacay width
and was expected before to be potentially the most important), it has been
emphasized recently [8] that such contributions are of no help at all because,
being large (at least formally at Mg — oo) term by term, they cancel com-
pletely in the inclusive widths, both O(1/Mg) and O(1/M}) terms *. It

3




will be shown below (see sect.9) that, nevertheless, there are important WA
contributions but on the nonperturbative level.

Considerable progress has been achieved recently in applications of the
operator product expansion to the calculation of the heavy meson decay
width. In particular, it was shown that there are no O(1/Mg) corrections to
the Born term and first nonperturbative corrections O(1/ Mé) were calculated
explicitly [9],[10]. However, these contributions are all nonvalence (i.e. one
and the same for all D%°* mesons), and so have nothing to do with lifetime
differences. They are important however for the calculation of the absolute
decay rates. Recently a number of papers appeared [11],[12], [13],[14], where
these results were applied to determine the values of the quark masses, M,
and My, and |Vl ,

The purpose of the present work was to calculate the D and B meson decay
widths, with the main emphasis on the calculation of lifetime differences. It is
shown that the D¥:%* lifetimes can be calculated with a reasonable accuracy,
and concrete predictions for the B*:** meson lifetime differences are given

also.
The scope of the paper is as follows:

1. Introduction.

2. Definition of the heavy quark mass.

3a. General formulae: c-quark.

3b. General formulae: b-quark.

4. D — ev+ X. Determination of M,. 2y

5. Mass formulae. Determination of My and A.

6. B — er+ X. Determination of |V |.

7. Calculation of fp, fB.

8. Difficulties with naive estimates.

9. Nonfactorizable contributions: gluon condensates.
10. Nonfactorizable contributions: quark condensates.
11. Corrections to semileptonic widths.

12. A and A.

13a. Calculation of D** decay widths.

13b. Calculation of B*:%* lifetime differences.

14, B° — B° mixing.

15. The unitarity triangle.

16. Summary and conclusions.

2The separate perturbative WA contributions into the total width have the form:.
STC/T Born ™~ ff) Jez . ff} ~ p':';qu, where ¢, is the binding energy of the spectator quark
in the meson. So, they are highly infrared sensitive and singular at ¢, — 0. It seems clear
that there can not be power infrared singularities in the inclusive decay width, so that it
is not so surprising that all such terms cansel (i.e. the terms ~ O(1/¢2) and ~ O(1/¢,),
but not loge, which describes hybrid log. ) .

2. Definition of the heavy quark mass

In what follows, expansions in powers of the heavy quark mass and some

formulae of the HQET (Heavy Quark Effective Theory) (see, i.e. the re-

views [15],[16],[17] ) are used. In the standard approach, the perturbative
pole mass, M, is chosen as the HQET expansion parameter. The pertur-
bative pole mass is, clearly, a distinguished parameter because it is scheme
and gauge independent. So, it is natural that all calculations of observable
quantities are expressed usually through M,.

It was pointed out recently [18],[19],[20] that the perturbative pole mass
is an ill-defined quantity and contains an intrinsic uncertainty ~ O(Agcp),
because the perturbation theory series for it diverges due to renormalon ef-
fects.

Analogous renormalon divergences are well known and originate from the
fact that there is an internal scale in the theory: Agcp- the position of the
coupling constant infrared pole. So, this scale reveals itself when perturba-
tive loops are integrated up to k; — 0 (as in the case with the pole mass).
But because Agep can not appear explicitly at any order of renormalized
perturbation theory, the perturbative series diverges. These infrared sin-
gularities are cured usually by nonperturbative contributions, and it seems
most people are not worrying especially about them.

To avoid from the beginning the infrared region contributions, it was
proposed in [18] to use some infrared safe mass parameter, M, instead of
M,,. As for a concrete choice of M, two variants are considered usually. The
first one (in a spirit of the Wilson operator expansion) is to calculate all loops
by cutting out the k; < u region contributions. A deficiency of this variant is
that it is practically impossible to perform such calculations. The second one
1s to use the current quark mass normalized far off mass shell which suppresses
the infrared region contributions. Because this current mass differs from M,
already at the first loop level, this variant spoils finally all the usefullness
of the standard HQET approach, replacing the standard decomposition in
powers of 1/M, by the usual perturbation theory decomposition in powers
of 1/logM,. Besides, because the current quark mass is renormalization
scheme and gauge dependent, all this is highly inconvenient.

In connection with this, we describe below another redefinition of M, and
introduce the "hard pole mass”, M,, which is free of renormalon singularities
by definition and differs from M, by only the term ~ Agcp (not by ~
asM, ). We emphasize that, as far as we do not calculate explicitly high
order perturbation theory corrections to observable quantities, the whole
problem of the renormalon is of abstract interest only and can be formally
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solved on a "hand waving level”, i.e. by some redefinitions only, without
making any real changes in all the formulae available.

The above "hard pole mass”, M,, can be connected with a definition of
the matrix element of the local operator. Although it is clear beforehand,
let us demonstrate explicitly, using the example considered in [18], that the
relevant operator to use for a redefinition of My, is Hyjgne, 1.e. the light degrees
of freedom part of the Hamiltonian. With this purpose, let us consider the
Hamiltonian and take its average over the heavy meson state, |My >:

< Mp| Hiot |Myg >= M, < MH|(QQ};$ Mg > 4+

T BameEs
< Mﬂi;j(E%H?)ﬂiMH >+ < Hy > +0(p*/M), (1)

where p serves as an upper cut off in the matrix elements of operators and as
lower cut offin My, Hg is the light quark Hamiltonian, < Mg|(QQ),|Myz >=
1+ O(p?/M?).

In the example considered in [18] (in the static limit):

: 167 [ d%k
A :M — 6 — _T '3 k N
M, > —8M, &M e / o) a, ¢(k)

1 1 p?
qﬁ("i‘:)w4'7:,9+£f k% +de pu? — k2 — 4¢’ (2)

and when a; in Eq.(2) is substituted by running «,(k?) in the form:

00 i 2\ °
() = o) Y (2510 k) ©

n=(0
this leads to a divergent perturbative series:

bo

oo
S0 =3 a," Co~ (52)0 0!, (4)

On the other hand, it is not difficult to see that the insertion of the vertex
E*/2 into the same diagram which gives 63, adds the contribution:

Ly 167 [ dk ~k20\ -
< MH|§E My >= —i 3 ](2;1-)4 as ¢(k) (m) =éM, (5)
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which cancels the renormalon contribution in Eq.(1 ) and leaves the pole
mass M, instead of M. 3 |

Let us proceed now with a standard on mass shell renormalization scheme
and rewrite Eq.(1 ) in the form:

< My | Hiot |Mpr >= M, < My|QQ|Mp > + < My| Hiigne|My > +

2 6m?
37—+ O0(Agen/M?), (6)

where [9] (see sect.5 for the explicit form of §7n?);
< My|QQ|Mu >=1- 5ﬁlsz3 T O(ﬁécu/Ma), 6in® = O(ﬁécﬂ)- (7)
It 1s not difficult to chéck that:
< My | Hiight [Mu >= A, (1+ O(A%cp/M?)) (8)

where A, 1s a finite number ~ Agcp, independent of M. Clearly, it can be
understood as the light quark self energy plus the binding energy.

Now, let us redefine the quark pole mass, M, and introduce the ”hard
pole mass”, M,:

Mp:Mo(l-!'&l'i'ﬁz'I—"'), (g)

where A; is defined formally, for instance, as the leading asymptotic part of
the divergent perturbative series for M,,:

o A n
Ar= ) ol (M,) CEJ:Al—ff—D, CV ~ (-E’—) n!,  (10)

n=N; = 2m

and A; ~ (14+0(a,)), N1 ~ 1/a,(M,). * A, in Eq.(9) is defined analogously
through a subleading part of the series, so that A, = A, A%CD/ME, etc.
So, by definition, M, in Eq.(9) is free of divergent parts of renormalon
contributions. What is important, is that the ”bad” quantity M, and the
”good” quantity M, differ not by ~ a,(M,)M, terms, but terms ~ Agcep
only.

*This is natural because the whole answer has to be independent of u, and considering
formally the case when there are no nonperturbative contributions and the matrix element
is taken over the on mass shell heavy quark state, the total answer is My .

#More precisely, if any meaning can be given to the divergent sum in Eq.(10) , it can
also give higher order terms ~ A%, . ;, /M2 +..., but these can be included into a redifinition

of Az, etc.




Clearly, we can abscrb the term A; into a redefinition of A,, the term
A, into a redefinition of §m?, etc., so that Eq.(6) can be rewritten as:

< MHIHtot]MH - —
M, < My| Q@ Mg > +A+ 4P~ + O(Adcp/M?), (11)

A=A, + A1 M,, &m?=686n°+ A M?. (12)

In connection with the above, let us point out the following. Strictly
speaking, because the real expansion parameter is Agcp /M, taking account
of higher order terms of the perturbative series in a,(M) is not justified
without simultaneously taking account of power corrections in AQGD/'M
So, even if we have a convergent series: 5 a?(M)B,, the term o1(M) By,
becomes O(Agcr /M) starting with N; (dependmg on the beha,vmur of B,
at large n); starting with N, the term a)?(M) By, becomes O(ﬁQCD/Mz),
ete. For instance, for B, ~ 1 at large n: N; ~ [a,(M) log1/a,(M)]~*, while
for B, ~ n!: Ny ~ [a,(M)]™1, which is only slightly larger than those for
the convergent series. Therefore, in any case, the account of distant terms
of the perturbative series has to be made only simultaneously with account
of power corrections, and we can always transfer these distant perturbative
terms into a redefinition of power corrections (remembering especially that we
are unable to calculate directly these nonperturbative corrections at present).

Let us turn now to the heavy meson decay width which can be represented

in the form [9]:
[~ M? [F(nf,(Mp)) + a(mfwﬂ/Mj)] , (13)

where F'(a,) represents a perturbative series, and power corrections in Eq.(13)
are explicitly expressed through the matrix elements of higher dimension op-

erators (see gect.3).
As was emphasized in [18], a new element in the example considered is

that the renormalon effects lead to a contribution ~ Agep In the pole mass,
while there are no nonperturbative corrections to I' at this level. Correspond-
ingly, the perturbative series for F'(a,) is also divergent, and only a product
of them in Eq.(13) contaips no ~ Agcp/M renormalon contributions.

Now, let us reexpress the pole mass in Eq.(13) through the formally
defined ”hard pole mass”, M,. Then in the product: (1+ 5A; + O(A2))
F(as(M,)) (where A, is understood as the divergent series Eq.(10)), the
leading divergences cancel, so that there is no Agcp/M, correction. As
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for subleading divergencies which give corrections ~ A2 cﬂfMo: they will
be cured in the usual way by explicit nonperturbative matrlx elements in

Eq.(.13), etc.

The final result of all the above manipulations can be formulated as fol-
lows.
1. We can use the standard perturbative pole mass, M,, in the HQET to
obtain usual expansions in powers of 1/M,, putting no attention at the time
that it 1s not a "good” quantity.
2. When dealing with formulae for directly observable quantities, we can re-
express M, through the "hard pole mass”, M,, which is a ”good” quantity.
All renormalon divergencies will be either explicitly canceled in perturbative
expansions, or absorbed by redefinitions of the original nonperturbative ma-
trix elements. The net effect will be that all the original formulae of the 1/M
expansions will formally stay intact after all the above redefinitions. More-
over, if we calculate explicitly only a few lowest order loop corrections, which
is the case usually, we need not even explicit expressions for the divergent
tails of perturbative expansions. It is sufficient to have in mind that all the
divergent contributions are cured by redefinitions.
3. What is really important, is that (having in mind all the above redefi-
nitions) we can use now our formulae with only a few first loop corrections
explicitly calculated for a comparison with the data, not worrying much that
there may be numerically large corrections from distant terms of the pertur-
bative series.

