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ABSTRACT

The longitudinal motion of secondary electrons and ions trapped by
an electric circulating beam field in nonuniform magnetic field of the
storage ring is studied analytically. The conditions for their reflection
in the fringe field of the storage ring magnet and in the sign-alternating
field of the undulator have been found. The calculations have been
made for the probability of this reflection in the case of ion generated
in a straight section, in the region of a zero magnetic field.
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The secondary electrons or ions produced by ionization of the residual
gas by a circulating beam can be trapped by its electric field and exist in
the beam for a long time. The secondary particles moving in the nonuni-
form field of the magnetic storage ring system can, under certain conditions,
change the direction of their longitudinal motion to the opposite one in the
region of more powerful magnetic field and thus fall into a specific trap. This
can result in the local increase in their density. As known [1-5], even sub-
stantially small concentrations of the secondary particles in the circulating
beam have an influence on its dynamics and can be the reason of undesirable
effects which give the change in its transverse sizes, the increase in transverse
oscillations, and even its loss. For this reason, of importance is the knowl-
edge of peculiarities of the motion of the secondary particles trapped by the
electric circulating beam field.

Moreover, at present the methods for observation of parameters of the
circulating fast-particle beam by registering the secondary particle beam are
widely used [6, 7]. In this case, to correctly interpret the obtained results, we
need rather exact data on conditions for storage of the secondary particles.
This problem can be also important for realization in practice of proposals
concerned with the methods for measuring the superhigh vacuum in cryogenic
accelerators by registering the secondary ions from the beam or detecting
bremsstrahlung photons produced in collisions of the circulating fast particles
with the trapped secondary ions [8,9].

The problem of longitudinal motion of trapped particles in the nonuniform
fringe field of the storage ring magnet was solved for the first time in [10],
where the reflection criterion for heavy secondary particle produced in the
region with the zero magnetic field was derived. It is interesting to study
this problem-in the more general case, and to try to derive the equations,
describing the motion of the secondary particles by the more consistent way.

In plasma physics, the problems of this type are solved by the methods
of drift approximation [11, 12]. This effective method is well developed and
allows the obtaining of detailed information about the averaged motion of




the particle in complicated configurations of the electric and magnetic fields.

Unfortunately, the possibilities of direct application of this method to
solve the problem under consideration are restricted. The thing is that this
method is based on the assumption of smallness of the Larmor radius value
as compared with the characteristic sizes of the particle motion region, the
smallness of the electrical field change in the interval having the size of the
Larmor radius order, and the smallness of the Larmor rotation period as
compared with the characteristic time of particle motion. In our case, these
conditions are not always satisfied and can not be fulfilled in the region,
where the magnetic field is close to zero as in straight sections of the storage
ring. Nevertheless, we shall try to apply the drift approximation method to
solve the problem posed, modifying it such that it could be applicable for
the whole range of the problem parameter change, including the zero field
region, which is of interest to us.

For this purpose, we shall consider the motion of the charged secondary

particles in the electric field of the circulating beam moving in the X-direction.

For the sake of simplicity, the circulating beam is supposed to be continuous.
In the case of a sufficiently high frequency of the bunch passing, transition to
a bunched beam can, in the first approximation, be carried out by replacing
the real beam field by its averaged time value. Let the magnetic field B
be directed along the Z-axis and V|B| be directed in the X-axis (Fig. 1).
Such a geometry of the fields models the motion of the secondary particles
near the storage ring magnet edge and their motion in the sign-alternating
undulator field as well. To determine the main properties of this motion, we
confine ourselves to solution of the linear problem, without consideration at
this stage a series of important and interesting effects which are due to strong
real nonlinearity of the circulating beam field and to its periodic dependence
on time.

As known, the particle motion in such a geometry can be represented as
a sum of quick oscillations of the particle relative to a certain point (leading
center) which, in turn, slowly drifts in the given electric and magnetic fields.
It 1s this drift that describes the averaged motion of the particle and is of the
main interest to us.

Before deriving the modified drift equations describing this motion in the
general case of nonuniform magnetic fields, we give a brief analysis of the
particle motion in the simplest case, i.e., the case of a uniform magnetic
field. The results of this analysis will be useful in further consideration.

