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Abstract

Nuclear-spin-dependent P-odd optical activity in atomic Tl, Pb and
Bi is calculated. Its magnitude is expressed analytically through the
main contribution to the optical rotation, which is independent of nu-
clear spin. The accuracy of results is discussed.
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1 Introduction

Up to now only parity-nonconserving (PNC) effects independent of nuclear
spin have been reliably observed in atomic experiments. The reason is that
in heavy atoms, investigated experimentally, P-od nuclear-spin-dependent
(NSD) correlations are smaller than those observed, roughly by two orders
of magnitude.

In heavy atoms the NSD P-odd effects were shown [1, 2] to be induced
mainly by the anapole moment of a nucleus, its P-odd electromagnetic char-
acteristic. The measurements of these effects would give valuable information
on PNC nuclear forces. '

P-odd interaction with nuclear spin leads to some difference in the magni-
tude of PNC effects at different hyperfine components of optical transitions
[3]. Experiments aimed at the detection of NSD P-odd effects in cesium,
thallium, lead, bismuth are underway in many groups. The first evidence of
those correlations has been seen (at the level of two standard deviations) in
cesium [4]. Meaningful upper limits on the NSD optical activity in bismuth
and lead were obtained in Refs.[5, 6]. Recently the accuracy close to that
necessary for the detection of NSD effects has been achieved in the thallium
optical rotation experiment [7).

The first atomic calculations of the NSD P-odd effects were presented in
Ref.[3]. More careful and accurate calculations of those correlations in cesium
were carried out in Refs.[8, 9, 10, 11], the results of those last works being in
good mutual agreement. §.°




In view of the mentioned optical rotation experiments [5, 6, 7], a the-
oretical investigation of NSD PNC effects in thallium, lead and bismuth,
alternative to that of Ref.[3], is relevant and timely. This is the subject of
the present paper.

2 Thallium

The simplest case is that of the 6p;;2 — 6p3/2 transition in thallium. PNC

weak interaction W admixes the states ns; /2 to the initial one, and the mixing
matrix element is proportional to (see, e.g., Ref.[12])
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The weak nuclear charge @ in this expression is close numerically to —N, N
being the neutron number; N = 122 and 124 for 2°3T] and 2°°TI respectively.
The dimensionless anapole constant «, is close in Tl to 0.40 [2, 13]. As to
other notations in expression (1), j = 1/2 is the electron angular momentum,
i is the nuclear spin, K = (I — #)(2i + 1), ! is the orbital angular momentum
of the valence nucleon (for both thallium isotopes ¢ = 1/2, K = —~1, | = 0);

1 — Z2a2. An overall numerical factor omitted in the rhs of formula
(1) is irrelevant for our treatment; the imaginary value of matrix element
(1) is essential for the transition to the second-quantization representation
(see below). Due to the short-range nature of the PNC electron-nucleus
interaction W, mixing of any other pair of opposite-parity one-electron states
can be neglected.

There are other contributions to the NSD term in expression (1), due to
the weak neutral currents, and to the combined effect of the weak neutral
charge @ and usual hyperfine interaction [14, 15, 16]. Those contributions
can be easily included into the consideration, but most probably they are
numerically small as compared to k,.

Mixing (1) conserves obviously the total atomic angular momentum F
which in this case refers to the initial state 6p;/2, and the matrix element
reduces to

Q 27+ 1 2, F=0
27T -8 F=1" )

The second type of excitation essential here is that of electrons belong-
ing to the 6s* subshell: the states of the configuration 6s1/26p;/26p3/2 are

admixed by the weak interaction to 65%6p; /2. This contribution can be for-
mally described as a transition of the 6p; 5 into the occupied 6s; /2 state,
induced by the weak interaction, with the subsequent E1 transition from
65172 to 6pssa. No wonder therefore that the ratio between the nuclear-spin-
independent (NSI) effect due to @ and that driven by the anapole moment
(AM) interaction, proportional to k,, is controlled by the same relation (2)
where F' refers again to the initial state. This result can be as well obtained
directly using the second-quantization representation and the completeness
relation for the states belonging to the configuration 6s;/,6p;/26p3/2 (see

~ below).

