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Abstract

Elastic scattering of photons in a Lorentz-scalar potential via vir-
tual spin-zero particle-antiparticle pairs (“Delbriick scattering”) is con-
sidered. An analytic expression for the Delbriick amplitude is found
exactly in case of an oscillator potential. General properties of the
amplitude and its asymptotics are discussed.
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1. Elastic scattering of photons in the Coulomb field of nuclei via vir-
tual electron-positron pairs (Delbriick scattering [1]) attracted considerable
interest for a long time. That is motivated by two reasons: (i) The Delbriick

‘scattering is one of a few nonlinear quantum-electrodynamic processes which

can be precisely tested by experiment [2, 3, 4, 5]. (ii) In order to extract
an information,on nuclear structure from differential cross sections of photon
scattering on nuclei, a precise knowledge of the Delbriick amplitude may be
required because of its interference with the nuclear amplitude. In some cases,
the Delbriick scattering considerably modifies the differential cross section of
vA-scattering [6, 7, 8, 9]. '

Theoretical investigations of the Delbriick scattering have a long history

‘and many papers are devoted to this subject. Now the Delbriick amplitude

is studied in detail in some approximations: (1) In the lowest-order Born ap-
proximation with respect to the parameter Za (here Z le| is the charge of the
nucleus, a = e? ~ 1/137 is the fine-structure constant), results were obtained
for an arbitrary momentum transfer g; these results are surveyed in detail in

. [2]. (2) For the case of high energies (w > m., m. being the electron mass)

and small scattering angles (¢ < w), the Delbriick amplitude was obtained in
[10, 11, 12, 13, 14] to all orders in Za. It was found that the Coulomb correc-

tions ‘at Za ~ 1 drastically change the amplitude as compared to the Born.

approximation. (3) At high energies and momentum transfers (w,q > m.),
the amplitude was also found to all orders in Ze [15, 16, 17]. In this case
the Delbriick amplitude has a scaling behavior [18] and becomes inversely
proportional to the photon energy. It has been shown that the Coulomb
corrections essentially decrease the amplitude at high momentum transfer




as well. Recently some general exact expressions for the Delbriick amplitude
were derived in [19], although numerical results were not presented. Some nu-
merical results for the Delbriick amplitude obtained in the lowest-order Born
approximation, in the ”high-energy and small-angle” approximation, and in
the "high energy and momentum transfer” approximation can be found in
[20].

In the present paper we consider the Delbriick scattering in the scalar
QED in the field of an oscillator Lorentz-scalar potential, or, in other words,
for a relativistic oscillator. The relativistic oscillator model, being a nice
theoretical laboratory, has also a few realistic applications. For instance, it
can be successfully used [21] to describe interactions of collective modes of a
nucleus in the region of giant resonances with the electromagnetic field. It
takes the advantage of being automatically consistent with microcausality,
analyticity, and dispersion relations. The Delbrick amplitude is a quantum
correction to a classical part of the photon scattering by the oscillator and it is
interesting to evaluate this correction explicitly to understand its significance
for the physics of photon-nucleus scattering. Besides, the Delbruck amplitude
for the relativistic oscillator provides an example of exact calculation of this
quantity in external potentials.

2. To be specific, we consider spin-zero particles described by the Klein-
Gordon equation with an oscillator Lorentz-scalar potential. We start with

the Lagrangian for t.he charged qua.ntum field ¢ in the external electromag-

netic potential A,

i ! : o : |
Lig, Al(z) = |Cud(z) + iedu(z)d(z)| — U(r)lo(z)l’, U(r ) g+
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In the Furry representation, the Feynman rules corresponding to this La-

grangian are found from the usual Feynman rules for spin-zero particles by

replacing plane waves with the normalized solutions (r|n) = ¢,(r) of the

Klein-Gordon equation in the potential U(r) :
2‘35“("") +7 2‘?-!’“(7') = (EE e FE)‘f’ﬂ(") p=—ivV | -1%2)

(for brevity, we do not indicate here quantum numbers related to the angu-
lar momentum). The equation (2) coincides with that for a nonrelativistic
oscillator and has the spectrum E = +FE,,, where

En=+vp2+(2n+3)72, n>0. (3)

The parameter 4* determines a slope of the potential U(r) in (1) and must
be positive to result in a stable vacuum and bound states. It also determines

bt

a range of the ground state, ¢o(r) = y3/27~3/% exp(—142r2). The parameter
p? may be negative. However, we require 2 > —372 to have a positive
energy gap 2Eg between levels of positive and negative energies and hence a
stable vacuum. In the nonrelativistic limit, v < p, the parameter u becomes
the mass m of the particle and the oscillator parameter v determines the
oscillator frequency wg = FE, 41 — E,, =const,

p—m, 7’ — muwo. (4)

The Delbriick amplitude for the spin-zero particle is described by two
Feynman diagrams shown in Fig. 1. In this figure, double lines represent the
Green function for the Klein-Gordon equation in the external potential U(r).
The first diagram, Fig. la, describes the so-called seagull contribution to the
photon scattering amplitude which is equal to

Sp = —=2ia(ee’) /_m _d—E/dar G(r,r|e) exp(iqr) =
= —a(ee’ )Z

Here e (k) and €' (k') are polarizations (momenta) of the incoming and
outgoing photons, respectively, and ¢ = k — k' ; we use the radiative gauge,
ek =e'k' =0. G(r, 1"'|£) is the Green-function in the potential U(r):

(ﬂl exp(igr)|n). (5)

Gterio =3 L.

