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ABSTRACT

Heavy Quark Effective Theory (HQET) is a new approach to
QCD problems involving a heavy quark. In the leading approx-
imation, the heavy quark is considered as a static source of the
gluon field; 1/m corrections can be systematically included in the
perturbation theory. New symmetry properties not apparent in
QCD appear in HQET. They are used, in particular, to obtain
relations among heavy hadron form factors. HQET also simplifies
lattice simulation and sum rules analysis of heavy hadrons.

Part 1 contains discussion of the effective lagrangian, mesons,
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tions, nonleptonic decays, and interaction with soft pions.
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1 Effective Lagrangian

Recently an interesting new approach to QCD problems involving a heavy
quark was proposed, namely the Heavy Quark Effective Theory (HQET). In
the leading approximation, the heavy quark is considered as a static source
of the gluon field; 1/m corrections can be systematically included in the
perturbation theory. This simplification is similar to considering a hydrogen
atom instead of a positronium. New symmetry properties not apparent in
QCD appear in HQET. They are used, in particular, to obtain relations
among heavy hadron form factors. However, in QCD even such a simplified
problem is unsolvable. Approximate methods such as lattice simulation or
sum rules are necessary to obtain quantitative results. Here again HQET
allows to proceed much further than QCD.

There are several good reviews of HQET [1, 2, 3] to which we address the
reader for an additional information. Here we widely use the properties of
currents’ correlators to obtain general results. This approach is inspired by
sum rules, though we shall not consider details of sum rules calculations, We
shall start, from a very simple though approximate picture in the Sections 1-3;
some complications are discussed later.

Let’s start from the QCD Lagrangian

e g el
L=Q0GD-=m)Q + GiDq — E{rwG:r.f.... (1.1)

where @) is the heavy quark field, ¢ are light quark fields (their masses are not

written down for simplicity), G, 18 the gluon field strength, and dots mean
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- gauge fixing and ghost terms. It is well known that the free heavy quark :
Lagrangian Q(zc’? ~ m){,} gives the dependance of the encrgy on the momen-

tum € = y/m? + p?. We shall consider problems with a single heavy quark

‘approximately at rest, and all characteristic momenta |[p] € m.. Then we"

can simplify the dispersion law to ¢ = m. It corresponds to the Lagrangian
Q#7000 — m)Q. In such pmblems it is convenient to measure all energies
relative to the level m. This means that instead of the true energy & we shall
‘use the effective energy &€ = € — m. Then the heavy quark energy € = 0 inde*

pendently on the momentum. The free Lagrangian gwmg such a dlspersmu :

law is Qiv080Q. The spin of the heavy quark at rest can be described by a
2-component spinor Q (we can also consider it as a 4-component spinor with
the vanishing lower components: voQ = Q): Reintroducing the interaction
with the gluon field by requirement of the gauge invariance, we arrive at the
HQET Lagrangian [4] | )

4 . . e

The static quark field Q contains only anmhllatmn operators.. There are no

heavy antiquarks in the theory, because processes of heavy quark-antiquark -
pair ‘production are suppressed by 1/m. The heavy antiquark (if present) is .
described by a separate field. The field theory (1.2) is not Lorentz-invariant, :

because the heavy quark defines a selected frame—its rest frame.
The Lagrangian (1.2) gives the static quar!-: propagator
1 g : g
30) = =1 S@)=%@, SO=-i0). 03

+.2

In the momentum space it depends only on pp but nc:-t on p because we have

neglected the kinetic energy. Therefore in the coordinate space the static

quark does not miove. The unit 2 x 2 matrix is assumed in the propaga-
tor (1.3). It is often convenient to use it as a 4 x 4 matrix; in such a case the
- projector —+15'- excluding the lower components is assumed. The static quark
interacts’ mﬂy with Ag; the vertex is igdp,t®.

One can watch how expressions for QCD diagrams tend t-:} the corre-
sponding HQET expre%smn? in the limit m —-o00 [5] The-QCD hea.vy quark
propagator 18

; ke L S = g T — i~ ~—
| (p) . pP—m? 2mpy +‘p2 2P0

m

- ! = 1.8 i -
p+m _ m(l+y)+P _ +Tn+0(£)' (1.4)

A vertex igy,1® sandwiched between two projectors --—'L may be replaced
by tgﬁgﬁt (one may insert the pmjectors at external heavy quark legs too).