In this way we obtain the following relation between the circular polar-

ization P, induced by the nuclear AM and that induced by the weak nuclear
charge Q: '

P, Pa2y+1f 4 F=0 | :
- @ 5 | =43 F=d (3)

Taking for Pg the result obtained in the phenomenological approach [17,
12] | -
Pg =3.4-10"7(-Q/N), ' (4)

we get finally

Pa [ -096-1078, F=0— F'=1 '
ke | 032:1078, F=1—F'=1,2 " (5)

Not only the result of Ref.[3] is reproduced?, but it is clear now why for
both transitions from the state of F' = 1 the degree of circular polarization
is the same.

In conclusion of this section it should be mentioned that relation (1)
allows one to get immediately the magnitude of the NSD PNC effect in the
strongly forbidden transition 6p;j3 — 7py/2 in thallium at F/ = F = 1,
again in complete agreement with the result of Ref.[3]. This trick was applied
previously in Ref.[8] (see also [11]) to the components with F’/ = F of the
transition 6sy/9 — 7sy1y9 In cesium.

2In paper [3] we used different normalization for the NSD effect, natural for the neutral
current interaction. For comparison with the present results (and with the numbers quoted
in book [12]) the original ones should be multiplied by (1—-2K)/2K. In thallium this factor
equals —3/2. '




3 Lead

The next case of experimental interest is the ®Pg —3P; transition in the
odd isotope of lead, 27 Pb (i = 1/2, K =1).

It is convenient here to use formula (1) in the second-quantization repre-
sentation:

W~ i{%(a!l_b+ +atb. —blay—bla)
+qliy(al by — blay)+i (alb_ - bla_)
+iz(alby —alb_ —blay +bLal)] }. (6)
Here a' (a) and b' (b) are the creation (annihilation) operators of the ;2
‘and pj; electrons respectively, the subscripts refer to the signs of electron
angular momentum projections j; = £1/2;
= x 2y+1 K
(5™ 8 4630
We will need also the second-quantization representation for the operator

of E1 s — p transition. Up to an overall factor, which is again irrelevant for
our purpose, this operator is (see, e.g., Ref.[12]):
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+p3;3(\/3_'c;”a+ =+ clﬂa_ —3al C-3f2 — HLC-IIE)} . (7)

Here c!, (cm) is the creation (annihilation) operator of the p3/s electron with
j» = m; p;j is the scalar radial integral of E1 s — p; transition.

The ground state wave function of the lead 6p? configuration is expanded
as follows in the jj basis (see, e.g., Ref.[12]):

BP} >= a1]1/21/2 >0 +053/23/2 >0; a1 = 0.974, az = —0.227.  (8)

The symbol |; j2 > denotes the normalized wave function of two p-electrons
with angular momenta j; and j2, and total angular momentum J. The first
excited state of that configuration is pure both in the LS and jj-scheme:

PP = 12 3/2 i (9)
In the second-quantization representation the basic wave functions are:

11/21/2 >o= b1 01 |0 >, (10)

1
= 1
13/23/2 >0= \/E("aﬁct_s;z — C{;gﬂilgg)m >, (11)

1
11/23/2 >1= E(x/:?c;mb[ —cl ph]0>. (12)

Here |0 > is the wave function of the closed shells.

The admixed E1 transition from one of the ground state jj components,
11/2 1/2 >0, to [1/2 3/2 >, proceeds via states of the type ns;/26p; /2 (in-
cluding the subshell 6s* excitation, as it was the case in thallium) and is
described by the effective operator D*W. Small spin i = 1/2 of the isotope
207Ph simplifies the calculations essentially. The total atomic angular mo-

m-:entum of the ground state is fixed, F' = 1/2, and coincides with the nuclear
spin. Elementary calculations demonstrate that

DYW[1/21/2 >0 |- >~ (@ —¢)V/2/311/2,1/2) +(Q +4/2)\/1/33/2,1/2).

