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ABSTRACT

A linear oscillator driven by periodic perturbation is considered.
The infinite connected chaotic structures in phase plane emerge when
the perturbation is of the form of the periodic é-function and the exact
. resonance ccudition is fulfilled [1]. These structures are shown to be
unstable and completely destroyed if the duration of the perturbation
kick is arbitrarily short but finite.
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A linear oscillator driven by periodic nonlinear perturbation is often used

_as a dynamical model for some physical problems. Its motion is described by

the Hamiltonian:

U

H{zipll= Jl5'_}-%+¢Hf"(:a.',pv,t), (1)

where the perturbation V(z,p,t+T) = V(=,p,1) is a time—periodic function.

In Eq.(1) the nonlinearity depends on the weak (as ¢ — 0) perturbation

only and, if the resonance occurs, we have the weakly nonlinear resonance

system, on which the extension of the KAM theory is impossible. Dynamics

of the systems, which may be very unexpected, was extensively studied (see,
e.g., [1]).

Let perturbation in Eq.(1) contain only one harmonic. Then

p? + w? 22
2

If we put wp = 0 the model describes a single strongly nonlinear resonance
(SNR) which is completely integrable with no trace of a chaos [2]. Yet, for
any wo # 0 nonlinearity becomes weak (as ¢ — 0) and the motion drastically
changes. If Q/wq is an integer, the model describes a single weakly nonlinear
resonance (WNR) which has a very complicated chaotic component [3].

In present paper we are going to discuss in detail another case of Eq.(1)
with infinite number of harmonics:

Hiz p.t)= + € cos(z — Q). (2)

pﬂ _}_wg xE

H(m!p!t) — 2

+ € cosz b7 (t), (3)

where 6r(t) is the T—periodic é—function and the perturbation parameter
¢ << 1 is small. The model (3) may represent the motion of a charged
particle in both a magnetic field ( Larmor’s frequency wo ) and the field

3




of a perpendicularly propagating wave packet [1]. If we put wp = 0 the
model describes a strongly nonlinear system with the infinite set of interacting
resonances and their chaotic layers. For a sufficiently small perturbation
£ << 1 the layers of different resonances are separated from each other by
stable invariant tori and an unbounded motion is impossible [4]. But for
any wg # 0 and T = 2« /nwe with any integer n an infinite and uniform
connected chaotic web emerges on phase plane [1]. The unbounded motion
of a particle along this web is possible.

The web is unstable under detuning from the exact resonance condition
(27 /T — nwy # 0 ), as was shown in [5] (see also [1]). We study another kind
of the instability due to a finite kick’s width.

Let us replace §—function in Eq.(3) by another one F(t), which has a form
of periodic rectangular function of length A and height 1/A located in the
middle of every period T. Then

2 2 52
Hulz,p 1) = f—+;-ﬂim— +ecosx F(t) =wol+ ¢ cos(p cos 0) F(t), (4)
where i
F(t) = =3 + Z a cos(knwot),
E>1
nwo i sin(knwoA /2)
= —(-1 ' =0, 2o
ﬂ-k T ( ) (kﬂh.?[}.&/z) H G! 1 '

In Eq.(4) £ = pcos(d), p = —pwp sin(#) and p = (21/wo)'/? is the
amplitude of the unperturbed oscillations. The exact resonance condition
T = 27 /nw, with some integer n is supposed to be fulfilled. This condition is
the only one and the model describes a single WNR (compare with Eq.(2)).

Introducing a new slow phase ¢ = 0 —wot, new time 7 = enwot/2,
expanding the perturbation in the Bessel functions and averaging over the
fast oscillation we have arrive at the first-order resonance Hamiltonian ( for
more details see [1,2]):

g O ~ - avkghp sin(knwoA/2)
Banll,,8) = Jo(0)+2 32 (D nl) =R

cos(kn ) (5)

where kn are even. For A = 0 the perturbation has a form of periodic
é-function as in Eq.(3) and we will use for this case a special symbol Hj,:

Hyn(I,0) = Han(lp, A =0) = Jo(p) +2 Y (=1)**+F Jyn(p) cos(k n o)
E>1

with kn even. (6)

Y

Expanding sin(knwoA/2)/(knwoA/2) and regrouping terms in Eq.(5) we
obtain:

o 2 Asm(1, ) [woA o
Hﬂﬂ.f: 1& =HﬂIJ
a(09,8) = o “’”%@mﬂ)!( =) o

Azm(1,9) =2 3 (-1) F 47 I (p) (kn)™™ cos(k n ),
k>1

where kn are even. Using 2m-fold integration of Asn,(1,¢) with respect to

¢ and representing the results in terms of Hs,(], ) and its derivatives we
obtain an interesting relation between the two Hamiltonians:

woA/2)*™ 9™
(2m+1)!  9p?m

Rl e®y= 5" Fsn(l, ). (8)
m2>0

A part of the infinite and uniform web for the resonance n = 4 and
F(t) = ép(t) is reproduced in Fig.1. This so—called ’Kicked Harper Model’
(KHM) is extensively studied now by many researchers [6].