The equation of particle motion in electric and magnetic fields has the

form i
d°R o
Maz—:eE-FE[RXB], (1)
where R is the radius-vector of the particle; e and M are its charge and mass,
respectively; and e is the light velocity. The dependence of the electric field

strength on the distance to the beam axis is assumed to be linear.
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where w, and w, depend only on the form of the beam and on its density.
Let us consider the particle motion in the plane (X, Y). With account of
(2), the vector equation (1) in coordinates has the form

z? = {JBY '

?-I«wSY:—wgf;f, (3)

where wp = eB, /Mec.

The general solution of this system of equations which satisfies the arbi-
trary initial conditions Y = Yy, X = Xo, Vy = Vyo, Vo = Vo when £ =0 is
easily obtained. This solution has the following form

X=X+p:sin(QU+T¥), X=V,+4p.Qcos(+VT),

Y =Y +pycos(Q+9), YV =—p,Qsin(Q+7), (4)




where % i
X = JY{] + Vmi —+ @%ﬂ s (51‘1)
2
= M.B Vmﬂ
SR Yl ey 5b
7= (-2, (5b)
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Pe = Py (5d)
A w2 : :
Vei= _HE(VJ:IJ _WBYD) ' (5"5)
Q= /w§ _+w§ : (5f)
; Vo
sin¥ =——L_, D¢
. (59)

Here V, is meant as the particle drift velocity and, when |B| — oo it, as
should be expected, transforms to the known expression V, = ¢(E/B) for
the particle drift velocity in the crossing electric and magnetic fields.

Let us now derive the drift equations which describe the secondary parti-
cle drift in the nonuniform magnetic field as applied to our particular prob-
lem. For this purpose, following the usual procedure, let us introduce the
orthogonal system of unit vectors:

HU{R‘) T B/lBI 1
ny (R) = [nz x ng] (6)
. HQ(R) = [l]ﬂ X 111] 3

and hence,
[n; X ny] = ng.

Then, the particle velocity can be written as
V =yng + (Vi + vy cosf)n; + (Vo + vasinf)ny . (7)

Generally speaking, the particle moves such that the values of Vj, vy,
Vy, vy and @ are the sums of the slow variables and quickly oscillating small
terms. (From now on, by the slow variables, such variables are meant, the
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relative change of which during the period characteristic of that of oscillations
is small). However, since the latter ones are small, they can be redefined so
that the quickly oscillating terms be contained only in V; and V5 but only
slow components be kept in the variables v,, v5 and 0. Taking into account
the above fact, we shall consider that v;, v; and @ change slowly with time.
Substituting expression (7) for velocity into (1) and multiplying scalarly the
obtained vector equation by the vectors ng, n; and ny, we obtain the following
system of equations:

dV; v OB,
El--{-u] casﬁ—wgvgsmfi'-vlﬁsmﬁ'ﬁ—wBVg ; e EEnl’
dV- ol Sa : : e
d—;—!—t’;ﬁlﬂﬂ-—l—wg’ﬂl cos 8 + vof G{)SE—{-WB.H - ﬂEng X (8)
' dv| ' Y dB, e
57 — (Vi + vy cos @)= e }EEHU

Iere, the point above the variable means, as usually, the time derivative
F =24 (VV)F (F is the arbitrary vector function of coordinates and
time). In deriving this system, we use an assumption of smallness of the
value of %%, as compared with unity, which is one of criteria for validity
of the results to be obtained.

After sufficiently bulky but not very complicated calculations which are
briefly presented in Appendix, from the above equations we can obtain the
desired system of drift equations describing the motion of the leading center:

e dwp

1 .
T ket T G 9a)
d*Y dX
T el (90)
%
o) = const , (9¢)
v = —%B vy (9d)
0=0Q=/w+uwg, (9e)
1
PLi= oty (9F)
1
P2 = § V2. (99)
il




As follows from the derivation of system (9), it is valid if the following con-
ditions are simultaneously satisfied:

B,

— %X | & L, (10a)
aB

7 [ox| <! (00)

the latter of which can be rewritten, using (9¢) and (9f) as

19 dwp

h_zﬁ_ e | ' (].UC]

The other condition for validity of (9) is the one of smallness of the oscillation
frequency change during the time interval of an order of their period

1 dQ
Q2 dt

)

wﬁich can be rewritten as follows:

E.E.ffxdwﬂ

Vo ey (10d)

It is obvious that to satisfy all the above conditions, at least the logarithmic
derivative % %Ef should be restricted over the whole region of the particle mo-
tion. The latter condition is always fulfilled in the region of the fringe magnet
field and a straight section, however, it is not satisfied in the sign-alternating
undulator field within a small region of the change in the longitudinal coor-
dinate X, in the vicinity of the point, where the field B is equal to zero. It
is natural that this interval should be excluded from our analysis.