= —zf ds (r|exp [is(e? — p® — U(r) —I—t{])] [»'), (6)

s being a proper time. The amplitude we use is normahzed as to give, being
squared, exactly the differential cross section of photon scattering.

Using a known expression for the time-dependent Green function of a
nonrelativistic particle in an oscillator potential (see e.g. [22]), we obtain an
explicit form for the Green function (6):
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Figure 1: Diagrams of the Delbriick scattering: (a) Seagull amplitude Sp.
(b) Resonance amplitude Rp.

Substituting (7) to (5) and taking elementary integrals with respect to € and
7, we find: -

foet P ltol o of Thogida
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In case of the oscillator potential U(r), the Klein-Gordon operator has only
a discrete spectrum (3) and therefore the Green function has only simple
poles at real ¢ = (E, —i0) displaced by i0 in accordance with the Feynman
rules. Using this analytic property, we can deform the integration path over
¢ in (b), ¢ — ie, to make it finally coincident with the imaginary axis. As

i . 9
. pc—10 g
Sp = — exp [,_-:s 2 bl yw cot s] L 8)

a result, we get a possibility to rotate the contour of integration over s in

(6)~(8), s — —is, to make all the integrals well-convergent.

Note that an ultra,vmlet divergence at s — 0 is not present in the ampli-
tude Sp provided g # 0, so that a regu]arlsatmn is not necessary. The same
is valid for the second diagram, Fig. 1b which gives the so-called resonance
contribution:

= —41&] de /dsrda ’[IEVG(T r"|f)}

[ie"?'(}’(r € +w)] exp(ikr — ik'r") (9)

(nl(e'p) exp(—ik'r)|n') (|(ep) exp(ikr)n)
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It has a series of poles at w = &(FE, + En/) which are related with the pair
photoproduction from vacuum when the pair components are captured to the

¥

levels n, n’ of the discrete spectrum. The pole at w = 2Ej is nevertheless
absent because matrix elements in (10) vanish for the s-wave states n = n’ =
0. Using (7), we easily calculate the integrals (9) with respect to the variables
¢, 7 and 7’ (here the substitutions » = r{ + 75 and ' = r; — r5 are helpful).
It is also convenient to replace s; = s(1+)/2 and sy = s(1 —z)/2, where s,
and ss are proper times in the mtegral representation of the Green functions
in (9). Then we get

Hein'j’d
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Rp = - ds -

sin*s | 2y%sins
where
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Integrating the term in (11) proportional to (ee’) by parts with respect to the
variable z, we find that the term outside the integral cancels the contribution
Sp of the first diagram, so that the Delbrick scattering amplitude Tp =
Sp + Rp finally reads:

T = lﬁ:-:/jf ds] ‘/Esf:](jz) [z sin s (ee) — sin(sz)(838")] e;F,)
: 13

where (ss') = (k x e)(k x e') describes a magnetic response. We see that
a contribution like Sp which depends on ¢ and is independent of w vanishes
in the total amplitude Tp, as it must be according to general consequences
of gauge invariance and related low-energy theorems. Eq. (13) is our main
result.

We may obtain another form of Eq. (13) by defermmg the integration path
over € in (9) to transform the integral to f:l::: de. Such a deformation

is always possible at low energies w because the chains of singularities of
two Green functions in (9) lying below and above the real axis, i.e. at € =
E, —w — 10 and at ¢ = —E,, + 10, respectively, do not pinch the integration
path provided w < 2Ej. Then we can rotate s; — —is;, s — —isz and
get well-convergent integrals. Respectively, we may rotate the integration
path in (13), s — —is, and arrive at a real integral which is well suitable for
calculating Tp at low energies. However, such an integral turns out to be




divergent at w > Eg + E1, i.e. above the nearest pole of the amplitude Tp,
see Eq. (10).