General formulae: c-quark

The weak Hamiltonian used in what follows has the form (I'y = 7,(1+ ;) ):
Hyy(n = M.) =
S Ves Vg {C1(M.) 3T yc - aTyud + Co(M,) @Tye - 5T,d} + -+, (14)

where the dots denote corresponding Cabibbo-suppressed contributions. The
coefficients Cy = (Cy + C3)/2 are determined by:

0s4) = O {1+ 2D =) ] (15)
o (p?) \ M
sz(m) . Ci) = 1/4[CE(u?), (16)
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and the values of p; can be found in [21]. We use below in our calculations:

.dﬂ,(f.) = ___' bo
—31 = Ple)=-ra(1+Aa), o

2 b e _2 _2 L - 27,2
A i g b = (11 3n_,r), = 3(153 19ny), t = log(Q*/u*). (18)

One obtains from Eq.(17) (Z = 1/a;):

2
Z(s) = 2(@") - 7 log(@/u) - Alog (FTIERY) . (19

We use as an input the value:
a,(Mg) = 0.118, (20)

which corresponds to: ALL };._, ~ 200 MeV, A(ﬂ >~ 300 MeV . One obtains
then from Eqs.(19),(20) 5:

a,(pu =My =5.04GeV) ~ 0.204, a,(u= = 1.65 GeV) ~ 0.310, (21)
and the coefficients C; are equal to:

C_(M.) ~1.770, C+(M.) =~ 0.762,
Ci(M.) ~ 1.266, Ca(M.)~ —0.504. (22)

The decay width of a hadron containing a heavy quark:

1
= —— /dm < My| Hw(z) Hw(0) |Mg >
2 My

= sh= < HlLeys(0)|H >, (23)

can be represented in the form of the operator expansion [9):

Less =) Ci0:(0), (24)

where the leading term is the dimension 3 operator QQ which describes (at
Mg — oo) the free quark decay, fig.1. The next term is the dimension 5
operator QoG which describes an emission of a soft gluon, fig.2, etc.

5The quark masses are found below.
10 -

Fig. 1. The Born contribution. Fig. 2. The soft gluon emission
giving rise the correction O(1/M3).

If we confine ourselves temporarily to these terms only, then all Do 5.
mesons will have equal decay widths, and (on account of the radiative cor-
rection [21]) it can be represented in the form [9]:

2C2 +C? ge|D
n.l‘ = Pﬂzﬂ( - ) {chﬂl 2 [Irmi (1 -2:—1—&(;) +
[

3 2Mp
2 (sgrver) o] (%)
Here:
Laa = (20“%2303) [1 - -g-m;(Mz) - “'(M )]
(26'1032;03) [1 w '2'”'(‘“ NS a'(f ) b7t iR
20 = (1 -8z +82° —z% - 1222 logz),
zl=(1—z)4,33=(1—:)3,::=—;;%, (27)
r,,=ii‘4gf, {ﬂz!i:;D}':(l+%ﬁg—ﬁx) , (28)
P ﬂ;z < D|E(M3_— p2)elD> _ 1 < D|e54,0u G5, 5 c|D > (29)
7 < DJedlD > M2 < Dfee]D > *
11



1 <D|e@)clD> _ < () >

,& — = H
K~ 9M? < Djéc|D> 2 M?2

(30)

where p, is the c-quark 4-momentum operator, fis its 3- momentum operator
(in the D-meson rest frame). Let us recall that the radiative corrections in
Eq.(26) are calculated at m, = 0.

The lifetime differences appear first on account of the 4-quark operators,

and we present here the contributions to ¢5LE fjf from figs. 3a,b, c-diagrams
(see also Appendix):

LS G%‘ IVHP 32 Ld Lt
steff(Mc)— T {S"pv Fp+Tuu > v)} !(31)
p e A¢ A
Ly, =14 83 (eTud)(dT,c)+ O] (cfp?d)(dr ?c) (32)
u 0 (= = e ] e A®
L,, = .'?7“(cI‘Hu)(uI‘pc)+Oﬂ(cI“_u?u)(uI‘,,,—c) (33)

L, = {Sf(EI‘Fs)(EF,,c)+Of(EI‘pA2 )(sf,%c)} (34)

Tav = %(lﬂ}.p—)\zgﬂp) : (35)

where A (or A) is the total 4-momentum of the integrated quark pair. It
can be read off from each diagram and differ from p, by the spectator quark
momenta.

The coefficients S and O} are:

(CT+C3)+2C1C2, 03=2(Ci+C3), (36)

r;alH

Sq

1 1
S = 3(C> + 561)2, 03 =2C?, 52 =3(Cy + 5(':2)2, 0° =2C2, (37)

while C;, C; are given in Eq.(22). Therefore:

S 09 ~0.66 3.71

S 02 0.02 3.20

R 3.61 0.5
p=M,

L
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Fig. 3. The diagrams contributing into the 4-fermion operators.

The leading contribution at M. — 0o(A = A~ p. ~ M.) in Egs.(31)-(34)

coincides with those obtained before in [5],[6],[7). As will be shown below,

however, it is important for calculations with charmed mesons to account fon
nonzero momenta of the spectatc-r quarks: A £ A £ M, .

The operators entering § L f]f are normalized at the point 4 = M,. So, it

1s reasonable to separate out explicitly the ”hybrid” log effects [7], [22],(23] by
renormalizing to the point u = p,, before the calculation of matrix elements.
The 4-quark operators in 6L.s; are renormalized as [22] (we neglect possible
changes in the renormalization formulae originating from the ‘presense of the -

spectator quark momentum operators in A) :

ca_l 2
(Surloeite = | (o= 225050 = S0 100 08)
B=pia
: | Teo — 1 4
(O#p)#:yq=[(1+ mg )O#V“E(Tcu“*l)s}w'] , (39)
B=po
. ’ A¢ A® .
St = (eTug) (iTve), O, =(eluia)(aT s c),  (40)
13




As for a concrete value of y,, let us point out that the mean value of the
vacuum quark 4-momentum squared is [24]:

= - A"
b i g e 0gD3ql0>  <01359:0wGi, %5 ¢l0>
<0|gql0> <0]lgq|0>

~ 0.4GeV?2.(42)

This number determines the characteristic scale of nonperturbative interac-
tions, so that the scale u, must not be chosen below of this value. In what
follows we will use the value: :

p2 =0.5GeV%, o (p=05GeV?)=0258. (43)
as(43) 3 B

o = i 187, T = ~ 1.37. 44

oo = wa(M?) Teo = Mo (44)

Now, after renormalization ‘SLE}}_:* has the form:

6LSF, (Ho = AL(uo) + Lk (o) (45)
AL( )—G—%‘{T LY, + A%+ A%} (46)
p’ﬂ i 271' wy i b fo !

where:

A = [Val? 900 33 L+ Veal s (5,52, +0,08,)] .47

A = [1ﬂalETﬂvL;u+ qualzgﬂﬁ’j‘z (Sdsfi” +Od0;‘1’)] . (48)

and the coefficients are:

o2 Oy ~0.73 2.93 —-1.07 4.02
R ~ 1| —0.11 2.43 ~ | —=0.15 3.33
M el 348 —0.26 476 —0.36 /

The ” penguin nonvalence” (PNV) term, LE:}V, originates from the con-

tribution of the diagram in fig.4. With logarithmic accuracy Lpyv can be

14

easily obtained from Eqgs.(31)-(34) by extracting the teem ~ D, G, = —g, J,
from the light quark operator [¢g]. For instance:

[dd] *"“%(Tp%}) [JT.F};J] —*_%(Tﬂg)‘r:(s)_’
e (1, 30) J209), (49)
7@ = (a5 u+(@)+(5) (50)
c c

Fig. 4. The nonvalence factorizable penguin contribution (PNV).

where the last step in Eq.(49) describes the evolution of J7 from M. to p,.
Proceeding in this way (and using A ~ A =~ p., A2 ~ A2 ~ M2, which is
justified for these contributions, see fig.4) we obtain:

g GZ » z o e
Lk o) = SEQ - n ) M2 136 [ev s W+ New)e] 1 (5)

2r
Ha

1
1A 1
No=3(34ut+34,-244) =162, (53)
1
Ai=(Si-£0). (54)
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" For the semileptonic decays, 6L :,P ; can be easily obtained from Eqs (45)-

(48) (51) by corresponding replacements and has the form:
PN S

SLI; = AL 4+ L%,

&Li'épt

Se T, [|Vee2 (1.327 6T, 55T, c— 0.245 6T, A 5 . 5T, 2 ¢) +

a a .
Veal? (1327(:I‘ d-dl'yc—0.245¢T %d dr, }‘—c)] ,  (56)
Ho
~2/9
" 5 R 3 e 1 Ao
LL’;V ~ o ( 3 ) o M: [J§(3)-c7p (1+ 575) ?c] .(57)
Bo ’
3b. General formulae: b-quark
The relevant part of the weak Hamiltonian has the form:
Hy(p= M) =
ZEVar Vg { C1r(Mp)ETyb - dTyu + Co(Mp)dTub-eTyu} +--- (58)
a,(u = M, =5.04GeV) ~ 0.204, - (59)
C-(Mp) ~1.385, C4(M)~0.855
(60)

Ci(Mp) =~ 1.120, C2(M;) ~ —0.265.

For the beauty-hadrons one can obtain rSLg” from 8L¢,;, by evident re-

placements:
GE 1,:; 2
EH{M;.)_-—EI—Hi{(L + Lg+ L)+ (L. + L, +L)} --+(61)
p=My
. i M2\? ,
Luzg“}.,? (Iﬁ_ﬁ“) {Sﬂ(bfﬁu)(ﬁ[‘ub)+
(62)

O3(bT 2 u)(al,2-b)},
16

& = M"‘ _
L.::.'g‘“,)k? (1— J\ ) {S’E(brpc)(éf‘pr

0%(bT 4 ¢c) (el 2-b) }, (63)
TOM ! 52 (bI‘#d)(dI‘ b)+03 (BT d) (dT, _b)} | (64)
A A } (65)

52 (BTyc) (8T, €) 402 (BT, %) (ST, 5-) |, (66)

L, & T(E""] ){ (b, ) (8T, b))+ O] (br,,?s)(sr y—0b
Le= ﬂl’(}‘){

L.= T;("ﬂ(.l){S"(bI‘ﬁc)(cI‘ b)-l-O"(bI‘HEc](cI‘ Eb)} , (67)

where the dots in the above formulae denote the Cabibbo-suppressed contri-
butions. Here (z = M2/)?):

Tuu(X) = _()" Ay~ A2 9’1“*) 3 (68)

' 3
%(1-::)2 [(Aﬂ A —2g)(14+22)+ 59;:»3\2 m] , (69)

TN =
1
TEA(N) = 51/14.—: [(14+22) 2 d0 = (1= 2) A% g,,] . (70)
The coefficients in Eqs.(61-(67)): '
S; 03 —0.15 2.65 \ .
o5 e o~ 0.03 2.51
- OF ¢ 3.20 0.14 |
become after the renormalization, My — p,:
i) for the terms L4, Ly, Ly, for which the renormalization factor is
2
: FTpee. _ag(M;) 159 1
o = qhﬁ Teo = 1'T15 ] ’HH: o HI(M&E) e '5 ? ( )
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S Oq -0.31 171 ~0.53 2.93
IR ¥ ~me| —0.12 157 |~ | -0.21 269
S 0./, 3.04 —0.80 5 TN

ii) for the terms L., L., Ec, for which the renormalization stops at =M,
and the renormalization factor is:

= n:?m ~ 1.253 : (72)

Sa O4 s o =023 2230 )\ [ —039° 27k
%0 ) i, € U ST 10820 = 501 Voo )

The corresponding term LE.E'%W has the form:

b G2 iv:::b[? _)\¢
LE}E\W z—Fﬂr—M'f J5(3) b?'}*p (A+ Bys) b| +

T3(c) [b277, (C + Dys) b}, (73)
A=A (A7 = AY) + Ao (AD = A9) ~ 0.40; (74)

I o @ 1 o o
¥ Al (51’13 w Ad) + ;\2 (EAU - Ad) e 027, (75)
C=Xx3(A;+A—2A5)~031; D= ), (-31*,#1:' + %Aﬂ - ?AE) ~ 0.17(76)

| _ =8/25
)"3 = n;t Tbc ] "}i] = )"3 nc.o?!g TGG 1
~8f25
Ay = % (1 T ﬂ%_’?cawg) Too » (77)
o o ]' o a ..)"a a _}1“
A= |5 - EO:‘ , Jo(3) = “‘2‘*%“4‘(‘5{) +(8), J;(c) = e Ve C: (78)
For the leptonic decays, B -1+ v+ X, [ = e, 14, we have:

B AT LN . (79)
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AL'Pt ~

GQEI:_FE&IET#H(A) [ 1.22551‘#{: . Eryb — U,lﬁgarﬁ %‘ﬂ * EF# ééib]}in ' (80)

—8/25
6t vl (1-7"")
le e =
LRy ~ ZE A e e T NI
T 1 )‘ﬂ' -1_2/9
5 (14 3) 58] [720) 4 rat 750)] =
G |Vas|? A

e 0.046 M} [E-;p (1+ %75) ?b] : [J§(3)+0.85 J;(C)LQ. (81)

4. D" — lv + X. Determination of M,

The purpose of this section is to find out the value of the c-quark ”hard pole
mass” (see sect.2), M., using the experimental data for the semileptonic
width [25], [26]:

Ta(DY — v+ X) = (1.06 £ 0.11) - 10~ 13 GeV . (82)

The expression for I'y; can be represented in the form (see [9] and sect.3a):

. < D|ée|D > 21 ¢
F,{( Dt ) ol M {z,, - 2 Mp [1 — ; &G] -+ ﬁf(egt } ; (83)

o _ G} M}
#7192 43

fo(

o, (M? m?