Fig. 1. Computer simulation of model Eq.(4) with n = 4; wp = 1;
¢ = /2. The perturbation is periodic é-function. X, P — are slow variables
(9) shown at ¢ = 0 mod T with initial values in the vicinity of the saddle
point X = P = n/+/2.
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A compact form of the first-order resonance Hamiltonian (6) may be de-
rived with the help of the following identity ([7], m > 1 is any integer):

Jo(p) +2 Y (=1)™* Jamk(p) cos(2mkd) =

k>1
1 = jm
-—n;cos(pcos J) + = JZ]; cos [pcos(-n-; +19)] ;

For KHM, by putting in the identity m = 2, ¥ = ¢ + /4 and using slow
variables

X =pcosyp, P=—pwosing (9)

It coincides with the result in [1] up to a turn of the Cartesian coordinate axes.
Exactly the same form has the first—order resonance Hamiltonian for model
Eq.(2) with the only harmonic sufficiently far from the origin X = P = 0.
Its structure and instability was considered in details in [3].

This resonance structure is characterized by an infinite lattice of peri-
odic trajectories (fixed points on plane X, P) both stable (sin(X/v2) =
sin(P/+/2) ~ 0) and unstable (cos(X/v2) ~ cos(P/+/2) ~ 0), the latter
being connected by separatrices with their chaotic layers. The infinite WNR
structure in Fig.1l is qualitatively different from the SNR one. As is well
known, the latter consist of a ’chain of islands’ which extends in the direc-
tion of phase variable only and is strictly bounded.

The SNR structure is universal and stable under sufficiently weak pertur-
bation [4]. Unlike this the WNR structure is neither universal (the structure
is different for different n) nor stable. The first example was model Eq.(2)
[3].

To see the instability of KHM structure let us add to Eq.(10) a term linear

in X: o e ( % ) i (V%) +aX, (11)

Then vertical separatrices (X = const) all remain unchanged but horizon-
tal ones (P = const) are destroyed because of the difference AH 54 1n H 5,4
between the two neighboring fixed points. Remarkably, an arbitrarily small
perturbation ( @ — 0 ) qualitatively changes the structure making all the

we obtain :

rows of resonance cells disconnected by narrow vertical gaps. For small a > 0
the width of a gap at X = 37/v/2 mod 2v/27 and P = 0 mod 2v/2r is:

AH;4

AX S| ettt
OHs4/0X

~ 27 |l (12)

The motion inside a gap is unbounded in P. One can realize such an ’accel-
erating regime’ for KHM by adding to Hamiltonian (4) the time—dependent

resonant perturbation:
Ta

AH, = L—;—m cos(§2t), (13)

where Q = wp (the case of a linear resonance in nonlinear web, see [3]).

Now, let the kick in Eq.(4) be of a finite width A . Phase portrait of
KHM for A/T = 0.2 is given in Fig.2 (the other parameters are as in Fig.1).
One may see the qualitative change in the phase plane structure: the infi-
nite lattice of fixed points remains almost unchanged but the chaotic web is
completely destroyed by the extremely complicated net of gaps.

In Fig.3 the levels of resonance Hamiltonian Ha 4 (5) are shown. Remark-
ably, the analytical construction well reproduces the most principal features
of KHM phase structure Fig.2 (without chaotic components).

To clarify the origin of the gaps in Flgs 2,3. we use the relation Eq.(8)

between the two resonance Hamiltonians Ha FR HH and Eq.(10) for the
latter. The following calculations will be simplified if we restrict ourself to
the saddle points where

cos(X/V2) = cos(P/V2) = 0; sin(X/V2) = sin(P/V2) ~ +1
In the saddle points of system (4) with n = 4 we have:

BB AN el woA \*
: ( : ) + g X2+ P +7)( : ) s L)

This expression shows that the origin of the gaps Figs.2,3 is related to the
difference in H A 4 between the two neighboring fixed points. We can estimate
the width of the gap from Eq.(14) and more accurately from Eq.(5). For sev-
eral low (nearest to the origin X = P = 0) gaps in Fig.3 both approximations
give close results. N

Dependence of the resonance Hamiltonian Ha 4 on X, P leads also to a
change of the frequencies of small oscillations and to a decrease in the width
of chaotic layers when moving away from the origin. For low gaps the chaotic
layers may close the gaps completely but at some distance on the gaps remain

open and block the diffusion (the first open gan is shown on Fig.2).
T
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Fig. 2. The same as in Fig.1 with a finite A/T = 0.2. Insert: enlarged
part of the first open gap and an invariant trajectory inside it.

0 X 10

Fig. 3. The levels of resonance Hamiltonian H a,4 using first 15 terms in
Eq.(5). All parameters are the same as in Fig.2.

In conclusion we note, that the weakly nonlinear chaotic structure is in-
finite connected web only if the perturbation has the form of the periodic é-
function and the exact resonance condition is fulfilled. As was shown above,
the web is not stable. Under a weak perturbation or for finite kick’s width it
becomes disconnected by many narrow gaps.

The author is very grateful to B.V.Chirikov and E.A.Perevedentsev for
discussions and helpful advices.
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