(13)
Here |~ > denotes the nuclear spin state with i, = —1/2 (at J = 0 it
corresponds to F, = —1/2), |F,F;) refers to atomic eigenstate of given F

and F,.
The transition from the second ground state component, |3/23/2 >¢—
|1/23/2 >1, corresponds to the effective operator WD*. As easily one gets

WD*[3/23/2 >0 |- >~ (Q+9)V/1/311/2,1/2)+(Q - ¢/2)V/2/3(3/2,1/2).

(14

Therefore, the admixed E1 amplitude of the FF = 1/2 — F' = 1/%
transition is proportional to

Q(a1v/2/3 + a2/1/3) — g(a11/2/3 — a2/1/3);

that of F = 1/2 — F/' =3/2 to

Q(a1V/1/3 +a21/1/6) + ¢/2(a11/1/3 — a21/1/6).

Finally, we get

P, _Pg2y+12 1—az/(un/§){ -2, F'=1/2
Ka Q 3 3 1-{-—&2/({;1-/5) 1, F"=3/2

Taking again for Pg the result of the phenomenological calculations [17, 12]

Pg =24-10""(-Q/N), (16)

(15)



we come to the following numerical predictions:

Py L0075, Fi=a2 |
= ’ 1
{ ~0.15-1078, F'=3/2 (17)

Kg

in complete agreement with Ref.[3].

4 Bismuth

Of experimental interest in bismuth are the transitions from the ground state
into the first and second excited ones. All those levels belong to the config-
uration 6p3. The ground state and the first excited one have J = 3/2. The
coefficients of their expansion in jj basis

ay|1/2 1/23/2 >3/2 +ﬂ211/2 3/2 3/2 >3/2 +as|3/2 3/23/2 >3/2,

as derived in Ref.[18] (and quoted in Ref.[12]), are presented in Table 1.
Their standard values [19] are given in brackets in the same Table. The

second excited state is pure |1/2/;3/2/;3/2 >5/2.

Table 1: Expansion of bismuth 6p® states in jj basis
a1 s ds
Ground state 10.929 (-0.935)  0.323 (0.308)  -0.179 (-0.172)

Pirst excited state  -0.336 (-0.324) -0.940 (-0.944)  0.053 (0.066)

In the second-quantization representation the basic j j functions with
maximum projections are:

|1/2 1/2 3/2 >3/2= c} ;546110 >, (18)
1
11/23/23/2 >3/2= _ﬁcgﬁ(zc{ﬁbf_ —cl )10 >, (19)
13/2 3/2 3/2 >3/2= ¢ 5et pel 110 >, (20)
11/23/2 3/2 >572= c}j5ct 120110 > . (21)
8

The only stable bismuth isotope 2°°Bi has spin ¢ = 9/2 (K = 5). Due
to large J’s and 7 both transitions from the ground state, into the first ex-
cited one (876 nm) and into the second (648 nm), have a lot of hyperfine
components, 10 and 12 respectively. This makes us to resort, instead of the
elementary treatment of lead and especially of thallium, to heavy artillery of
3nj symbols.

In the single-electron language the following chains contribute to both
transitions:

1L B i 31{2 T 1
Pije —> 813 ~ Bald
D3j2 — 812 — P1/2-

The first of chain is described by the effective operator D+ W + W Dt which
reduces in this case to

DYW + WDt ~ ¢v2{iy (bh by — b1 b_) —2i, b1 6_} = ¢2v2[Vi x i]}. (22)
In this expression vector
V= {—v2blb_ bl by — bl b, v2b by} (23)

is nothing else but the operator 2j for p /5 electron in the second-quantization

representation; the symbol [V x 1]} denotes as usual the tensor product of
two operators coupled into a vector with projection +1.
The effective operator for the second chain is

o 1 |

tqlipcl by +ioch b V3 +ia(V3eh sb4 — €] b))
= Q V4 +¢{2V2[V x i} + VI0[T x ]} }. (24)
The tensor operator T is defined in such a way that

T.|.2 = ﬂ;;zb_ .