It should be noted that unlike the usual method of drift approximation
which is valid only in the region of rather high magnetic fields, conditions
(10a)-(10d) can be satisfied, hence system (9) is valid for extremely low fields,
including the region of the zero field.

To finish the analysis of system (9), we should consider a somewhat unex-
pected fact. In the general form, the drift equations [9,10] comprise the term
related to the ”gradient” drift which is proportional to the squared velocity
component directed perpendicular to the magnetic field and the term related
to the “centrifugal” drift which is proportional to the squared velocity compo-
nent parallel to the magnetic field. Our equations do not comprise the latter
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term, and the drift equations are independent of the particle oscillations n
the Z-direction. This fact is explained as follows. If we consider the particle
motion in the earlier used system of coordinates ng, nj and nj, then it 1s
revealed that (Fet) — (eE1) = 0 in the case of the linear dependence of the
electric field strength on z. Here Fi is the centrifugal force value associated
with the longitudinal motion of the particle relative to the magnetic field and
E, is the electric field component parallel to n; (the averaging is made by
the period of vertical oscillations). Thus, this fact is associated just with the
property of the chosen configuration of the electric and magnetic fields.

Before solving system (9), we first should note that the second deriva-
tive in Eq.(9b) can be neglected because the drift velocity component in
the Y-direction is mainly determined by the magnetic field gradient and its
acceleration is determined by the squared gradient. To neglect the second
derivative in Eq.(9a), especially in the case, where the magnetic field is small,
there are no such grounds as above, so it should be kept. Taking into ac-
count this fact and using relations (9¢)—(9g), we can rewrite Egs.(9a)~(9b)
as follows:

d*X dY lwp [v2(0)*\ dwp
IET S5 RTARTNR S = 11
dt? “’Bdt+zn(ﬂ(o))dx o (11)
d./Y 2
wp di = -wa .

where v2(0) and Q(0) are the values of the corresponding variables at the
initial moment of time. (Since we use only the averaged variables, the symbol
of averaging of the variables X and Y is omitted from now on.)

Excluding time from the system of equations (11), we obtain the following
equation describing the form of the drift trajectory

d w \ 0 I v2(0)? | wp dw
vy Bt ladifwedey + Y2 = g (12)
dX R { \ wp Q2 Q(D) Q dX

To obtain the result which is independent of the specific dependence of the
magnetic field on the coordinate X, we jump from the independent coordinate
X to the independent coordinate €2

2 2
d wy g Fus wg ve(0)?
B B Sl 5, L e . 1
a0 (WEY) o (uﬂ ) 7 Q(0) 1s)




The solution of this equation, which satisfies the initial condition Y = Yp
when © = Q(0), has the form

el [w:(%)ﬂy"z 2 Zg 1;1((3))5 (9?0) -1)] 0 a9

where wp(0) is the initial value of the frequency wp. By expressing the
values of Yy and v,(0) in terms of the initial velocities and coordinates of the
secondary particle production using relations (5b), (5¢), and (5g), we finally
obtain the following equation for the drift trajectory of the particle:

2 _ (0 {M%MB{U)E (yﬂ olyep >2

02 Q(0)" wp(0)

2
2 4 2 Vﬂ
045 wﬂ(ol Wy 2y0+._ﬁ_ L [ 2 —1] 5. (15a)
w? | Q0)* \ws(0) wg(0) Q(0) Q(0)
which, in the case of the secondary particle production in the straight section
(B(0) — 0) takes the form (provided that yo # 0)

2 2 2
2_ wh | Vb o a2l o'y _) .
¥ = [wg (yﬂ+ wg) (9(0) 1 | (15b)

(yo is a point where the secondary particle was created).

