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ABSTRACT

We estimate the couplings in the Heavy Hadron Chiral Theory
(HHCT) lagrangian from the QCD sum rules in an external axial
field. Stability of the sum rules at moderate values of the Borel
parameter is poor that probably signals a slow convergence of the
OPE series. At large values of the Borel parameter they stabilize,
and yield the couplings much lower than the constituent quark
model expectations. This region is not trustworthy for baryons,
but in the meson case only unexpectedly large contributions of a
few lowest excitations could invalidate the prediction g; ~ 0.2,
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1 Introduction

It is well known that the QCD lagrangian with n; massless flavours has the
SU(n;)r x SU(n;)r symmetry spontaneously broken to SU(n;)y giving the
(n7 — 1)-plet of pseudoscalar massless Goldstone mesons (pions) ﬂ';- (=% = 0),
Their interactions at low momenta are described by the chiral lagrangian (see
e. g [1]) : :
.LT:%TIG#E*'@#E—F”-, 1:=exp$,, (1)

where the pion constant f = 132MeV is defined by
0|t |r> = ifé’ = Fivuysg -'f2(2+az £a,2t)

(€ is the pion flavour wave function), and dots mean terms with more deriva-
tives. Light quark masses can be included perturbatively, and lead to extra
terms in (1). SU(ni)r x SU(n;)g transformations act as ¥ — LEYRT. Let’s
define £ = expin/f, ¥ = £?; it transforms as &€ — LEUT = UERY where U is
a SU(n;) matrix depending on w(z). The vector v, = S(610,6+£0,6T) and
the axial vector a, = £({70,6 — £8,€7) transform as v, — U(v, + 8,)UT,
ay — Ua,Ut. There is a freedom in transformation laws of matter fields
such as 9* because it is always possible to multiply them by a matrix depend-

ing on 7. The only requirement is the correct transformation with respect to

SU(n)v (L = R). It is convenient to choose ¢ — U1. Then the covariant
derivative D, = 0§, + v, transforms as D,v — UD,v¥. Covariant derivatives
of tensors with more flavour indices are defined similarly.
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Hadrons with a heavy quark are now successively investigated in the
framework of the Heavy Quark Effective Theory (HQET) [2] (for review
and references see [3]). To the leading order in 1/m, the heavy quark spin
does not interact and can be rotated or switched off at all (spin-flavour and

superflavour symmetry). The Q¢ mesons with a spinless heavy quark form

the jF = %+ ni-plet 9*. The Qgq baryons can have j¥ = 0% or 1t giving

the scalar flavour-antisymmetric n;(n; — 1)/2-plet A** and the vector flavour-
symmetric ni(n; + 1)/2-plet L%, Switchiug the heavy quark spin on gives

degencrate 0~ and 1= B and B* mesons, 2

* A baryons, ‘and degenerate 5 Lt
and 3 ¥ and £* baryons. '

Interactmn of these ground-state heavy hadrons with soft pions is de-
scribed by the Heavy Hadron Chiral Theory [4, 5]. Excited mesons were
- incorporated in [6], and electromagnetic interactions—in [7]; chiral loop ef-
fects were considered in [8, 5]. We start from the HHCT lagrangian with the

heavy quark spin switched off:
L= Ly + $;iDot’ + A;iDoA” + £7; - (iDg — A)E Y (2)
tg Biaiyst +2iga By - @4 x B 4 2g, (A:,,a“ Fiky Fr “;n:f"v‘) :

where A is the ¥-A mass difference. The possibility of consideration of
the ¥ Ax interaction in HHCT relies on the fact that this difference is small
compared to the chiral symmetry breaking scale though formally both of
them are of the order of the characteristic hadron mass scale. The matrix
elements of the axial current between heavy hadrons are easily obtained using

PCAC:

{ﬂflf|_ﬁ1M} = glﬁ-f75ui (3)
<¥'|75 1S = 2igq€) X e {Mjﬂﬁl} = ?gaﬁ;ké":k,
where u, €7, &7 are the M, A, ¥ wave functions, and the nonrelativistic
normalization of the states and wave functions is assumed. If we switch the
heavy quark spin on, we obtain the usual HHCT lagrangian [4, 5].

The HHCT couplings g; should be in principle calculable in the under-
lying theory—HQET, but this is a difficult nonperturbative problem. Some
experimental information is available only on ¢;. If we neglect 1/m, cor-
6w f2'
extra 1/2). The experimental upper limit [9] on T'(D**) combined with the
branching ratios [10] give g1 < 0.68. A combined analysis of D* pionic and
radiative decays was performed in [7]; it gives g; ~ 0.4-0.7.
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rections, then T(D*t — P%7rt) = and similarly for D+ 7% (with the

In the constituent quark model, g; is the axial charge g of the constituent
light quark in the heavy meson. Moreover, following the folklore definition
“constituent quark is B meson minus b quark”, this is the most clear way
to define ¢ of the constituent quark. The baryonic couplings g2 3 are also
equal to g in this model. The most naive estimate is g & 1; the nucleon axial
charge is g4 = 2g in the constituent model, and in order to obtain g3 = 1.25
we should assume g = 0.79.