The definition of the vector operator V is clear from the equation itself.
Quite analogously the third chain is described by the effective operator

e

: 1
WwhHt — Qi(\/ﬁbt_c_;,;g + bfyc_1/2)



+qlisbtperya+ LbT-"ﬂfﬂ\/ﬁ = ; is(—\/gﬁ—ﬂ—aﬁ + biyco1y2)] We are interested in the ratios of the NSD terms in those matrix elements,

2 2 2 which are proportional to ¢, to NSI ones, which are proportional to Q. The
=QVy +q{-2v2[V x i]} + V10[T x i|}} (25) following identity is useful here[20]:
where R g > Ll
Tio=ble : W
+2 = 04C-3/2. VIG+HD@2i+D i i 1 (28)
Now the standard technique of the angular momentum theory allows one F''F 1
to obtain closed expressions for the reduced matrix elements of those opera- g AR B 4 : : ; ;
tors between the hyperfine states. For the infrared transition it is = Ll il 12/_—(F u ] Lt i 1)(")jj+i+F+1 { ‘;, F." ; } a
2/6 J

Somewhat less general and elegant identities [20] relate

M(zF'+1)(2F+1)[(—)F+‘{ W i i ;
. _ 5 SR
_ _ \/i(i+1)(2£+1){ J; i 1 }

xQV6(a;ay + azaly — aza) — azab) + ¢/i(i + 1)(2i + 1) PR

3/2 3/2 1 -
X ( i i 1 36(ayay + daah + aza!| + asalh — 21/2/5azas) § Ft 3
F' F 1 Foj 1/
372 3/2.9 Finally, we come to the following results for NSD optical activity in bis-
+ i i 1 %(=2V15)(a1ay — azal — aza + asah) (26) muth.
o I Infrared line (876 nm):
Here unprimed and pr.imed factors a; refer to the ground and first excited | Py _ Po 2vy+1 K (a1d)y + azaly — aza!, — azal)™
states respectively. For the red transition the analogous formula is ke Q 3 i+l ° . ! ¢
F+1
5/2 F' i . : ? 5 — 2v/2/5 asa: 0
—er+REED)|)F { P32 1 } Q+v/3/2(ay + as3) X4 (8102 + 0205 + 610, + a3a; /5 a2a)) 5
5/2 3/2 1 : / (F+1)*-26
o - . ; o b ! {5 e F3(F41)?-52F(F+1)4546
+3¢/i(i + 1)(2i + 1)( : i 1 %(a1+as+8y2/5as) +(ai1ay — azaz — aza; + 3362)2 ( JE‘[F+1)(-21 ) }
Fr F 1 | F?—26
5/2 3/2 2 ) o F41 ( (F+1)%-26
+<¢ i i 1 3V35(ar+as)]|. (27) = —107%{ 0.645 0 +0.274 | EXFH1P_S2R(F41)4546 | 4 (29)
7 | o F(F+1)-21
= \ F2 96

We have used in both formulae (26) and (27) the explicit values of the reduced
matrix elements of the operators V1, V, V, T and T between the jj states
(18) - (21) which can be found easily.

Red line (648 nm):

32
PG_PqﬁT-i-l K el L A gl / o
ks & 3 z‘(i+1){ o) 1{( e 2/5:::2)( —F%/z)
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—2F2% 4+ F +105/2
+(—a; —az) | —2F%—2F +99/2 }
—2F2 —5F +99/2
F —-3/2 —2F?% + F 4 105/2
=10"%{0.370 —5/2 ~0.780.| —2F2—2F +99/2 } (30)
— 52 —2F2% — 5F + 99/2
We use here for Pg the results of the phenomenological calculations [17, 12]

Po(876) = 2.9 107 (—Q/N), (31)

Po(648) = 3.8-10~7(-Q/N) (32)

for the infrared and red line. In formulae (29) and (30) the first, second and
third lines in each column refer to the transitions F — F' + 1, F — F' and
F — F — 1 correspondingly.