Figure 2 presents the drift trajectories of ion motion, which are calculated
by the formula (15b). For the sake of definition, we take the numerical values
used for computer simulation in [10] (wy = 3.9-108 571, Vor = 2.0-10° em/s,
Voy = 0, M = 28). It is seen that the results are in good agreement.

For practice, it is important to know the conditions under which the
secondary particle, moving in the nonuniform magnetic field, reflects from
the fringe field of bending magnets of the storage ring, thus being trapped.

It follows from Eq.(15a) that the particle reflection criterion 1s
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Fig. 2. lTon drift trajectories in magnetic field: 1) y,
yo = 0.075 cm; 3) yo = 0.10 cm; 4) yo = 0.15 cm, 5) o
Yo = 0.25 cm; 7) yo = 0.30 cm.

waio)ﬂ (ﬁ(@ﬂ)))q <y” i a%(ﬂm‘)

1 | wp(0)¥ et wd vl Y (0. 4 Q
T ag ¥ o0 ygyﬂ+ : iz yz ( max_l){{]}
wy (0)* \wg(0) wp(0) 2(0) 2(0)
where Qax 18 the value of the quantity £2 at maximum magnetic field. After

simple transformations this expression can be presented in a more convenient
form:

ok B (0 Vib | 2(0)? 2(0) (1+ Vaimi) o o

0.05 cm; 2)
0.20 cm; 6)

wZ y wy Y5 w? Qmax wiys
when wp(0) = 0 and ‘i%”iﬂ « 1 this expression takes the form L;“:- <

\-}Emﬂmu which was obtained in [10]. If at the moment of its production
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the secondary particle has the velocity Vp, then in the spherical coordinates
whose polar axis coincides with the Z-axis the components of the initial par-
ticle velocity entering this equation can be written in the form

Veg = Vo sinf sing ,
Vyo = Vo sinf cos g . (17)

If to introduce the notations
_ wp(0) Vosin 6"

a
il W; Yo
+44 Q(0) Vosind (18)
L - wg y{] bl
(0 Q(0 V2
iy ) (5K )(1+ ©)
Wy Wmax 1"";";.t,p:":"[]l

we can see that the criterion (16) allows the evident graphic interpretation
presented in Fig.3. It is obvious that in the case 1 particle is reflected at any
ratio of the initial velocities, in the case 2 it is reflected if w2 < ¢ < ¢1, 1n
the case 3 there is not reflection.

Fig. 3.

From Eq. (16), we can obtain the following expression for the values of
1 and ¢a9:

. wp(0)yo , 2(0) Q(0) : wf,y%
— + 1 - 14+ ——— 1
©1,2 arcsm.Vn =5 e ( Qmm) ( oI Vnz =3 9), ( 9a)
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which, as follows from the analysis of limiting cases should be additionally
determined as follows:

v1L= 5 when

wp (o, Q0) \/(1_ ﬂ(ﬂ))(H?@_) >1, (19

Vf’ sin ¢ Wy Qmax 2¢in* @
09 :-321 when
wp(0)yo Q(U) Q([] wiy?
VU sin ¢ max 1 * 1’? sinz ﬁ') 2 1’ (lgc)
2 = —% when
wﬂ([})yﬂ Q(ﬂ) Q(U] wgyg
Vo sin 0 Wy ( Qmax) ( -+ V2 sin’ 9) = =1 (19d)

Let in the point xo, yo the secondary particles is produced with the ve-
locity Vo and the distribution function along the directions of the velocities
f(8,¢). The normalization condition of the latter is

2T
[/ f(0,p)sinf,dl,dyp .
00

The probability of particle reflection in the region of the strong magnetic field
can be expressed as follows:

w[2 -
= %fﬂ‘fﬂ smﬂ]f(ﬂ,gp) dyp (20)
0 2o

where ¢, and @y are found from (19). Using this expression, we can easily
calculate the desired probability for any particular case.