Ira.d — [1

where 6}:3: in Eq.(83) is the contribution of ELL?P ;‘ into I',;, and the explicit
form of f,(z) can be found in [27],[28]. We use below 5:

3 M3, — M2
ms = 160 MeV, < (5°). >~ 0.3GeV?2, .ﬁg“‘;"z DM2 L. (85)
c

®From our viewpoint, the value: < 7 >~ 0.6GeV? available in the literature [29]
is overestimated. Let us recall (see Eq.(42)) that the mean value of the vacuum quark
4-momentum squared is: < —kf, o=14/3 < R >0~ 04 GeV?2, and the quarks inside the
pion have their momenta on the average somewhat less than those of the vacuum quarks
[30]. Let us point out also that < 2 > enters here to < D|éc|D > only and plays no
essential role.

19




The value of M, can be determined now from a comparison of Egs.(82) and .

(83). Because the dependence of [';; on M, is highly nonlinear, it is more
convenient to proceed in an opposite way. Namely, let us show that Eq.(83)
reproduces the experimental value at M, ~ 1.65 GeV. We have:

os(MZ2)~0310, 2,~00938, 2z ~0.967, (86)
Ag~0.15, Ag ~0.055, f,~3.25, (87)
°, ~2.80-10"13GeV, (88)

< D|éc|D >

Irad ~ (0.786 3

Y31
o0 [ 1=2— ~ (. ;
3 M 1.02, [ e ﬁg] 0.691. (89)

Substituting all this into Eq.(83) one obtains:

(Dt ) ~T2(0.52+485,). (90)
The quantity 61{:;, is calculated in sect.11 and is:
60) ~ —0.13. (91)
So:
Ta(D*Y) >~ 0.39T% ~1.09- 1012 GeV, (92)

in agreement with Eq.(82).

5. Mass formulae. Determination of M; and A

To find out the value of the b-quark "hard pole” ass, Mj, we use the mass
formula which has the form (see, for instance, [17] and sect.2):

- 1 Adcp
MD=M¢+A+——Mc§m2+O( ;3 ; (93)
— 1 <D(p)|ZA c|D
§m? = 1 SP@UELIPGI> ~ L« g2 > 3 (M3 —M}), (99)
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p o, a2 i a }"ﬂ-
A= (ID} ¥ Egia#l’{;pr?'
As it was pointed out in sect.2, the difference between the ”hard pole m'aés”,
M., and the pole mass, M,, can be absorbed by a redefinition of A, appear-
ing in the matrix element: '

"(95)

A2
g3ty < DlHugn |D >= A, (1+ O( f;—:zﬂ)) , (96)
or, equivalently, through the trace anomaly:
1 Bla) 2 6mn? A3
et L s QCD
5 Mp {DI e Gﬂylﬂ}—ﬁo‘f' M, +O(_ﬁ?§_)’ (97)

and by a redefinition of the next term, (1/4Mp) < D|eAc|D >= ém? —
ém?, etc.
Turning now to concrete numbers, we use in Eq.(93):

M.~ 1.65GeV, Mp ~1.867GeV,

< fe >~ 0.3GeV?, (Mp. — M2)~0.543GeV?, (98)

and obtain: -'
1.867GeV ~ 1.65GeV + A +91 MeV — 123 MeV (99)
A~ 250 MeV . (100)

Using now this value of A and:

> - 1 2 3 2 2 Adep
MB_M5+ﬁ+m{p&}—m(MB-—MB)-{-O( Mf ) (101)

Mp ~5.28GeV, < p; >~ 0.3GeV?, (ME. — M2) ~ 0.488 GeV?,(102)
one obtains from Eq.(101) *:

My ~ 5.04GeV. (103)

"Really, it is clear that we need not A at all to determine M), .
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6. B — v+ X . Determination of |V,

The semileptonic decay width B — ev + X” is obtained from Eq.(83) by
evident replacements. We have: '

2

2 5 2

Gl 2

Ves
0.040

~1.19. 10_136eVI

a,(My)~0204, z,~0460, 2z ~0635, f,~246, (105)

< B|bb|B > 7
iy = 100, [1—2;&.«;‘ ~ 0.96. (106)
Tl 2 -3“‘(M3)f(M3) ~ 0.893 (107)
b SRR A
So, (see Eq.(83):
I(B—ev+X) =Ty (0.394+ i) - (108)
The quantity Elf:;t 1s calculated in sect.11:
502 = 2u a2, (109)
and is negligble. Therefore:
V. 2
I'B—ev+X)>~047-10"3GeV ‘0 f}; (110)

If we take, for instance, [26] ® :

7(B) = (1.6£0.04) - 10725, Ty(B) = (4140.1)-10"3 GeV, (111)

®We use the LEP data for the b-quark lifetime and Br(b — ev + X ). When comparing
these with the T(45) data, one sees that the absolute value of I'(B — ev + X) ~ I'(b —
ev + X) is the same, while the LEP data give a smaller value for the total decay width.
We prefer to use the LEP value for the following reasons. It gives the weighted average of
the b-hadron widths. Because (see below) the B-meson widths are practically the saime,
and there is all the reason to expect that the b-baryon total widths are somewhat larger
than those of the B-mesons (with the semileptonic widths being the same), the admixture
of the b-baryons can only increase the weighted total decay width. So, the LEP data can
be considered as giving the upper limit for the B-meson decay width and the lower limit
for the semileptonic branching.

22

Br(B—lv+X)=(114%05)%, - (112)
then:
(B—iv+X)=
(0.47:£0.03)- 1018 Gev [ExBpt] [aedoshe]  (13)

and comparing with Eq.(110) we obtain:

Br(B —lv+ X)] i [1.6 : 10*123] "

N " [ 11.4% 7(B)

(114)

7. Calculation of fp, fp

There is a large number of papers dealing with the calculation of the decay
constants fp and fg with the help of the QCD sum rules. We point out
here only early papers [31],[32], [33], and the paper [34] close in spirit to this
work, were it was proposed to use the correlators of chiral currents in the
QCD sum calculations. :

Due to reasons which are explained below in detail (see also [34]), our
approach here rests heavily on the use of the chiral currents correlators.
One of the main difficulties which prevents the calculation of reliable results
from the correlator of the pseudoscalar currents, is the very large radiative
correction to the Born approximation for this correlator [35],[36],[37]. To
avoide this difficulty, let us consider the following correlator of the chiral

currents:
Ki(¢*) =
ifd“”‘ <OIT {Q(2)i( 1+ 75 )a(z) , @(0)i( 1+ 75 ) Q(0)} |0 >=
i /dm e'1% < 0|T {P(z) P*(0) - S(z)S*_(U) 110>,
P(z) = Qivsq(z), S(z)=Q(z)q(z). (115)

Because Kj(g?) is the difference of the pseudoscalar and scalar current
correlators, the pure perturbative contributions cancel completely in all or-
ders of the perturbation theory (in the chiral limit). On the other hand,
there appear additional scalar state contributions in the spectral density.
Let us emphasize, however, that the mass differences between the lowest
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lying pseudoscalar and scalar resonances are sufficiently large nevertheless,
both for the D and B mesons. So (after the Borel transformation), the scalar
meson contributions are sufficiently suppressed in the sum rules.

The diagrams giving the main contribution to K;(¢?) are shown in fig.5.
The spectral density (for the D-meson) has the form:

6K(s)=rh6(S—ME)+---, rp=fo ML/ M,. (116)

The sum rules obtained in a standard way have the form °:

rp(M?) =2 M, < 0|qdl0 >+ ®.(M?), (117)

(M} — M? m2 M2 M?
@c(m):exp{LMT._} [1-—4-2‘1{—;(1— Mz)], (118)

mﬁ {UinJpPGF, 2q|0} _{Ulq(zD )gq;[}}—
. < 03¢0 >3~ <0|gql0 >3

(119)

In Eqs.(117) and (119) M2 ~ 1GeV? (see below) is the norma,lmatmn point
of all operators and of the D-meson residue, rp, and the number m? is also

determined at this point. We will use for it the standard value determmed
previously [24] at this scale: m2 ~ 0.8 GeV2. '

”t; t ::, ¢
v () \ ”: N :°‘

Fig. 5a,b,c. The diagrﬁms contributing to the sum fu]e Eq.(118).

®We neglected in Eq. {118) the small contribution ~ < §g >?. The anomalous dimen-
sions of the operators §D%g and §q are respectively: (—2/3b,) and (4/b,) .
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The power corrections due to the figs.5b, ¢ diagrams do not exceed =~ 35%
of the fig.5a contribution in the region 0.8 GeV? < M? < 1.5GeV? and, on
the other hand, the values of M? are sufficiently small for the contributions
of higher states in the spectral density to be exponentially suppressed. The
function ®.(M?) varies only slightly in this region and the characteristic
value of M? (at the extremum of ®.(M?)) is:

M2~ 1.15GeV?, &, (M?)~18. (120)

Because we need in what follows the value of fp at the low normalization
point p,, we renormalize now both r% and < §g¢ > to this point and (because
they have the same anomalous dimension) obtain:

rp(u2)~2M. <0|qgl0>,, 1.8 . (121)
Finally, to obtain the concrete answer we use
<0lqq|0>,,~(025GeV)®, u2~05GeV?, (122)
for the value of the quark condensate at the low normalization point. So,

rp(p2 = 0.5GeV?) ~ 0.30GeV?, fp(p?) =~ 144 MeV

2 as(pg) .
fo(M:) = (m(Mﬂ)) fo(u?) =~ 165 MeV . (123)
For the B-meson, the corresponding sum rule has the form:
rp(M?) = 2 My < 0|gg|0 >3 B5(M?), (124)
M2 — M? m?2 M? M?
i B b b
‘I’b(M )—ﬁIP{T‘} [l*ﬁfﬁ*ﬁ*(l ZF&)] : (125}

The factor & in Eq.(125) (M2 =~ 4GeV?, a,(4GeV?) ~0.284) :

— \ 14/25 " 14/27
_ [ as(M?) a,(M¢) #
= (20m)  (GGds) = 9

is due to different anomalous dimensions of the operators §ig,0Gq and gq .