Sum rules [11] were successfully used to solve many nonperturbative prob-
lems in QCD and HQET. The currents with the quantum numbers of the
ground state mesons and baryons with the heavy quark spin switched off are

+f :tl+ i -1, i i
=@ i =@"onde, i =@"oie, ()

where () is the spinless static quark field, C is the charge conjugation matrix,
g7 means ¢ transposed, (ij) and [ij] mean symmetrization and antisym-
metrization. There are also currents jy, and j§, with the additional 7.
Correlator of the mesonic currents was investigated in [12, 13], and of the
baryonic ones—in [14]. The sum rules results are in a qualitative agreement
with the constituent quark model: the massless quark propagator plus the
quark condensate contribution simulate the constituent quark propagation
well enough.

The sum rules method was generalized to the case of a constant external
field for calculation of such static characteristics of hadrons as the magnetic
moments [15]. Sum rules in an external axial field were used [16] for calcu-
lation of g4 of light baryons. In the present work we use HQET sum rules
in an axial field to calculate gy 2 3. Sum rules for the D* Dr coupling have

been studied earlier [17]; their result (in the terms used here) is ¢, = 0.2. We

disagree with some results of this paper.

2 Mesons

We introduce the external axial field fl*:# [H‘;#_ = 0) by adding the term
A=t AL , (5)

to the lagrangian. We are going to calculate correlators of the currents (4)
up to the terms linear in A (these terms are denoted by the subscript A).
The light quark propagator in the gauge x,A,(z) = 0 gets the contribution

iAl i :Iﬂ."')"g, If,;é e Y
S;a(2,0) = — 2;2 (1:4._ :4;2 )'i_ (6)




The G? term in S, vanishes after the vacuum averaging; we are not going to
calculate gluonic contributions beyond G? and hence may omit this term.”
The axial field induces the quark condensates®

‘ by e i i
<q""(2)q;05(0)>4 = 4}} [f?A} + g <19> ([Aj:l'] + 6.A; l)
2 12 |
mif gL At Ee =
trea (5m A5 =28 :r:m) '}r’ﬁ}ﬁ, (7)
e na = < Gl AR
qu ;qub,ﬁ}ﬁ A i?CF'Nﬂll I,—_;'TI-’ MT# g

where m? ~ 0.2GeV? is defined by [18]® <0|dgG .y, ysulrt> = imdfp,,
N = 3 1s the number of colours, Cr = N:};'. We assumed p - A = 0 where
p — 0 is the momentum of the field A; in general these formulae should
contain 4A; = A — =£p.

The correlator c-f the meson currents (4) has the A-term

1'1"}’3

il f 1+ 7 :; = '

1<Tj' (2)3;(0)>4 = 5 Asrs 6(:1:}H4(:cg) (8)
that depends only on fT} and not Aj-ﬂ. The correlator possesses the usual
dispersion representation at any A_f:; 4+ The meson contribution at flj— y=01s
p(w) = F?8(w — ) where ¢ is the meson energy and <0|j*|M> = iFu’ (the
usual meson constant is fr = %) Switching on the external field produces

the energy shift € — £ — g1757 - A (8, = 2757 - i = £3 is the meson spin

projection). Therefore the meson contribution is ps(w) = g1 F?§(w — €) +
c¢6(w — €) where the second term originates from the change of F'?. Besides

that there is a smooth continuum contribution p$°"*(w). Thus we obtain

g F° ¢
Ta@w) = ~ 3t o= T IE) 9)

In other words, the lowest meson’s contribution in both channels (Fig. la)
gives the double pole at w = £; mixed lowest-higher state contributions

4The first term in (6) was presented in [16], but we don't understand how the authors
calculated 32 corrections without the second term and the above statement about the
third one.

SThese formulae were presented in [16] but with a different second term in the first
equation; their term does not satisfy the relation {(f}q}a} = .0 that follows from the
equation of motion. '

Sthe sum rule considered in the second paper of [18] yields the relation m
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1R mgffl.