3. Eq. (13) can be further simplified in case of a low oscillator frequency
and momentum transfer, 72 < #? and ¢ < p. Then the contribution of the
region s 2 1 to the integral in (13) is exponentially suppressed, as is seen after
the rotation of the contour, whereas the contribution from the region s <'1
reads '

l'.r 4.- 2 o 9
Tp ~ - 1673\/_ [(e€’) — (s’ ]f 551'2_/ dz X
exp [—tsT + i r t 43'}’2 w”s (14)

and is saturated by

mep—2 S :
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Respectively, at “low” energies w? < ?25;? which may nevertheless be high
in comparison with y, the integral (14) reduces to the modified Bessel function
of the third kind K3/, and hence is an elementary function:

Tp = S (14 24 ) exp (=22 fee!) = (a5 (16)

When ¢ — 0, the Delbriick amplitude becomes proportional to an effective
volume of the vacuum, V ~ ¢~2, probed by the photons. At high energies
w? > 723;? , the integral (14) is saturated by z close to 1 and the answer is
given by the modified Bessel function Kgz:

~ +iw a’ua. ) 1(ee') — (85’ '
T = kioV3 s Ko (L) e) - (551 (17)

where the sign of plus or minus appears for Imw > 0 or Imw < 0, respectively.
Since Ka(z) — 8z~ when z — 0, the last expression seems to have a too
strong singularit}' ~ ¢ % ~ V? when ¢ — 0. However, when ¢ is very small,
the assumption w? > ¥ 3_3 becomes violated and the Delbrick amplitude
approaches to the regime of Eq. (16).

The smgular behavior of the Delbriick amplitude at smdll q, Eq (16), can
be understood in the following way. If the external potential U is equal to

zero, the photon scattering amplitude due to the diagrams shown in Fig.1

reads [23]:

" A?
e'’e’ (kuk, — k?g,,)log g (18)

= (2n)*8%(k — k') ——
where A is an ultraviolet cut off and mg is the mass of bare scalar particles,

and is proportional to w?[(ee') — (ss')]. That means that the vacuum has an
electric and magnetic polarizability per unit volume,

vac, AE
X = X = o log (19)

These universal vacuum susceptibilities are absorbed by renormalisation of
electromagnetic fields and charges and are not observable. However, in the
presence of an almost umform scalar potential U(r) which shifts the mass of
the particles m3 — m2c = U(r), the polarizabilities get a finite meaningful
piece,
r)
xp (r (r ( . 20

The last formula i1s valid when the potential U (r) is constant at distances
~ m_z which are characteristic for creating those vacuum polarizabilities:

o
mol < Ar=U(r) [dU(’")] . (21)
| dr _
For the potential U(r) = u? + y*r?, it means

. r:‘;:-'r:“l, if ¥?r2pu (22)
G o i ol e e

In the case ¥ < u, both the above regions overlap and the formula (20) is

valid everywhere. Then the scattering amplitude of low-energy photons is

equal to |

: Tp = w’ap(g)(ee’) + w’an(g)(ss’) (23)
with U
a5() = ~an(e) = ~ ey [ explig)log 7 ¢ (29)
mg
Taking this elementary integral, we find
a5(9) = ~oa(0) = C8(q) + ys(1+a)e™, a=3  (2D)




in complete accordance with (16). Here C is an infinite constant due to the
polarizability of the vacuum in the whole space; it is infinite because the
potential U(r) — oo when r — co.

The approximation of a uniform potential (20) turns out to be inapplicable
at high energies when the virtual particles of the mass meg produced by

the photon propagate to a distance ~ he/AE ~ w/m?Z; which is large in

~ comparison with the sca]e &r of variation of the potential U(r). This just
happens when w? > 9%sZ and the amplitude Tp becomes predominantly
imaginary, see Eq. (17).

Keeping in (13) terms of the next order in s*, we can find a correction to
the expansion of Tp in powers of the momentum transfer. At “low” energies
it reads

2

awle=?

[(19 + 2&)(33 ) — (17 + 2a)(ee”)] .  (26)

It determines an asymptotics of the helicity-non-flip amplitude T because
the piece (14) contributes to only the helicity-flip amplitude T3 ™, as easily
seen from the relation (ee’) = %(ss') = (1L cos0)/2 for the helicity-non-flip
and helicity-flip case, respectively, 0 being the scattering angle.

" The singular behawor of Tp at ¢ — 0 disappears when the potential U(r)
has a finite range. For example, in case of a cut oscillator potential,

_ 9.2 '
PRl ) — —Aexp (-""i' ) e
m3 : | : _
where A = log %(ES) =0 (g < 1 and wq is the frequ'ency of small
. )

oscillations, the polarizabilities (24) are finite:

a A2, Ag bt
ar(9) = ~ou(e) = m“”( 4wu) )

At energies w = O(wo) the corresponding Delbriick amplitude (23) is less by

the factor of O((wo/mo)?/?) than the ordinary nonrelativistic photon scat- -

e ?

tering amplitude T =~ mo(@2 — w?)

(ee’) by a particle bound at the ground

state.

4. 1In conclusion, in the present paper we calculated for the first time
the amplitude of the Delbriick scattering in the scalar QED in case of a

10

scalar oscﬂla.tor pntentml and, at low oscillator frequency, investigated its
asymptotlc behavior at low and high energies and low momentum transfer.
A close relation of the Delbriick scattering with the vacuum polarisation was
demonstrated.
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