The corresponding interval (see above) of M2 is: 3 GeV? < M? < 5GeV?,
the function ®;(M?) varies only slightly in this interval, and the character-
istic value of M? (at the extremum) is:

M2~ 4GeV?, ®,(M?)~1.53. (127)
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Proceeding now in the same way as for the D-meson, we obtain:

ra(io) = 0.49GeV?, faluo) ~ 89 MeV

aig 6/25 T 8/27 - =
fa(Ms) = ( EEJD _(&ﬁ(_(;i%) fﬂ{pﬂ):_umev (128)

It is of interesL to compare the above results with those obtained in the

static limit: My — co. Let us define the constant f, (a static analog of fp)

as!:
A S A (129)
D .ru'r::' T mﬂ _-‘.? » a
Mpo=M.+A, M*=2M.E, A~250MeV, (130)
Th.cfn, in the limit M, — oo, the sum rule Eq.(118) takes the form !°: .
. 2 Ola & ; A/E i m; - :
£2 22 <00gql0S,, 6(B), #(E)=e (1__— )

~ The corresponding interval (see above) of E is: 400 MeV < E < 700 MeV.,
the function ¢{F) varies only slightly in this region, and the chamcterlstlc
value of E (at the extremum) is:

E~550MeV, HE~B50MeV)~132.  (132)

Substituting Eq.(132) into Eq.(131) we have:

i 73/2 . s (#2) &
o~ 0.20GeVo =, B Yy~ |t S EaY
. VR [mw&] /i,
Comparing Eq.(133) with Eq.(123) we see that the result obtained for fp in
the static limit does not differ considerably from those obtained for the real
value of the c-quark mass.
Although we succeeded in using the correlator Eq.(115) in which both the

Born contribution and all radiative corrections to it are absent, for the calcu--

lation of the decay constants fp and fg, the analogous trick, unfortunately,
turns out to be useless for the calculation of nonfactorizable contributions to
the matrix elements of the 4-quark operators which we will need in what fol-
lows. The reason is as follows. In the sum rules for the correlator Eq.(115) the

1%Really, we drop out power corrections but keep the value of m?2 fixed.
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fo = 180 MeV. (133)

leading: contribution is proportional to the known quark condensate < ¢ >, |
and the main correction is pmpmrtwna[ to the condensate < §oGq > which
is also known. However} if we w;l] try to calculate the matrix elements like

(see below): < DI|el,4-q ¢T3 “¢|D > in an analogous way,  then even

the leading (:anl‘lblltlﬂn is expressed through the high dimension conden-

-sate < ¢qqqGG > which is unknown. Therefore, the only way to calculate

such matrix elements with the help of the QCD sum rules is to use such in-
terpolating currents that the leading contribution is pure perturbative, and _
the leading corrections are expressed then through the known low dimension

. ¢ondensates like < GE j::- etc.

‘As 1t was pmnted out above, to deal with such sum rules we have tox
overcome in some way the difficulties originating from very large radiative .

‘corrections. We will describe now the way we used here to deal with this _

problem and which is used then in sect.9.
. Let us return to a consideration of the decay constant fp and cnnmder-
now the correlator: S

Ko(q’) = 3
zfd"“fm < OIT {@()(1+75)g(z), 70} (1= 75)Q(0)} |0 >=

i [dseits <O {P@) PHO)+S()S* O} 0>, (134)

The sum rule obtained from Eq.(134) in a standard way has the form (in the
chiral limit): .

W 3 75 dS(S—M2)? M2 -8
"‘W*Jtmf% i G

p+4ﬂLdX( o e R (10
X(z) = a + 2 Ll’z)q+.log{z) log(l — z)+ - log ety log |
) 4 e 2 P1-2 1=z
S 2 g vt AL ¥ -
ziogll_z—l- 7 a;ﬁglag Fa] L(z) = - u —Iog(lﬂt) (136)

Let us emphasize that the chirality odd condensates like: < §g >, < §eGq >

etc., give no contributior fo thﬂ correlator Eq.(134). !

B

7%e neglect the small contr bution to Eq (135) due to < G® > and < 7g >2.
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Let us try now, as a first approximation, to neglect all radiative correc-
tions in Eq.(135) and let us choose the value of S, (the effective parameter
which models the beginning of the perturbative continuum in a given corre-
lator) in Eq.(135) to obtain a fit in M?. There is a good fit in the standard
region (see Eq.(120)): 0.8GeV? < M? < 1.5GeV? at S, = 3.81 GeV?2,
which gives:

rp(fo) > 0.096 GeV?, fp(uo) ~45MeV . (137)

For the B-meson, there is a good fit in the standard region 3 GeV? < M? <
5GeV? at S, = 28.8 GeV? which gives:

re(po) ~ 0.19GeV?, fp(u,) ~ 35 MeV . (138)

It is seen that the Born approximation to the sum rule Eq.(135) gives
(at M. = 1.65GeV, M = 5.04 GeV) very small values for fp, fg (compare
with Eqgs.(123),(128)). Let us account now for the one loop correction to the
Born approximation in the sum rule Eq.(135) and make anew the fits in M?2.
We will obtain good fits both for D- and B-mesons in the standard regions
of M?-values at S, = 3.85GeV? and S, = 28.9 Gel/? respectively with the

results:

rp(po) =~ 0.149GeV?, fp(p,) ~ 71 MeV . (139)

re(po) = 0.324GeV?,  fp(po) ~ 59 MeV . (140)

It is seen from a comparison of Eqs.(139),(140) and Egs.(137),(138) that if,
in the Born approximation, we obtain the values of fp, fg which are ~ 3
times smaller than the right values Eqs.(123),(128), on account of the first
radiative correction the results increase ~ 1.6 — 1.7 times. It is clear that,
in such a situation, one needs either to account for all radiative corrections,
or to use some trick in the hope that it can help to account effectively for
a summary effect of all radiative corrections with reasonable accuracy. We
have chosen the second way, of course.

The large radiative corrections in the correlator Eq.(134) look reasonable
as they tend to increase the Born contribution which is too small. On the
other hand, these large corrections indicate that the values of the parameters
entering the spectral density in Eq.(134) are not chosen properly. In the given
case, the only parameter is the quark mass, M,, (we used everywhere above
the ”hard pole masses”), and the correlator Eq.(134) is very sensitive to the
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precise value of the quark mass (with the D-meson mass fixed). ‘The right
hand side of Eq.(135) increases greatly when the quark mass decreases.

Therefore, it looks natural to try to describe the main effect of radiative
corrections by using the effective quark masses: p,; < M,y < f:: Mb So, let
us define: -

2 T
M, = p, (1 o %ﬁl Cp + O(af)) | (141)

(and analogously for M;), and let us express M, through p; at the right-

- hand side of Eq.(135). We obtain:

d.S‘S 39% 511 (2 S
fﬂ(#e)"""‘"/ = :r:p{ iﬁ'z }x

[1+§9£,le-:(*‘—;-)+.0(&£')] , - (142)

X{zy=

(143),

Let us try now to find a value of u. which will give' the answer for fp close to
the right one, Eq.(123), and for which-the radiative corrections will remain
reasonably small at the same time. It is clear that there is no guaranty that

it is possible to succeed in this way.

Nevertheless, the results are very encouraging. For mstance let us sup-
pose that the radiative corrections are reasonably small (for a properly chosen
value of ), put X(z) = 0 in Eq.(142) and find the value of s, which repro-
duces the right answer, Eq.(123). For: pu, = 1.40GeV, S, = 4.4GeV? one.
obtains a good fit in he sangeid region 0.8 GeV? < M? < 1.5GeV? with
the result rp(u,) ~ 0.3 GeV? (compare with Eq. (123)) To elucidate the role
of radiative corrections in the sum rule Eq.(142), let us calculate it now in the
same region and with the same papameters: u, = 1.40GeV, S, = 4.4 GeV?,
and Cp = 3.87 (see Eq.(141)). The fit is not optimal but sufficiently good,
and when the right hand side of Eq.(142) is taken at the characteristic value
M? = 1.15GeV? it gives: rp(u,) =~ 0.29GeV?, in good agreement with
Eq.(123).

For the B-meson, the situation is analogous but slightly worse. Namely,
let us choose up = 4.84 GeV and put X(z) = 0. We obtain then a good fit-
in the standard region: 3GeV? < M? < 5GeV? at S, = 30.0GeV? with
the result: fg(pu,) =2 89 MeV, which reproduces Eq.(128). Accounting now
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for the radiative correction, using yy = 4.84GeV, S, = 30GeV?2, and Cy =
0.895 (see Eq.(141)), and taking the right hand side at the characteristic
value M? = 4GeV?*, we obtain the result for rg(u,) which is ~ 15% higher
than the right value, Eq.(128). Fortunately, because the power corrections
to the B-meson decay widths are small (see below), such accuracy will be
sufficient for our purposes.

In summary, it is possible to reproduce the right values of fp and fg by
neglecting the radiative corrections in the sum rule Eq.(142) and using the
effective quark masses:

pe = 1.40GeV |, pp =4.84GeV . (144)

The residual effect of radiative corrections remains reasonably small in this
case. :
As for the correlator Eq.(134) and the decay constants fp and fg, there
was no need to perform all the above manipulations because the answer was
obtained previously in this section. As it was pointed out above, our real
purpose is to calculate more complicated matrix elemeénts of the 4-quark op-
erators (see sect.9). And our main assumption is that for the correlators
used below in sect.9 it is possible to obtain reasonable results by neglect-
ing radiative corrections and using p. and p; instead of M, and M, in the
corresponding spectral densities.

8. Difficulties with naive estimates.

Let us turn now to I';; defined in Eq.(25). All the quantities entering are
known (because the radiative corrections are known here for m, = 0 only and
we neglect below the SU(3)-symmetry breaking corrections, we put m, = 0
in nonleptonic calculations):

203 + C?2 (%61
——— ) >143, (1- ~07, 4| ——% ~
( : ) 1.43, (1-2A¢6) 0.7, 4(202 Cz)ﬁg 0.36, (145)
< Dlec|D > G&+M, 13
i, -4 5 = .~ '3
S Me 02, Irad = 1.05, To = /3 = 8.4-10712 GeV, (146)
nl =
r,[1.43] ,[1.02] {_[1.05]ﬂ.d (1 - [0.3], G) + [0.36],(;} =~ 1.59T,. (147)
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Let us try now to obtain a rough estimate of the matrix element
< D*|6Lss|D* >, see Eq.(45), by putting: A ~ Pp in L,, L, (see fig.3,
Pp is the D-meson momentum), A? ~ P? ~ M2 in L; and using the fac-
torization approximation [7],[38]. Then, L, and L, give zero contributions
and:

< D+(p)|EI‘pd-d_I‘pc|D+(p) 2 pe= PuPv ff}(ﬁ‘o)a (148)

< DY Lg|D* >109"~ —1.1 M2 £3 (o) M3, (149)

;}.F,n,_.w(m)z[ 1.1-16 7 Efﬂ(‘;;)aMﬂ] T, ~—1.50T,. (150)

The contribution from Lpyy in Eq.(51) is obtained by using:

g M?2
<D|J7-e7,(1+ 'TE)*’”“ ¢|D >factor e — = fﬂ(#ﬂ) = ) (151)
QMD
AT pnv 2 [ (o) M} n=2/9 M
Tm_—gr __"j}_s""—N(l N1 - 2M2) —0.15. (152)
On the whole, one obtains:
Cpi(DY) ~ (1.59 — .50 — 0.15) T', ~ —0.06 T, , (153)

which does not make much sense. It is clear that the above approximations
are too rough and some estimates are essentially wrong. It is the purpose of
subsequent sections to improve the above described naive estimates.

9. Nonfactorizable contributions:
gluon condensates

We calculate in this section the nonfactorizable gluon contributions to
the matrix elements of the 4-quark operators. Let us begin with the operator
Ouv = cT'y(A%/2)q - qT'(A*/2)c, which gives zero matrix elements in the
factorization approximation. We want to calculate the contribution of the
fig.6 diagrams with the help of the QCD sum rules.
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Fig.6a. The nonfactorizable gluon 'Fa'g.ﬁb. The nonfactorizable gluon -
contribution to the weak annihilation. contribution to the cross weak :
' annihilation. :

Practically, however, it is more convenient to calculate the nonpertur-
bative gluon emission amplitude, fig.7, and to obtain then the contribution
to the decay width by averaging its modulus squared over the gluon field
fluctuations in the QCD vacuum. : '

() _ i (h)
F:'gs-. 7a,b. The diagrams for the meson transition into a current
with an emission of a nonperturbative gluon.