The numerical predictions for all hyperfine components of the two transi-
tions are collected in Table 2. They are obviously in a reasonable agreement
with those of Ref.[3] which are included for comparison into the Table.

Table 2: (Ps/kq) - 108 at hyperfine components of infrared
and red transitions

876 nm 876 nm 648 nm 648 nm

this [3] this [3]

work - work
F F'
6 7 - — . 1.22 ;0 e §
& 0 -0.17 -0.15 2.60 2.39
6 5 0.11 0.08 3.78 3.1
5 6 -0.66 -0.56 -0.46 -0.48
5 5 0.35 0.29 0.73 0.70
b 4 0.35 0.29 1.T1 1.69
4 b -0.30 -0.24 -1.82 -1.69
4 4 -2.58 =217 -0.83 -0.70
4 3 0.54 0.45 -0.05 0.09
3 4 0.02 0.03 -2.87 -2.61
s (. 0.20 0.18 -2.08 -1.82
3 2 - - -1.49 -1.23
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5 Accuracy of results

It is proper now to compare the accuracy of the present results with that
of the results of Ref.[3] and with that of theoretical predictions for the NSI
optical rotation.

Let us start with thallium. Here in the phenomenological approach adopted
in Refs.[17, 3] and here, both NSI and NSD weak interactions admix to the ini-
tial state 6p; /o exactly same simple excitations nsy 3. As to the excitations of
the type 6s6p?, when treating both effects the energy splitting between them
was neglected. There is no special reasons to expect that such an averaging
can influence NSD and NSI effects in essentially different ways. Therefore, for
the accuracy of our thallium result (5) one can accept the same estimate 15%
as was given in Refs.[17, 12] for the NSI prediction (4). It should be men-
tioned that, taking account of the mentioned 16% error, the phenomenologi-
cal NSI result (4) agrees well with the most accurate subsequent theoretical
calculation [21] which gives for this transition P = 3.20(10) - 10-7(-Q/N).
The experimental result [22], P = 2.50(38) - 107, does not contradict the
theoretical predictions (at —Q/N = 0.947).

A close situation takes place in lead. Usual excitations of the 6p elec-
tron belong to the configurations ns 6p which are well described by the jj
coupling approximation. The NSI.and NSD weak interactions admix to the
dominating, |1/2 1/2 >, component of the ground state wave function states
of different total electronic angular momentum J, |- 1/2 >¢ and T b T
respectively (here the dot denotes the ns-electron). However, the energy in-
terval between the states |- 1/2 >¢ and |- 1/2 > is tiny, about 300 em™!
even at n = 7. In the contribution to the effect of the second ground state
component, [3/2 3/2 >o, the usual ns excitations are admixed to the final
state |*P; >=|1/2 3/2 >1; the NSI weak interaction admixes the excitations
|- 3/2 >1, and the NSD one admixes both |- 3/2 >y and |- 3/2 >2. The en-
ergy interval between the last two states is also small (1250 em~! for n = 7).
And finally as concerns the contributions of the 6s-electron excitations, the
same arguments apply as in the case of Tl. Therefore the averaged treatment
of all the excited states when evaluating the NSD effects in lead in Ref.[3] is
practically of the same accuracy as the phenomenological calculation of NSI
effects in Ref.[17].