In this study, we shall confine ourselves to the simple, however, important,
case where the particle forms in the straight section, in the region of the zero
magnetic field. In this case, Eq.(19a) is written in the form

% . Q(0) Wy Y
©1,2 = :l:a.rcsm\/(l il Qmax) (1 i+ m) . (21)
13 '




Let us introduce the dimensionless variables 7 = V1 — (£2(0)/Qmax) and
§ = Vo/wyyo. The physical sense of the latter is obvious if it is written in the

1

where Wy is the initial energy of the particle, @peam is the beam potential,
and o, is the transverse size of the beam. The velocity distribution function
of particles is assumed to be isotropic, what is probably valid at least for
ions. Equation (20) is then written as

/2
2 1
_P i 1 i —_——
- b[ sin @ arcsin [n\/l + Epy ] dg. (22)

In this case, some properties of particle reflection can be determined without
obvious numerical integration of Eq.(22).

1. Since in the case under consideration a, = 0, it follows from Fig.3 that
the probability of reflection is equal to unity in the parameter domain, in

which r < 1 whence P = 1 when £ <« —1—_
3 m

2. It is easily obtained that with the large values of ¢ the probability of
particle reflection is determined by the following simple expression:
2

P ~ — arcsin 7).
T

Integrating numerically expression (22), we obtain the result which is illus-
trated graphically in the coordinates 5, ¢ in Fig.4a. The parameter domain
in which the probability of reflection is equal to unity is dashed.

It 1s interesting to make the calculation for the probability of particle
reflection which is averaged in the particle production coordinate yp because
1t is this value which is observed in the experiment.

We shall introduce a new dimensionless variable & = Vo/wyoy. Let the
distribution function of the secondary particle along the coordinate of their
production be g(yo/oy) with the appropriate normalization. The expression
for the probability of reflection which is averaged in the coordinate y can be
written as

172
{ Py = -f?h/ﬂf g (%) arcsin [??\/1 =} (_f-f_siigﬁ_f}(%z_)zJ d(g-zu) de  (23)
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on the assumption that g(yo/coy) is constant. Integrating gives the result
presented in Fig.4b

Thus, as follows from the example given, the probability of the secondary
particle reflection in the region of the strong magnetic field is rather high.
This can one of the reasons of the increase in local density of the particles.

Appendix. Derivation of the system of drift
equations
Transition to the laboratory system of coordinates performed by the formulas
z2'0B, '
PNk e Yac
z OB,
= Vy— — Tl Al
s A il
Va=Va,

where V, and V, are the corresponding components of the leading center
velocity (determined analogously to V; and V5 in (7)), reduces system (8) to
the following form: '
dy, .1 08, dV. 5
& 2o B il ol L s
15

(A.2a)




de i tda 'y d i
e + vy cos @ — v1#sinl mMgt}gSlnﬁ — P19 ;;? sin? ¢
dup . z OB, dV. 22 OB
) FAY bk 2 v i ] z g q2=] z
wpVy — p1Vy o sin @ BoX @t B 3% (A.20)
dV, 5 X | . d j
d—ty + v2s8in 0 — val cos @ + wpvy cosl + pru; ;;? sin f cos f
{fwﬂ : z 8.83
+wEV3+p1ﬁﬁsmE—wB1@-§aX +w§Y:U, (A.2¢)
dX,
7 | (A.2d)
dY;
o R (A.2¢)
V] = ﬂlﬁ;' ; (A-Qf)
vy = paf (A.29)

where wp and (1/B)/(8B, /0X) are taken at the point of the leading center.
To obtain this system, we use relations (2) and expansion of the magnetic
field into a series B, = (X + AX) = B,(X) + 4= AX. The values of
(2/B)/(0B,/0X) and (p,/B)/(8B,/8X) are assumed to be small and only
the terms of the first order of smallness are kept. In this case, we ought
to introduce the additional variables X;, ¥j, p; and ps which are defined,
analogously to (7), by the following relations:

X =X, +p; sinf,

Y =Y +ps sind, (A3)

where X and Y are the coordinates of particle position, p; and ps are the
slow variables. The additional equations (A.2d)-(A.2g) entering the initial
system are the obvious consequence of (A.3).

As 1s mentioned above, the values of V;, V,, X; and Y, are a sum of the
slow and fast terms. To distinguish this fact, we write each of these variables

in the form . 4
Fy = Fy + By,

where Fj is any of the above-mentioned functions is meant, 7 and F are the
slow and fast parts of the function, respectively.
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" In principle, the system of Egs.(A.2) should be solved in the following
form:

Fi=Fi+ Y J | cos(md +nb.) + fio) | sin(md + nb,).