To calculate the fig.7 amplitude, we replace the D-meson by the interpo-
lating current and consider the correlator:

T =i / dzezp{ipz} < 1gl|T %) Ip(0) [0 >,. (154) -

THz) = (@) Tusy-elz), Ip(0) = E(0)i(1+15)g(0).  (155)

Calculating the contributions of figs.7a,b diagrams to the discontinuity of 1
in p?, integrating it from the threshold up to S, with the weight exp{—p*/M?}
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and equating to the D-meson contribution, we obtain the sum rule for the
D-meson transition amplitude into the current J 4 with an emission of a non-
perturbative gluon 12: :

4w M., g,
N T Forn i

S, 2 o
"G"fpg ?EIP{*M—z}r

){iégangr Gfmfg}pa, (156)

lo = [y LG epp{ MazS Y, 2 Al

e
G,uu - "5'5_1.:11}&:!'(;10-

(In accordance with the discussion in sect.7, we replaced M. by u, in the
spectral density, see Eq.(144), supposing this accounts for the major effect
of radiative corrections).

Unfortunately, the attempt fails to obtain a good fit for ?’5 in the standard
region of M?: 0.8GeV? < M? < 1.5GeV?, and with S, in the reasonable
vicinity of its optimal value S, = 4.4 GeV? (see sect.7), because IS is nearly
independent of S,. For instanse, ff; varies as: 2.0 > IS > 1.2 in this region
at S, = 4.4 GeV?. Therefore, the best we can do is to take for f& its value
at the characteristic point M2 = 1.15 GeV? (see sect.7) :

I ~Te(M?=1.15GeV?) ~ 14. (158)

Analogously, 0.4 > Ig > 0.3 in the standard interval of M2 and at S, =
4.4GeV?. So, we take:

I ~ I& (M? = 1.15GeV?) ~ 0.33. (159)

On the whole, we estimate:

b 4vM.q,
= @) ro(us)

?The term Ig in Eq.(156) is due to the fig.7b diagram and is parametrically smaller
than those from fig.7a.

N, {14iG2, + 03362, } Dex. (160)

33




Taking now the product N, N;} and averaging the gluon fields over the vac-
uum, we have finally 13:

B [T o e ) :
<D@)||eTTu5q-Tv5c| [D(p) >q= —5 = v ) C&, (161)
He

MAM? o
C§ o ———ot o < 0} =G, 10 > x
¢~ 4872r3 (p,) | gt |
[(T&)? — (I&)?) ~ 0.48 - 10~2GeV*. (162)

The situation is qualitatively the same for the B-meson (E} varies as: 0.46 >
I > 0.35 in the standard region 3GeV? < M2 < 5GeV?, S, = 30 GeV'?),
and proceeding in the same way we obtain 1%, ~ 0.4, I% ~ 0.03, so that:

Ce~1.15-10"2GeV*. (163)

Let us point out that the parametric behaviour of Ty is: Ig = 0(p./M.),
I = 0(p2/M?). So, the matrix element Eq.(161) which describes the non-
perturbative contribution to WA (weak annihilation, fig.6a ) and CWA (cross
weak annihiltion, fig.6b ) behaves as: 0(u2 M,), i.e. in the same way as the
factorizable contribution Eq.(148). This gives a relative correction to the
decay width: 8T'/T' = 0(u3/M?3), as it should be.

In order to understand to what extent the factorization approximation is
good, let us compare Eqs.(161)-(163) with the factorizable matrix elements:

< D(p)|eTy q - G, c| D(p) >40~ .
(E*;rf;) fB (o) ME ~ (Eﬁu) 7.2-10"2GeV4. (164)

< B(p)|bT q - @1, b| B(p) >12*'
(2282) 73 (o) M ~ (2222 22,0 10-2Gev*.

It 1s seen that the nonfactorizable contributions are ~ 15 — 20 times smaller
than the corresponding factorizable one, so that the factorization approxi-
mation works very well even for the D-mesons.

131t is implied, see figs.6,7, that the quark flavour in Eq.(161) is such that it is a valent
one.
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It seems therefore that there are no chances to change essentially the
results obtained in the previous section. As will be shown below, this is not
the case really for the following reasons:

1) Although the matrix element Eq.(161) is small, it enters §L.;; with much
larger coefficients in comparison with the factorizable contributions;

2) As will be shown in sect.12, the characteristic value of A? in Ly, Eq.(31)
ist < A2 >~ 0.35 M3, while those of \? in Ly, L, is: < A2 >~ M3, and
this effect suppresses strongly the large factorizable contribution, Eq.(164).

Let us perform now an estimate of the nonfactorizable contribution to the
matrix element of the operator S, , = eI’y ¢- ¢I'y ¢. For this, let us consider
the correlator:

T = /d:r:e:rp{ipx} <2IT T () Tp(0) 0 >, (165)
Tu@) = i@ Tue(e), Tp(0)=()i(147)9(0)  (166)
and calculate the fig.8a contribution. ** We have:
T = 8i M. g2 / dk
(27)* J kl(p+ k) — MZ]
(k% kv gup — kuky kp) [G,‘;;Giu] : (167)

One obtains from Eq.(167) with logarithmic accuracy:

d 1

2 ul
i - 1 maz
Sy o (#?n;ﬂ) op? p? — M2’ )
Qg a a 1 (v} a
Q= - HAGPAPF—‘"EPJ# L ts E (169)

Proceeding now in the standard way, one obtains the sum rule for the D-
meson transition amplitude into the current J, and two gluons:

2 1 pl 1 *e‘iri‘rz—.f'wj'2
M, ~Q _Mc maz D € S B
=00 Mty ot (i) e { o0

14 Because we can expect beforehand (see the above discussion) that the nonfactorizable
correction will be small, we confine ourselves to the main contribution from the fig.8a
diagram, neglecting even smaller contributions from those diagrams where gluons are
emitted by the c-quarks. :
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As we need here a rough estimate only, let us put: M2 = 1GeV?2 in Eq.(170)

(see sect.7). Besides, because both p2  and #2oin Eq.(170) remain finite
at M. — oo, we put: : '

P
10 ( mum) ~ 1-
: *ul?m'n (1?1)
Therefore,

Now, taking the product M, M} and averaging the gluon fields, one has:
< D(P)IeLs ¢ qTy ¢ |D(p) >nonsac (62GeV=0) < 012, 0, [0 > (173)

Unfortunately, this 4-gluon vacuum condensate is unknown. So, let us obtain
first an estimate in the factorization approximation, see fig.8b.

6)

 Fig. 8a,b. The nonfactorizable contribution to the matrix element,

One has:

1 2 Ny o '
<0|Q,9Q, 0 >~ 576 JerMp < O0|—GL,|0>* +O(pup,), (174)
so that: -

<D(p)IeTyuq 4T, ¢|D(P) >nonsact~ gy (0.5 10~% GeV*), (175)

(and the term ~ p,p, i$ of the same order). Comparing Eq.(175) with
Eqs.(164) and (161) we see that the nonfactorizable correction is very small
in this matrix element. Therefore, even if the approximations made above
give the right order of magnitude only, we can safely neglect this correction.
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10. Nonfactorizable contributions: quark con-
densates

The contribution < D|6Lpyyv|D > was calculated in sect.8 in the factor-
ization approximation. Because it is not large by itself and nonfactorizable
corrections are also small (see sect.9), it does not make much sense to ac-
count for them in this matrix element. So, we will use for it the expression
Eq‘(lsz) I ey, :-'.'1.-~.,'a: .- ;
There are, however, analogous corrections of the ”penguin” type in the
matrix elements of the operators L,, L4, L, in Eqs.(45)-(48), see figs.9, 10,

and we proceed now to their calculation.
C c

D D

P (g

Fig.9. The nonvalence nonfactorizable penguin contribution (NV).

C C

Fig.10. The valence nonfactorizable penguin contribution.

For a calculation of the diagrams in figs.9, 10 (see also fig.4) let us consider
the correlator:

Ty i/dre‘“”f/dye'”’” < 01T T (2) S, (0) Jp(w)[0 >, (176)

Jp=¢i(l1+7s)g, Jp=qi(-1+7s)e, Su» =elu -9T,c, (177)

where q and 4 are light quark fields
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One can neglect the_ co-ordinate dependence of the light quark fields in
Eq.(176) for calculations with logarithmic accuracy, and obtain:

% 2 M, 2 M, _ '
it 1 = j“'“f X e
fon (pf e Mf) (pg 8 Mf) VIS 2 woisudivia| )
Ky =< 0[g(0)T,1(0) - (0)T,q(0)|0 > . (179)

Proceeding in the usual way one qbtains now from Eq.(178).the sum rule:

< DE)IS, s OID() Speng

MJ — A2 1 M2 _pr2

where the dots -deﬁo‘tﬂpéwer corrections in 1/M2, 1/M2.
- Let us consider now the contribution of various penguin-diagrams to the
matrix element < D|éL.;¢|D >, (see Eq.(45)). In order to check the nor-

malization, let us start with the contribution of fig.4. Separating in Ii;p,,,

Eq.(179), the penguin contribution from the operator v 1: _

y 1= g2l () ' S &
- (F) 2@, . as

peng 6

-and factorizing in the_' standard way the 4-quark Eolldeﬁsaté, we obtain:

; : 2% 1o &
< DIS_“L;JD.?’{;@AE E}? Juv (1 = ncoszo)
2l it M2 — M3 | S M2 = N2
, -[Q_Mc b i } FM* L 60 - ]

rp . D

. (182)

'On _the other hand, to calculate this contribution there is no need to use the.

- sum rules at all because, after the replacement Eq.(181), this contribution to
the matrix element can be obtained directly through factorization:

3 g n;éfbv pL -
2 9uv (L=n72P)rg (183)
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Comparing with Eq.(182) we see that we simply reproduced the sum. rule
used before (see Eqs.(117),(118)): '

M2 —m2

M. <0lqGl0> e ™ [I+--J~rd. . . (184)

Therefore, we can rewrite Eq.(180) in the form:

2. : , '
e (185)

> D| Sy [ D 5 < 0laqf0 52 ke

It is not difficult to obtain now other penguin contributions from Eq(185)
Namely, the contribution of fig.9 is obtained by separating out the penguin
contribution from the operator [¢q] in K, ,:

4 U fee(md) © - (] (2% s
{gg]peng“‘!’ -'{)7 [ “,'2(’11‘ . ]ﬂg (E_rl)] (? Jp, _ (186)

Hrin

which .giVEE after the standard 4-quark condensate factorization:

- 2 ﬂfa(ﬂg). i”’z..a: i
- < D|[Sus],, |D >yigoex 77 Juv rH(Ho) [T log ”"Q’ﬂ:‘n, A, (187)

where A, = 1 if the ¢ in Sy, is u- or d-quark, and A, = (<588 > [ <
du >)* ~ 0.64 if 1 is the s-quark. Let us point out that, unlike the stan-
' p : Dby
dard penguin contribution, fig.4, which contains the factor: (I =7z "'_- .
(ors(p2)/27) log(M?2/u2)), the fig.9 contribution contains as an upper cut off -
the quantity uZ, ., which remais finite at M, — oo (see also BEq.(171)).%
If we consider now the operator O,, = [63‘2—1"#1,-‘; . 1,-!'}%I‘,,c]_ instead of
Suv, Eq.(177), then we have clearly: : - '

1
s D|O#UED :’fig_g: — g < DlSﬁy|D }f;gf_} . .' g (188)

For the operator O, ,, however, there is an additional (valence) penguin -
contribution originating from the diagram fig.10 (plus the mirror one). It
can be obtained easily from the relation analogous to Eq.(185):

2

"D :
A g, 189
(:D_io‘”ID} {ﬂi@ﬂﬂ 3?'2 " ( )

131t is clear that the contributions of figs.4,9 are nonvalence, i.e. the.same for all
D%%:4 mesons; they only shift the position of the "decay width centre” I'?,. _
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NNE . TR
P_uu =< U|QFH*§"Q"QFVT?|0}= (190)

by separating out the penguin contribution:

& A as(p3) T
qI’ a—q] — [-—9—-105 —== || J*, (191)
[ ? 2 peng ﬁﬂ' nufnin #

and factorizing the 4-quark condensate. We obtain (the factor 2 accounts for
the mirror diagram):

it 2
< D|[O4u],, |D >gig.10= %Hw rp (o) [% log (ﬁ—zﬁf)] .(192)
Let us point out finally that, within the logarithmic approximation, we can
put: A > X ~ P. ~ M, for the contribution of fig4, and A ~ XA ~ Pp for
those of figs.9,10.