(Fig. 1b) give a single pole at w = £ plus a term with a spectral density in
the continuum region after the partial fraction decomposition; higher states’
contributions (Fig. 1¢) have a spectral density in the continuum region only.
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Figure 1: Physical states’ contributions to the correlator
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Figure 2: Correlator of meson currents



We can also calculate the correlator using OPE. Gluons don’t interact
with the heavy quark in the fixed point gauge z, A, (x) = 0. The diagrams
with non-cut light quark line (Fig. 2a, b) vanish. The diagram with cut line
(Fig. 2¢) gives

7 i<gg>l 5 :
Ma(t) = e 1— Y %mftz ; (10)

Thus the appearance of ga of the constituent quark is entirely caused by
interaction with the quark condensate. The correlator (10) corresponds to
the spectral density in the form of §(w) and its derivatives. Equating these

expressions at an imaginary time { = —i/E we obtain the sum rule
g F? —¢/E 5 <gg> 5 mi
I8 =] - . e : 11
( E ‘“)E 1 3f°F T 36 B2 8

At sufficiently high energies the hadronic spectral density is equal to the
theoretical one, and it vanishes. Moreover, higher states’ contributions are
exponentially suppressed, therefore we neglect them. This sum rule should
agree with the m, — oo limit of the sum rule for the D* — D coupling [17].
We disagree with-the last term in [17], though it is not very important nu-
nierically.

At large E the sum rule (11) leads to

g F? = 1% — L<qg>. | (12)

Of course, higher states’ contributions are not exponentially suppressed at
large E. But the contribution of high energy excitations is given by the
perturbative spectral density which is zero in our case. Hence only one or
few lowest states contribute. Excited mesons are supposed to have F'? sub-
stantially smaller than the ground state meson, and may be are not very
important. So we may hope that (12) gives us a reasonable estimate. We use
F? = (240MeV)? and £ = 430MeV obtained from the sum rule without radia-
tive corrections [12] because we don’t know radiative corrections to (10) and
feel that it would be inconsistent to take them into account in a part of sum
rules (this would lead to large errors e. g. in the sum rule for the Isgur-Wise
function). Of course, the existence of large radiative corrections [13] leads to
an additional uncertainty in the result. If higher states’ contributions to (12)
are not important, we obtain g; ~ 0.2.

We can multiply (11) by exp(e/E) and differentiate in £ in order to
exclude ¢. The result is shown in Fig. 3. Of course, at large enough E 2>

8

g5 = e e - R e g

Figure 3: Sum rule for ¢,

2GeV (12) is reproduced, and we get g; =~ 0.2. This is the only region in
which the sum rule is stable. A similar sum rule with the finite m, was
analyzed in [17] in the region E = 1.5-3GeV with the same result. But this
requires an extremely slow convergence of the OPE in order to forbid usi-ng
lower E. The OPE series (11) looks like 1 4+ 200MeV/E + (170MeV/E)?,
so 1t seems that the expansion is applicable at £ > 500MeV. This is close
to the lower bound of the applicability region of the ordinary sum rule [12].
The upper bound of its applicability region is about 800MeV because the
continuum contribution 1s too large at higher E. If we suppose that the
applicability region of the sum rule (11) is approximately the same, then we
obtain ¢g; ~ 0.4-0.7. Stability of the sum rule in this region is poor. In this

~ case we have to assume that the higher states’ contribution is significant at

E > 800MeV.



3 Baryons

Correlators of the ¥ and AY currents have the A-terms

i<Ti4 (@) iiim(0)>4 =  ieimn AL ENS(E) N a(z0),
i<Tjid (2) i (0)>a = AL608(F)a(x0)- (13)

If we define {Gijfhi} = Fﬁﬂﬁ, {[]]j'g]E} - Fg,é"'ﬁ then the physical states’
contributions to the correlators (Fig. 1) are

2ga F'E Bl
I e - e
e (w—eg)? e | _ e
2037 Py -
Ma(w) = SN S ab A o cz e

(W*Eﬁ)(w—fﬂ) Gl =B Ww—£Exn

It is impossible to separate the g3 term from the mixed A-excited and X-
excited contributions unambiguously. We can do it approximately if A =
€5, — £5 € €. — o5 because in such a case partial fraction decomposition of
the first term would give large contributions to cx x ~ 1/A with the opposite
signs while the natural scale of cp s in (14) is cAz ~ 1/(e. — eax). This
is not a defect of the sum rule but the uncertainty inherent to gz which can
be defined only when A is small compared to the chiral symmetry breaking
scale. We choose to require ep = cx; the choices ¢4 = 0 or ex = 0 would be
equally good.

The baryonic correlators in the OPE framework are described by the
diagrams in Fig. 4. The diagrams Fig. 4a—c with the non-cut quark line
interacting with the axial field vanish due to (6). We use the factorization
approximation for the four-quark condensate in Fig. 4e. In this approxima-
tion two diagonal correlators <jij1> and <jaj2> coincide in both £X and
AT cases, as well as/<ja1jx2> and <jazjz1>. This is similar to the usual
heavy baryon sum rules [14], and confirms the observation that Fia, = Fiao
and Fy; = Fs, within the factorization approximation to the sum rules.
Only even-dimensional condensates contribute to the diagonal XX and the
nondiagonal AX correlators:

2N f2 [1 (5 CB> mit* . T2 <gq>2t?