However, in the present approach an extra approximation is made as
compared to Ref.[3]. From the above argument concerning the admixture of
ns Bp excitations it follows that to treat both ground state components on the
same footing one has to neglect the energy interval between the ground state
and [3P; >= [1/2 3/2 >1. But this interval, 7819 cm™!, is not as negligible.
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Fortunately, the ground state of lead is also close to pure jj coupling, the
relative admixture of the [3/2 3/2 >¢ component in it is small (see (8)).
Thus the error ir‘roduced by that extra approximation gets negligible, and
the present result coincides numerically with that of Ref.[3]. The accuracy of
both can be estimated to be the same, 20%, as that of the phenomenological
NST one (16). It is worth noting here that the phenomenological NSI result
(16) agrees within the indicated error with subsequent theoretical calculations
[23, 24] and experiment [6].

In bismuth the situation is rather different. In spite of the reasonable
agreement between the present results and previous ones [3] (see Table 2),
the neglect of the energy intervals between the states belonging to the 6p3
configuration is more essential than in lead. Furthermore, in bismuth, as
distinct from thallium and lead, the chain

DPif2 —* S1j2 — P13,

becomes operative. Therefore, not only ns — 6pss2 E1 transitions, but
ns — 6p1y2 ones contribute to the effect. In our treatment we have tacitly

assumed that the corresponding radial integrals are equal. However, they are
not, at least for the E1 transition 7s — 6p [17].

The latter correction can be introduced easily into our consideration. Nu-
merical calculations [25] give the following values for the radial integrals of
7s — Op transitions (in the units of the Bohr radius)

P3j2 =2.2; py;2=1.5

The relative contributions of the 7s6p? excitations to the effect constitute,
according to Ref.[17], 30% and 24% for the infrared and red transitions re-
spectively. So, the effect discussed can be accounted for by the introduction
of the correction factors 0.89 into the term 24/2/5asa) in formula (29) and
0.92 into the term 8y/2/5a; in formula (30). Both those terms are due to
the ns — 6p;,, E1 transitions.

The present results for Bi were recalculated at the standard set of the
intermediate-coupling coefficients a; (see Table 1) used in Ref.[3], and the
above correction was made, accounting for the difference between ps /2 and

p1/2. The numbers obtained in this way are indeed even more close to the
results of Ref.[3].

A specific consequence of the neglect of the energy splitting inside the 6p3
configuration is the absence in expression (22) of the contribution

Loy +blb_

LR \/i
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scalar in electron variables. Such terms arise at ¢ both in D*W and WD*,
but cancel out in their sum. The cancellation is no more exact if the en-
ergy splitting does not vanish. The comparison with the results of Ref.[3]
demonstrate that the scalar contribution to the infrared transition does not
exceed few percent. Obviously, it cannot contribute to the red tra.nsi_t.ion
with AJ = 1. ' - _

Of course, the aim and outcome of the above procedures is to establish
the correspondence between the two results for bismuth, to have one more
check for both of them. Clearly, in bismuth the present calculation by itself
is less accurate than that of Ref.[3]. ' o

But what is the accuracy of the latter? In spite of an extra approximation,
that of averaging over the positions of all intermediate states belonging to
the same configuration, its error should be about the same as that of the
phenomenological calculation [17] of NSI optical activity in bismuth. ‘f!.‘he
accuracy of the latter was stated to be 20%. Indeed the phennmenolo_gma]
result (31) for the infrared transition within this error contradicts neither
most refined theoretical investigations [24, 26], nor experimental results [27,
28, 5]. _ -

A}s to the red transition, the situation is less clear. There is no agreement
between the phenomenological result (32) for it and that of the Hartree-
Fock calculation [26]: Po = 1.5(1.0) - 10-7(—Q/N). Moreover, there is a
discrepancy between experiments at this line. One of them [29] gives Pg. =
4.04(0.54) - 107, two other [30, 31] 1.56(0.36) - 10~" and 1.96(0.18) - 1077
respectively. Both discrepancies, theoretical and experimental, still are not
resolved.
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ful discussions. This investigation was financially supported by the Russian
Fundamental Research Foundation, Grant No. 94-02-03942.
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