For the B-mesons, it is sufficient to replace: rp(u,) — r5(p,) in the
above formulae Eqs.(187),(188),(192) to obtain contributions to the matrix
elements of L, Ly, L, in Eq.(61) (for the B%:°* mesons there are no contri-
butions from L., L., L. in Eq.(61)).

11. Corrections to semileptonic widths

We are ready now to explain how the value of §'P*(D*) used in sect.3 was
obtained.
Let us recall (see sects.8, 10 and fig.9) that:

2 < 55 >\?
(oM ET. 5 - 5 5 ~ 2 —) r?
<D (p)lcl"lus 5[y c|D™(p) P 279;1#}% ({ ﬁu}) "D(Po)t
LXY

A¢ '
<D¥(@)egTus 55Ty e|D*(p) >4,
~1 < D*(p)|&Ty 55T, c|DH(p) >y,

) e o < O[30 > '
Po = —"'2“_—' ng (”2 - 0.1, < Ofﬁﬂlﬁ i DB, (193)

min

< D+(F')f clyd-dlyc |D+(p) Z o™ Pu Pv ff}(ﬁﬂ} + ﬁgw Po T%{ﬂa)(lg‘l)
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Therefore (see Eq.(55) in sect.2):

1 e Gy
AT'Pt(D+) = SR < D*(p)| AL"*?*(u,) |D*(p) >4, ~ _54WLD

M3 po7eorh (o) ¥o, o = [SE2SIV., 12 + Veal?] ~ 0.656,  (195)

X

ATP(D) 1032 13 (10) M,

[iept ~ -3 M7 Po Teo ¥o =~ —0.045. (196)
In addition (see sects.3a,8 and fig.4):
le e 1
‘5PP§;V Y My < DILE:V (Bo) |D >y, =
G;‘ “2;"9 2 a _,\ﬂ 1 l ~
Izﬂ'MD(l ¥ ??{:o )Tﬂo M.c { Dl Jp(S)-CF‘Tﬂ( + E‘Ts)c |'D }ﬂa_
G% ~2/9 2| 4 2 M2

il % 3 & , 9

127 Mp(l Neo )TM Mc 9 rﬂ(” ) 1 QME; (1 ?)

51‘;‘;}:'; 64 sz)(ﬂa)Mfi ~-2/9 M
Ff}ept = _Eﬂ' ME (l = Neo / )Tcﬂ 1-— 2‘!";—% o —0.085.(198)

On the whole:
1 < DH|SL)F |Dt >
1 2Mp

Y= =~ (—0.085 — 0.045) ~ —0.13 (199)

For the B*:%* mesons (see sect.3b), the term AL'"P*(yu,) gives no contri-
bution, and the analog of eq.(198) looks as:

Tely .
iept
2 3 £ sk 2

All the above described contributions are nonvalence. There is also a size-
able valence contribution to the D, leptonic width (see Eq.(56) and sect.9):

G 2

lept a2 > £ Y il
AT (DY = v T |Ves|® (—0.245) T,,, < D,|eT, 5 8%
5Ty 4 ¢|Dy >, goofr=|Ves|? (—0.245) M3 (C5 - PG ) (201)
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A I'\i'ept ( D, )
I-u';pt

87|V, [*(~0.245) 372 (C% — P§ ) ~ =7%. (209
[

12. X and )\

As it was indicated before, the values of A and ) (in terms of the c-quark
and spectator quark momenta) are clear from each diagram. Namely (P, is
the c-quark 4-momuntum, k; are the spectator quark momenta, Pp is the
D meson momentum, Pp = P, + k; = Peg + kg for the initial and final D
mesons):

a) A (P, + k) = Pp for the figs. 3a, 3b, 6a contributions;

b) A~ X~ Pp (within logarithmic accuracy) for the figs.9, 10 contributions;
¢) AxAd~P.~ M, (within logarithmic accuracy) for the fig.4 contribution;
d) A~ ((Pp — k1 — k3) for the figs.3c, 6b contributions.

The differences between all of the cases above disappear in the formal
limit Mg — oo but, as will be shown below, they are of great importance
for D mesons and are sizeable even for B mesons.

Because the D meson momentum, Pp, is not an operator but a fixed
number, we have to deal practically with the case ”d” only. So, let us
consider in detail the matrix element (see fig.3c and sect.3a):

Ip =< D(Pp)| MeT'yd-dT, ¢|D(Pp) >=
<A} >< D|el,d-dlyc|D >, (203)

where ) = (Pp — k1 — k) and ky, ko are understood as the 4-momentum
operators of the initial and final spectator quarks.

As it was shown above (see sects.9, 10), the factorization approximation
works very well even for the D mesons, and the non-factorizable contributions
are much smaller than factorizable ones. So, we can reliably estimate Ip as:

Ip ~ Pj < D|eT,d|0>< 0]dT,¢|D> —
4(Pp)a < D|eTyd|0>< 0|dkalyc|D > 42 < D[l kad|0> x
<0|dkaluec|D > +2 < D|eT, d|0 >< 0jdk’Tyc|D> . (204)

Let us Tefine the matrix elements in Eq.(204) as:

<0|gk,ivsc|D(P)>=rp <z >p P,, (205)

* : 1
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<0|gk*yu15¢|D(P)>=ifp P, <k?>4 . (207)

The quantity < z > has the meaning of the mean momentum fraction carried
by the light quark (in the P, — oo frame), and < k2 > is the characteristic
value of the light quark 4-momentum squared inside the D meson. So-

£ % < —k?>,
M3 Mj )

1-3<:::>,4+§<:x:>i—2 (208)

2

—

Using the equations of motion for the matrix elements Eqs.(205), (206) it is
not difficult to obtain:

_ (Mc—qu
{I}P—E(l MB :
{;Ir}A:%{m}p [I+O(%—)]. (209)

As for the value of < k2 >, the estimates obtained from the corresponding
QCD sum rules for this quantity show that it is not far from its value for the
vacuum quarks (see Eq.(42)). So, we have 16:

<z>4015, <-k'>4~04GeV?, <13} >~0.35M3. (210)

It 1s seen that it is of great importance here to account for the spectator
quark momenta, in spite of the fact that these are power corrections only
in the formal limit M. — oco. In what follows, we use the same estimate
Eq.(210) also for the fig.6b contribution:

z 28 R

0.35 M} < D|éTy4 d-dT, 2 ¢c|D> . (211)
The corresponding expressions for the B mesons look as:
<T>a~6%, <—k*>x04GeV?, <2} >~08M%, (212

so that the effect ciiscussed 18 sizeable even for B mesons.

®That the effect is large for the D mesons can be seen from a simplest rough estimate:
k1 = ky =< >4 Pp, iiﬁ{Pﬂ -2{$}APD}2 :(l—ﬂdx}A}zM% 2{].5114%.

43




13a. Calculation of the D*°° decay widths

Let us collect now the results obtained in previous sections (see also Ap-
pendix). As it was shown in sects. 3a,8, keeping only the leading term and
first corrections O(1/M 2), we obtain a common nonleptonic decay width for
all D¥:%* mesons:

Gy M5
64 73

Accounting for the contributions of the four-fermion operators, we obtained:

s 2159 4 Iy = ~8.4-1073GeV . (213)

I) The nonvalence contributions (which are the same for all D%°* mesons
(see sects.3a,10)) from the diagram of fig.4:

1
6Lpnv = 5, < D|Lpnv (o) |D >=

G a
(1 3219 M < D] | 753) &5 (s + M) e] 1D >0,
GF B —2;9 2 {__E 2 Mf
arMp L " e ) ME | =5 rh(uo) Ny ( 1 owz) | )

2

$Upnv o zfn(ﬂo)Mu no2l® M;
fiz S Vg =——=(1- ) Ny l—m o~ —0.15.(215)

II) The nonvalence contribution from the diagram of fig.9 (see sect.10):

1 Gy 2
*5FNV e Tl D|AL(p,)|D >pny o~ i M T

QNV — [ Att +Ad(fvud|2 + fslvuslz) A ((E.!“”’I::.tl2 + II’:‘:J!E)] —9: 3:

MD Po ANV

e Z:E%Z’f ~ 0.64, (216)
where the subscript NV means nonvalence contributions,
M ~ 32 T2 b (po) Mp
. 27 M7
So, the total nonvalence contribution is:
Alny _ [6Tpnv] + [T Ny]
by 7a" L'y

Po Qnv ~ —0.15. (217)

~ [-15%] + [-15%] = —30%. (218)
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IIT) We have for the valence contributions (see sects.3a, 9, 10 and figs.6, 10):

1 Sl
AT, (D) = 3¢ < D°|ALC)(u,)|D° >y

4'_15;9 Ou M3 (C& - P}) , -
AT'ni(D°) ~ 16 72 —=Z Mp Oy (CG - P ) ~+33%. (220)
T M
+
M_). < DAL ()| DF >y

r
[151210%*,{4]1/ e

M A ST
[43W2MEIPLJIEO¢( M% C'Gfgf’:‘f-)

[—62%] + [ -21%] ~ —83%, (221)

where the subscript V means valence contributions.
For the D, meson 17:

M == < DSIﬁL(G}(Fo)lﬂs >y

B
2 3 2
1672 |V, P LBUME 5, 05> ] 4
M
[mnﬂm,;? =

M3 75 0: (Cg — Py ) ]
4 pe
3

M <AL >
|47 1 04 ( W Ce-3# ) |=

[-3%])+[-3%]+[-1%])~ -T%. (222)

We have therefore for the nonleptonic widths (the experimental values are
given in brackets, all values are given below in units of 10-13 GeV/):

Tni(D¥) =T, [1.59—0.30 —0.83] ~ 0.46T, ~3.9 {4.05}, (223)

[ni(D°) ~T,[1.59-0.30+0.33] ~ 1.62T, ~ 13.6 {135}, (224)

171 am indebted to N.G. Uraltsev who pointed out an arithmetical mistake in the original
calculation of this correction.
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Tai(Dy) 2 To[1.59~0.30 - 0.07] ~ 1.22T, ~10.2 { ? }, (225)

We have for the semileptonic widths (see sects.4, 11):

P (D*) = 1.06 (input), (226)
['P*(D°) ~ ['ert(D*), (227)
T'P'(D,) ~ TP (D*)[1 - %] ~ 1.0 . (228)
We have to add also to I''*P¥(D,) the ” D, — rv” contribution:
I'D, —7v)
FIOEPt 7
215, (Mp)Mp, M? M? EN Mp))?
242 Lo o Me [y M2 ] ~ 0.16 (45:02)) "
(D, »rv)~04, TPYD,)~2-1404~24. (229)
So, we have finally for the total decay widths:
Peot(D) >~ [3.9+21]~6.0, {6.2} (230)
Por(D°) >~ [13.6 +2.1] ~ 15.7, {15.6} (231)
Piot(Ds) = [10.2+2.4) >~ 12.6, {138} . (232)

13b. Calculation of the B*°* lifetime differences

Substituting the corresponding numbers into the formula Eq.(25), we obtain:

202 4.C* b
i+ = ~1.197, < B|bb|B >
3 2Mp

~1.00, I.4=~098, (233)

L Gy My |V |?
64 73 )

The values of the phase space factors z} [39] (for My = 5.04GeV, M, =
1.65GeV, M, = 1.784 GeV') are:

a2 X Biaiii E, (234)

258 2 0460, 22%* ~0.131, 25 ~(.105. (235)
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So, neglecting the 4-fermion operator contributions (which are small, see
below) we have for the relative yields:

ntd! ~ { (1)ud + (0-285) 5 + 2 (0.260) ey 40 + (U,OGG)W} ~ 1.87, (236)

and the branching fractions are respectively:

Br (b — cés) ~15%, Br(b— cev)>~13.9%,
Br(b — crv)) ~ 3.2%), Br(%) ~0.23. (237)

The above value of Br (b — cev) is ~ 20% larger than the LEP data [26],
and this is a well known difficulty [40], [41], [42]. What we can add is that the
4-fermion operator contributions calculated below are too small and can not
help here. From our viewpoint, one of the important reasons for this discrep-
ancy is that the radiative corrections to the nonleptonic widths are known
for massless quarks only, and there are reasons to expect that accounting for
nonzero final quark masses will increase considerably the nonleptonic radia-
tive correction. '® Another evident reason which comes to mind is that the
energy release is not large in the b — ¢és mode, so that it can be enhanced
due to nonperturbative effects. Although the present data do not support
this, it seems that the experimental numbers can change here with time.