N w23 i 12 6Nf2 |’

Na(t) =
La(®) 3

(15)

where Cg/Cy = 1/(N — 1) (this term comes from the diagram Fig. 4f).
Only odd-dimensional condensates contribute to the nondiagonal % and
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Figure 4: Correlator of baryon currents
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the diagonal A correlators:

2N! <Gq> ¥ i ' i

These correlators correspond to the spectral densities

N1 f2 Cp\ m? 2Nl <gg>w

(plus &(w) and its derivatives).
We use the standard continuum model p$$™ (w) = p'°"J(w —¢.). Equat-
ing the OPE (15, 16) and the spectral representation at t = —i/E, we obtain

the sum rules

(?ngﬁ? + C) c—_EE'ﬂrE

E
4f253 [fz( JE) + 3{252 fo(ec/E) + IET?%}‘.T]
== p {fl /) + 2L (1 g 3561”)] |
(el s 1
e [er 4 Ty Tt
_4<qe> m? f? nig - b

e 3 e
= [ME IE)t 55 ( 1632+36E2)]’

where fﬂ(:.',) e ] E‘-'T Z =t =T
Fig. 5a shows the results for g; 5 obtained from the diagonal £¥ and

the nondiagonal AY correlators (the first formulae in (18)). The values of
Eax and Fp v are taken from the diagonal sum rules [14] in the middle of
the stability plato £ &~ 300MeV. We use the same values of the continuum
Lhreshc:-ld as in [14]: (5.6 & 0.5)k for © and (4.6 + 0.5)k for A where k* =
————{qq‘;- k = 260MeV. We put the continuum threshold in the sum rule
for g» (£X correlator) equal to that in the ¥ sum rule; in the case of ga
(AX correlator) we put it equal to the average of the thresholds in the A and
Y channels. Of course, the effective continuum threshold for the A-term in
the correlators does not necessary coincide with that in the absence of the
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Figure 5: Sum rules for gs 3 (solid and dashed lines): a—diagonal £X and
nondiagonal AY sum rules; b——nondiagonal £¥ and diagonal AX sum rules.
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external field; this assumption gives an additional uncertainty. The spectral
density (17) behaves like w?, and hence the continuum contribution to the
sum rules (18) quickly grows: it is equal to the result at £ ~ 600MeV and
is three times larger than the result at E' ~ 900MeV. if we assume that the
uncertainty in the continuum contribution is, e. g., 30%, then we can’t trust
the sum rules at £ > 900MeV. The lower bound of the applicability region
is determined by the convergunee of the OPE series for the correlators. It
behaves like 14 (190MeV/E)? + (245MeV/E)* for the £X correlator; in the
AY case 140MeV enters instead of 190MeV. It seems that OPE qhould be
applicable at ' > 400MeV. Stability of the sum rules in this window is poor.
We can only guess that go ~ 0.2-1, g3 ~ 0.1-1, and probably g3 < ¢2.

Fig. 5b shows the results for g3 obtained from the nondiagonal XX
and the diagonal AX correlators (the second formulae in (18)). The val-
ues of epx and F p are taken from the nondiagonal sum rules [14] in
the middle of the stability plato F =~ 650MeV. Again we use the con-
tinuum thresholds from [14]: (5.6 & 0.5)k for £ and (3.65 & 0.5)k for A.
The spectral density (17) behaves like w, and the continuum contribution
grows not so quickly: it is equal to the result at £ =~ 1GeV and is three
times larger than the result at £ & 1.6GeV. The OPE series behaves like
1+ (290MeV/E)? [1 - (150MeV/E)?], and the applicability region starts at
a larger E. Stability of these sum rules is poor too. They tend to prefer

somewhat larger values g, ~ g3 ~ 0.5-1. .

: In conclusion, poor stability of the sum rules at moderate values of the
Borel parameter probably signals a slow convergence of the OPE series. At
large values of the Borel parameter they stabilize, and yield the couplings
g1,2,3 much lower than the constituent quark model expectations. This region
is not trustworthy for baryons due to large continuum contributions. In the
meson case, higher excited states are dual to the vanishing theoretical spectral
densily, and don’t contribute. Only unexpectedly large contributions of a few
lowest excitations could invalidate the prediction g; & 0.2. This inconclusive
picture 1s especially surprising because similar sum rules in an external axial
field produce g4 = 1.25 for the nucleon [16] in excellent agreement with
experiment and the constituent quark model.

Acknowledgements. We are grateful to V. L. Chernyak for useful dis-
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