; 2 -
However, we can show that the coefficients f}:j_“] and _ﬂ:(in} with |m| > 1
and |n| > 1 are the values of the higher order of smallness relative to the

values of (p1/B)/(8B,/8X) and (z/B)/(0B./0X), hence, it is easy to show
they should be omitted in the adopted approximation. Thus, the system of
equations (A.2) can be solved as follows:

Ve =V, + f:;{i}u} sin 0 + 1‘;:.:(1031} cos @, + i;(fn)u sinf; + f’rz{{lﬂ_n cos(d —0.)

+V2)_ sin(f —0.)+ VA | cos(B +6,) + V{2 sin(6 +6.),

Vy =V + VD cosb+ V) cosb, + V), sin; +Vy, _,, cos(d —0,)

+7 P sin(0 — 6,) + V&, cos(8+0:) + V), sin(0+6;),

X=X+ j}:)n} cos f + )?Eﬂl?” cos 8, + }%Eg?l}sin 8.+ )Z'Ell?__” cos(f — 0,)

—I—i’gf]_l} sin(6 — 6,) + ff({ll?l) cos(6 +0,) + }?Ef.)l) sin(6 + 6.),

Y, =Y.+ 1}({3%} sin 0 + }-’(Eii) cos @, + f"&i} sinf, + }7((11,}_1) cos(6 — 0)

+¥ P sin(0 — 0.) + F§) cos(@ +0:) +¥y)sin(6 + 0,),

i 1 2 L
i — Zg_]” cosf, + ZEGE?” sin@, + Zfl?ﬂ) cosfl + Zglf'[}]smﬁ‘

4 2 5
+Z{})_;ycos(0—6:) + 28D, sin(0 —0,) + Z(y ) cos(0+0:) + 25D sin(0+06,),

where the values with the sign ~ are also the values of the first order of sm_a.ll—
ness. Substituting these expressions into (A.2), multiplying the expression

~ obtained from (A.2a)-(A.2¢) by 1, sin§ and cos 0, averaging them in the time
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interval which is much larger than 7 = 1/0 and 7 = 1/6, (the resonance
cases 0 + 8, = 0 and 20 £+ 0, is ignored), and neglecting the values of the
higher order of smallness, we obtain

d*X ay 4] dwp

= e ﬁﬂlﬂz—'dx =0, (A.4a)

d&*¥ X -
g up X 4=, (A.40)
016 + wpvy = 0, '(A.fic)

. wz
veofl + wpvy — —g?-vz =0 (A.fld)
Vo0 + 91 —wpV, =0, " (A.4e)
. . ~ 0.3 " dﬂr.-"B

—Vyﬁ-l“l?g—f-wﬂlfi- +wa+1;—§‘W =10, (A"—lf)
Y Pzé = ¥, (A.4g)
)? + ﬂlé =1, (1‘14h)
Y0+ p2=V,, (A.40)
~X04 py = Vs, (A.4k)

For brevity, we redenc’e the variables

Vit = Vas Vid=m¥s X3

a ity i
T(1,0) (1,0) = X Y( J}:_j, YR I4G

(1,1
The first two equations of system (A.4) are the desired drift equations describ-
ing the motion of the leading center of the secondary particle. However, to
use these equations in practice, it is necessary to find the unknown functions
entering (A.4a).

From the compatibility condition of a pair of equations (A.4c) and (A.4d)

3. Wp
DU
Wwpg e _E!-
we obtain the necessary relation
2
0 =0 =Wl +wh, (A.5)
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which coincides with (5f), and from (A.4c) or (A.4d)

v = "—w'ﬁﬂﬂg 3 {Aﬁ)

which also coincides with the analogous expression of system (5) from any of

the above equations. :
Let us now consider individually Egs. (A.4e) and (A.4f).

v = wa’y T (A.Ta)

: ~ ~ ~ v; dwp
vy = QVy —wpVy —wsY — l&ﬁlﬁ

Substituting Y from (A.4i) into (A.7b), we obtain

(A.Tb)

2 VL2
wg . Wy . Qw vy dwp
B R iR

Substituting expression (A.6) into it, we obtain the last necessary relation

2 2
% (%) =10y Of % = const.

This expression is the analog of the adiabatic invariant v3 / B=const from the
standard drift theory and transforms to it when B — 0.
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