Let us proceed now to the calculation of the B meson lifetime differences.
Using results obtained in preceeding sections (see sects.3b,9,10) , we have
for the valence contributions:

- Y 2
AT(B )21612<A‘%}(1— M? ) :

I's Mg <AL >
fB(po) M3 Mp 4
{5'.:1 EA}E B—3GdW CE—EEBP;F o
(=1.9%)+ (-1.3% ) ~ -3.2%, (238)
34 2
2 1-— E&-
EB — !Ed;ﬂ ( ME—) 0 k.30 (239)
< A5 > (1_ M2 )
<AE>

18T illustrate possible changes, we can put M. = 0 in the leptonic radiative correction
and obtain: Br (b — cer) ~ 12.9%, in comparison with ~ 11.4% from the LEP data.
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AL(B°) _ .. 2 2 Mg Z\~B _ pB|
T, = 1671~ 2’0, [+ Z)CE - PE| ~0.6%, (240)
AT'(B,) = 2 1/2 Mp
T 167°(1 — 4z) FEO“X
[(1-2z)CE - (1-22) PB] ~ 0.5%, (241)

where: z = M?/M}. The nonvalence penguin contributions are also small,
both factorizable (see fig.4) and nonfactorizable (see fig.9):

Alowe o84, SB0IMG (M0}

- -A~-0.5%. 2
T, 9 Mf 2M§)A 0.5% (242)

AlNy N_E?_Tzfi?(ﬂo)j"fg
 yr gl M/

' . < 55 >?
[4(1 - g)ﬂAd — A, —V1- 4m(1 - ﬁx}mzi“] ~ —0.1%. (24_3)

PoX

It is seen that, analogously to the D mesons, the largest effect is the nega-
tive contribution to the B~ width due to Pauli interference, but it is only
=~ —3% here, while the B° and B, meson widths receive both only ~ 0.5%
corrections. '

Let us comment finally on the accuracy of all the above calculations. It is
extremely difficult to give a reliable estimate of the accuracy. Too many issues
are involved, and estimates of various contributions vary in their accuracy.
So, the accuracy of predictions for various quantities (the quark masses,
|Ves|, the D meson decay widths, the B meson lifetime differences, etc.)
differ from each other considerably. So, we do not even try to give here any
concrete numbers, except for some ”educated guesses” like: a) the c- and
b-quark masses can hardly be less than 1.6 GeV and 5.0 GeV respectively; b)
fB(M,) can hardly be larger than 120 MeV; c) the value of |V;| can hardly
deviate more than £0.002 from 0.040 (with the experimental value of the
semileptonic width taken at its central value, see Eq.(114)); d) the lifetime
difference between the B~ ‘and B° mesons can hardly be more than ~ 5%.
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14. B° — B° mixing

The effective Lagrangian which determines the mixing width, I'ys, is ob-

tained directly from Eqgs.(61),(65) by the substitution: (b...s) — (5...5) ad

- GE (V V*_]E
mix) e 20
Lfllidfh(Mb) = A =

TS L{mie) (M),

e | xe W
LEY(My) = 57 (5Tub) (5T b) + 03 (65T, b) (55T b), (244)

where q denotes the s or d qﬁark field. Because the difference between ) °

and X (see sect.12) is not of great importance for the B mesons but compli- -

cates considerably the renormalization formulae, it will be neglected in what
follows. Then, using the relation:

A PLy 2 _ = y
(55 Tub) (55 Twb) = ~ (8T b) (3T, b) + 7 940 (3T, B) (5T, b) , (245)

we can rewrite Eq.(244) in the form:

L= (M) = (S0 - 20 RVt el barah +
. 3 4 .
' 1 =5 % "

The operators in the square brackets in Eq.(246) renormalize multiplicatively
[43], so that we obtain:

L5 (po) = «[8T,b-3T, 8], +B[gus 5T,b-5T,0],

a=A3 (S: - gog) ~ —1.93,

8= i [ﬁb., (%o;: + s:;) + ALTS (%o;; ~ 5::)] ~ (.83,

Ao = (252) 5 (20 g (247)

%1t is implied in Eq.(244) that when calculating the matrix element each of two b-

operators acts on both sides, and this gives the additional factor 2 which is compensated

by the additional factor 1/2 introduced into Eq.(244)
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Using now (see sects.8, 9):

P L mix 2 i :
<B (p)l LEIF ](.UO) |Bo(p) > factor ™ 2&f§(f“0) (5 Py Pu + ETJE Gu u) +

4
ﬁggf.é(ﬂ'a) Mg Juv

< B0)] K 00) B (2) >nomsactr 2| ~20 2222 G 4

2 guv [ (~C% +2P}) + 8 (~6C% +3P$_)} , (248)
and contracting with:
N 1+22 M?
T = V1 —43{ 7 (Bupy =" 9u0) +pz‘“9'w}: T =5, (249)
b

we have:

T;E?J < Eo(p)l Lg;ﬂ;iﬂ(ﬂo) |BG(P) }factorz
' ilg 2(—0.57) f3(po) Mj ~ —~T.0GeV?,
T < B°(p)| LU (o) | B°(P) >nonfactor~1.2GeVE.  (250)

So, we have finally for I'1»:

Tia(B). - 1< Bl LENR) B2 >
T I's 2Mp e

2 (1,) M3
sz(JL% B [-0.57(1 _ 17%)] =~ (-2.7%) €k m (251)

Exm 167

where £xar 1s the ratio of the Kobayashi-Maskawa factors. It is seen that
the nonfactorizable contributions appear to be surprisingly large here and
decrease the mixing by ~ 17%. '

An analogous situation takes place for the mixing mass of the B° and B°

;nesons. The effective Lagrangian can be found in any review and has the
orm:

LGasd(My) = Co[3T, 55T, b, (252)

where C, is a !mo:ﬁn coefficient (see sect.15). The above operator renor-
malizes multiplicatively [22], so that there appears only the factor Ay, (see
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Eq.(247)) when it is renormalized to the point y,. The matrix element is
given by Eq.(248), so that we have:

< B°| LD (My) | B° ~ Apy S f2 (o) ME Co = 0.95GeV* C

< B ]L ( Er)iB > factor™ Nbo 3,fB(Fﬂ) BLo =V € o

< Bal Lgﬁiﬁ}(Mb) |BG }nﬂﬂjuctarf
2Apo [~6C% + 8PY] Co = —0.176 GeV* C, . (253)

On the whole:
- 5 8 £
< B°| L2 (My) |B° >ay= Avo 3 fB (o) M (1 - 18% ) Co =

%‘fﬁ(Mb)Mﬁ (1—18%)C, = 0.8GeV* C,;
Bp(M;) ~ (1= 0.18) ~ 0.82, (254)

and the corrections to the factorization approximation are also very signifi-
cant here.

15. The unitarity triangle

The purpose of this section is to show that the results obtained above are
marginally consistent with the available data and can be used to determine
the parameters of the unitarity triangle (we use below in this section the
Wolfenstein parametrization and the notations from [45]).

We would like to emphasize that we have not tried in this section to
account for all the various predictions available in the literature for the pa-
rameters involved (fp, Be, Bk, etc.). In fact, there are a number of papers
which try to account with an equal weight for all the values available in the
literature for these parameters. This results in large uncertainties which pre-
vent to obtain more or less definite results from the available experimental
data. Instead, we prefer to use only those results which, from our viewpoint,
are more reliable and this allows us to obtain the concrete predictions for the
unitarity triangle parameters. |

1). Using: Vep = AAX?, A =~0.22 and (see Eq.(114)) Vep =~ 0.040, one
has: -

A=~ 0.825. (255)
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 2). The By — By mass difference is given by: -

r =ﬁMd~
d= T'p

.G‘J - g " - «
8 577 M Mp [f5 Bb) yy, 735 S(a1)] [Vaaf? = (0.71 4 0.07), (256)

B 9 3 3 [-im X2
U Sz)=z |~ - - = =
i (=) _: ‘?:[4 i(z-1) 2(;-:—1)2] +2:(z—1) log .

Wl = A (= 7] 2077104 [ g ) 7).

Using in Eq.(256) ( see Eqs.(128),(254) and [45] ) 2°;

M; ~180GeV, [ S(2])] ~0.85-2.7~230, (258)

_rg:l_.ﬁ-m-”s, fo(My) >~ 113 MeV, Bg(M;)=~0.82, (259)

- ‘one obtains:
{( p) +1}]._ 0.35_2‘{)' : (260)
3) . Using also:
L’Lbz 2 L3 2 fdioo Gl ‘ . .
Vol =S¥ +77) 21107, (P4P)x02, 0 (260)

one obtains then from Eqs.(260), (261):

p~—04, p~02, 6= tg“l(g) ~0.85 7, (262)

sin (20) = 0.60, sin(26) ~0.28, in(27)~—0.80.  (263)

?°In order to use the numericals from [45] we use the mass M* which is the so-called

MS mass; M} = 180GeV corresponds to the pole mass: Mf’““ >~ 190GeV , which is
marginally consistent with the CDF and LEP data, [46].

02

4) . The CP-violating part of the K° — K° mixing can be written in the
form [45]:

e/t ex = Ce B AN [Py + AP X* (1 - p)mac S(=7)] »  (269)

_ G} F§ Mk M,

= ~ 3.85-10%, 265)
£ 6272 AMg (
Po - 3c(7?383(zt)“ﬂ1):

Ss(ae) = [log 2t — §72; (2Llgme 1)) (266)

M: 2
Fis ( : ) . M.~165GeV, MF~180GeV, (267)

Mw

m~080, g ~057, n3~0.36. (268)

Substituting all this into Eq.(264), one has:
e ey =226:1072~ 731073 B n[(1-p)+w,], (269)

P, '
- ~ 0.38,
e ValP i3k S(z7)
0.31
n(l—-p+wo)z—~;. (270)

Let us recall [45] that, unlike Bg(M}) in Eq.(254), Bk in Eq.(264) is defined

as:

. 8
< KYsT,d - 3T, d|K® >,= EB,:f{,m) = My, (271)

Bk = Bk (i) o *%(p) . (272)

The characteristic value of Bg obtained from lattice calculations is: Bg =
(0.9 £ 0.1) [47], and substituting Bg ~ 0.9 into Eq.(270), one obtains:

n(1—p+wo) ~ 0.345, (273)
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Using now: p >~ —0.40, w, ~ 0.38 one obtains n =~ 0.19. ; t wi
Eq(303) 0 n , 1IN agreement with

5). Clearly, we can proceed in the opposite way: using Bx ~ 0.9 we .

obtain from ex and z,:

n(1-p+038)~0345, (1-p)?+n?~20. (274)

This p;r-,ims us then: p~ —04, n~0.2 and [Vas/Ves| = 0.10. '
. WIFI'I the above parameters, the CP-violating asymmetry in B° — ¥ Kg
ecay is:

A(B° = ¥ Kg) ~ T—:‘i-—tgsin@ﬁ) ~ 0.13.

6) . The quantity €'/ can be represented in the form [48]:
f’ I m Af

— —

€ 1.7

[parn_ P/ ~0.4.10-4 [p/D _ peat 2], (2785)

Imd =nA*2° ~0.7.10"1, (276)

where P(1/2) and P(3/2) are expressed through the known coefficients a;(M;)
and the parameters Bf'/?), B{*®). These latter are determined from the
corresponding matrix elements of the penguin operators, see [48]. In the
factorization approximation: Bé” D = Bgaﬁ} = 1, and the values obtained
from both the lattice calculations and the 1/N, expansion agree with the
factorization approximation within +20%. Using the values of a;(LO) from
the Tables 14, 15 in [48] and B{Y? ~ B®/® ~ 1 one obtains:

P ~53, POM~ga, ’E"."—" =0.4-107%. . (27;7).

The above value can not be taken too literally because it is a result of strong
cancelations. ?! To be conservative, the realistic value of ¢ /€ can be consid-
ered to lie in the interval: ~ £(1—2)-10-4. In any case, this is inconsistent
with the NA31-result: ¢//e = (234 7)-10~4, while there is no contradiction
with the E731-result: ¢/ /e = (7 + 6)-10-%, [50],[51], [52].

- T). The box diagram contribution to (Kr — Ks) the mass difference

AMg = M(K1) - M(Ks), is [53], [54): :

G

: 2
{AMk};,. = 6-'% fic Mg M2X? By my [1+ 0(107%)],  (218)

*1These are due to the large value of the ¢ i electroweak
-quark mass which enhances
penguin contribution P(3/2), see [49]. ¥ - :

o4

where the correction O(1072) represents the t-quark contribution and other
small corrections. Using: fx ~ 162 MeV, M, ~ 1.65GeV, Bx ~ 0.9, one

obtains:

{AMk},,. ~ (4.0-1075GeV) Bxk
~ (3.6-107%GeV) 1 =~ 2.9-10"15GeV, (279)

for g1 ~ 0.8. The experimental value is: AMg = 3.5-1071%GeV, so that
there is not much room for additional large distance contributions.

16. Summary and conclusions

Let us summarize first in short the results obtained for the D mesons.

It is seen that the overall picture is sufficiently complicated: there are
a number of contributions, all of the same order and of different signs. As
to the four-fermion operator contributions we were mainly interested in, the
qualitative picture is as follows.

Although they are formally 0(1/M2) corrections, these contributions are
very important numerically and comparable with the Born term. In partic-
ular, their final effect in the nonleptonic widths is much larger than those of
the leading 0(1/M?) corrections. There are two reasons for this.

i) Various 0(1/M?) corrections, being only a few times smaller than the
Born term, cancel each other strongly, see Eq.(147);

ii) The four-fermion operator contributions are the first to gain a large
numerical factor from the larger two-particle phase space. Otherwise they
would have been much smaller than separate 0(1/M2) terms. It is clear that
this effect operates one time only. So, there are reasons to expect that all
other O(1/M?) and higher order corrections are much smaller, and those
considered in this paper are the main ones. Some simple estimates confirm
this.

As for the relative significance of various contributions, the picture is as
follows.

1) Most significant is the destructive Pauli interference effect (see fig.3c)
of two d-quarks in D~ decay (~ —60% of the Born term, T, ).

2) The (cross) annihilation contribution (see fig.6b) ensured by the non-
perturbative nonfactorizable gluon interaction decreases further (~ —20% of
I',) the D™ nonleptonic width.

3) Both the above contributions could have appeared much larger, but
are strongly suppressed by the much smaller two particle phase space. The
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reason is that the ”normal” total 4-momentum of the quark pair is (see fig.3a):
A2 (P.+ ky) = Pp (k is the momentum of the spectator quark). However,
1t is: A o (P, — k3) = (Pp — k1 — k3) for both these cross-contributions”.
Because the charm quark is not very heavy and spectator quarks carry a
significant fraction of the charmed meson momentum, this leads to a strong
suppression: A* 3> A? . This effect remains noticeable even for the B mesons.

4) The (direct) weak annihilation contribution (see fig.6a) increases sig-
nificantly (~ 30% of I', ) the D° nonleptonic width 22.

5) The nonvalence penguin contributions, both factorizable (see fig.4)
and nonfactorizable (see fig.9)), are very significant and, on the whole, di-
minish considerably (~ —(20 — 25)% ) both semileptonic and nonleptonic
widths.

6) There are no noticeable positive valence contributions into the D,
meson width. Those which are available are negative and decrease (~ —=T%
of the Born terms) both semileptonic and nonleptonic widths, As a result,
there is a sizeable difference (~ 10%) between the above calculated and the
experimental numbers. A possible explanation may be due to the SU(3)
symmetry breaking effects which were neglected in these calculations. At
first sight, however, most of them tend to increase the discrepancy rather
than to decrease it. Clearly, this subject requires careful investigation which
is out the scope of this paper.

One of the important results of all the calculations above is that the
factorization approximation works well for the matrix elements, i.e. the
nonfactorizable contributions which have the same parametrical behaviour at
large Mg are, in comparison, an order of magnitude smaller. Nevertheles,
they are of importance due to specific features of the problem considered.
Firstly, these nonfactorizable parts enter the effective Lagrangian with much
larger coefficients. Secondly, the factorizable contributions are additionally
suppressed by the smaller phase space (see point 3 above).

Let us add a few words about baryon lifetimes. It seems clear that the
pattern here is very unlike those for the pseudoscalar mesons. The entire
structure of the matrix elements of L, 77 18 quite different, and the reasons
connected with the helicity suppression of factorizable contributions are not
operative here. So, one can expect that: 1) the scale of the 4-fermion op-
erator contributions to the baryon lifetimes is potentially a few times larger
(term by term) than those for the pseudoscalar mesons; 2) the significance
of nonfactorizable contributions will be smaller for baryons. Therefore, it

2] et us emphasize that the annihilation contribution ~ 30% into the inclusive width
does not contradict that it can be ~ 100% in separate exclusive modes, see [55].
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seems, the main problem here will be to calculate reliably the factorized
parts of the matrix elements. ; :

For the B mesons, all the above qualitative properties remain true but
. clearly, the role of all power corrections to t}ae Born term lbeco;nas 1:11uch
smaller. It seems clear now also that the factorization approximation will be

ially good for the B, mesons. :

eep?tn 18 {nfportant that we understand now the properties of .all the ‘main
contributions giving rise the lifetime differences and that there 1s sufﬁmentl?f
good agreement between the calculations for the D mesons and Fhe experi-
mental data. This gives us confidence that the predictions obta.med' ab:uve
for the B mesons are reliable. Therefore, we can insist now that the+11fet1n1e
difference between the BT and B° mesons will not exceed ~~ 5%, while ifhose
between the B° and B, mesons have to be even small.er. As it was pointed
out above, the scale of the 4-fermion operator contributions for the b-baryons
can be a few times larger. £5 5 s L 3

Surprisingly large corrections to the fact.o_rmatmn appmxmlatmr} ('f: - )
are found for B° — B° mixing. This reduction of the B — By mixing mass
is of importance, in particular, for the parameters of the unitarity triangle.
These latter are calculated in sect.15 and are:

A~022, A~0825, p~-040, n=~0.20, (280)
sin(2a) ~ 0.60, sin(28)~0.28, sin(2y)~ —0.80. (281)
We would like to emphasize finally that the experimental value of Br(D —

g

ev+X) requires a noticeably larger value of the r:,-qu.ark mass (M, ~ 1.65GeV),
in comparison with those (M. =~ 1.4 — 1.5GeV) in common use. As a re-
sult. because the mass formulae tell us that the quark mass difference 1s
clos:a to those of the mesons, this leads to a value of the b-t;_;uark mass
(M, =~ 5.04GeV) which is also considerably larger than those in common
use (M ~ 4.6 — 4.8 GeV'). Further, the chain of the argument 1is as follows.
The large value of M; leads to a small va,lm? for f,? : fe(Mp) = 113 MeV.
Together with (see sect.14) Bp =~ 0.82, this requires a la.fge value of the
t-quark M S-mass: M; ~ 180 GeV, to reproduce the exp?rlmental valufquf
24 ~ 0.70. This results finally in the rather small value of €' /¢ ~ (:l:l 10 ‘),
which is incompatable with the NA31-group result but does not contradict

to those from the E731-group.
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The matrix elements (sects.9,10):

2

< D(p)|eTy q - qT, ¢|D(p) >4, = pupv [D(1o) bv + 57Po Juv rp (o), (293)

a a

iy .
< D(P)Icl‘g-;z—q *Q?FV ¢ |D(p) >pi=
(P;’PH s | P‘) CG l5V : Ju » Py 67,-’ - El:]-_P.p g#yrﬂﬂ(pg), (294)

Here: dy is unity if the quark field in the matrix element has a valence flavour
and is zero otherwise.

Cé& = 0.48-1072GeV? [E¢.(162)], C& = 1.15.10"2GeV* [Eq.(163)]; (295)
P5 = 0.685-10"°GeV*, P) =0.18-10"2GeV* [Eq.(192)]; (296)

g Ae
< D(p)|(J; - ev,(1 i'rs)-?— ¢|D(p) >u,=

M:
~3rh (o (1- o)+ (297)

where the dots mean that we neglected corrections because this matrix ele-
ment appears itself as a correction in the above calculations.

In addition to the 4-quark operators considered in the text, there is

also the nonvalence 4-quark operator contribution originating from the Born

diagram, and we show below that it is negligibly small. Using the Fock-
Schwinger gauge:

1 1
A2y =0,. Afz) = EIFG;;F(O) + EIF“:XDAGFF(U) + -+, (298)
‘the Born diagram contribution can be represented in the form:
» - 2 2, -A
Loorn ~< D(P){e(z)0u (1=15) -8 (iB)e(z)}__|D(p) > . (299)

62

Using the equations of motion: idc = M, c—g, A c, it is not difficult to obtain:
TBorn ~ M2 < D(p)[E(0)(1 —75) (1 = i9:04 v Gu»(0)) c(0)| D(p) > -
1 3 ;Ilﬂ
59 M2 < D(p)[e(0)yu(1 + 75)5c(0) J3(0)|D(p) > +

%(av+5ﬂ)+---, (300)
where ” ---” denotes higher dimension terms. Also (8,=84 — 94),
v =< D@)|H0u 5 8,6(0) - G, (O)ID(p) >=0  (301)
due to C-parity, and
& D(p)|E(U)T#75§;§uc(U) G2, 0)DE) >=0  (302)

due to P-parity. Therefore, the correction due to the 4-fermion operator is:

1

2 Mp M3 < DI[e(0)7,(1 + ‘}‘5)%{‘6(0) . Jj({])[D >(303)

2
54 =1- ‘3;7" &s(Mc)

This becomes after the factorization of the matrix element:

4 FH(MIMG (- MZ ~1+1.3-10"3, (304
{54’_““14‘5.?'?1'“5(1"!&) M5 1 My} i , (304)

so that it is negligble even for the D-meson.

For the semileptonic decays the above described 4-quark operator contri-
bution is the only one, in addition to the ¢c, ¢, ,Gpuy € and 4-quark operators
described in the text, which is capable to give ~ O(Aycp/M.) correction.
For the nonleptonic decays, in addition, it is not difficult to see that it 1s
sufficient to replace Ag in the last term in Eq.(25) (which is due to the fig.2
diagram) by its original expression:

< D|eXy,v5i8,c-GS, 1D >

305
9 < Dlce|D > M3 o

Ag — —
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