4

L= Q"'zDgQ-i—thq— G” LG+ )
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 Therefore any tree QCD dlagram equals the cnrrespondlng HQET one up
“to O(p/m) terms. In loops,: momenta can be arbitrarily large, and the re-

lation (1.4) can break. But regions of large loop momenta are excluded by

the renormalization in both theories, and for convergent integrals one may
use (14) (see Sec. 4).

The Lagrangian (1:2) can be rewrltten in-covariant notations:

L;@%D§+~-' | - (1.5)

¥

where the static quark field Q is a 4-component spinor obeying the relation

7Q = Q and vy 1s the quark velocity. The true total momentum p_u 1s related
to the effective one Pu by

Pu = mv.u 4 ﬁ#: l§g| T o 2 - (l.ﬁ)
The static quark propagator is

LB il -
> np £ 10’ (1.7)

S =

and the vertex is igv;t®. In the limit m — oo the heavy quark can’t change
its velocity v, in any processes with bounded momenta p,. Therefore there
exists the velocity superselection rule [6]: heavy quarks. with each velocity
v, can be treated separately and described by a separate field Q,. If we are
interested in a transition of a heavy hadron with the velocity v; into a heavy
hadron with the velocity vs, we can use the Lagrangian

Loed Zﬁiiuwﬂ”éﬁ---- (1.8)

where (); 1s the static quark field with the velocity v; (Llle quark Q, is present
in the initial hadron and @s;—in the final one). These quarks have different
propagators (1.7) and vertices. They can be of the same or different flavour;
it doesn’t matter because they can’t transform into each other except by an
external current with an unbounded momentum transfer (of order m). It is

“even possible to write a Lorentz-invariant Lagrangian [6]

A2 5=

Biue o0 QUEU;;D Qu (19)

describing static quarks with all possible velocities at ones. But in any specific
problem only several heavy quarks with several velocities are involved: all
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fields 'é“ exceﬁt,few ones are in the vacuum state and are irrelevant, and
finite sums (1.8) are sufficient. ~ i ,
There is an ambiguity what quark mass m should be used in (1.6) [7]. In
general the HQET Lagrangian is_@(iﬂﬁﬂ'” —dm)(Q); the residual mass ém is
shifted when we change m. Physical quantities, of course, don’t depend on
‘this choice. The most convenient definition of the heavy quark mass m is
one that gives ém = 0. It corresponds to the pole of the q}lark propagator at
vp = 0, or p> = m? in QCD. This pole mass is gauge-invariant. There 1s

also an ambiguity in the exact choice of v, in (1.6) [8]. This reparametrization

invariance relates coefficients of terms of different orders in 1/m expansion.
Quantization of the theory (1.8) was discussed in [9]. ;

The HQET. Lagrangian (1.2) possesses the SU(2) spin symmetry [10].
The heavy quark spin does not interact with gluon field in the limit m — oo

because its chromomagnetic moment vanishes. If there are np heavy quark

flavours with the same velocity, there is the SU(2nj) spin-flavour symme-
try. For example, in the problem of transition from a heavy hadron with
the velocity vy to a different flavour heavy hadron with the velocity vg, at
equal velocities v; = va the Lagrangian (1.8) has the SU(4) spin-flavour
symmetry which relates all form factors to the form factor of a single hadron
at zero momentum transfer (equal 1). At non-equal velocities, it has only
the SU(2) x SU(2) spin symmetry relating form factors to each other. The
Lagrangian (1.9) has the symmetry SU(2n;)™ X SO(3,1). _ _

Not only the orientation but also the magnitude of the heavy quark spin
is irrelevant in TTQET. This leads to a supersymmetry group called the su-
perflavour symmetry [11]. It allows one to-predict properties of hadrons with
a scalar or vector heavy quark appearing in supersymmetric extensions of the
Standard Model, in technicolor models, and in some composite models. The
scalar and vector static quark Lagrangians -

: 1e, ik =2
L=¢gtiDop+---, L=V iDgV +--- (1.10)
have the SU(ny) and SU(3ny) spin-flavour symmetry. This idea can also .be
applied to baryons with two heavy quarks [12] because they form a small size
(of order 1/ma) spin 0 or 1 bound state antitriplet in color. -

HQET has great advantages over QCD in lattice simulation of hea,v;,r
quark problems. Indeed, the applicability conditions of the lattice approxi-
mation to problems with light hadrons are that the lattice spacing is much
less than the characteristic hadron size, and the total lattice length 1s much
larger than this size. For simulation of QCD with a heavy quark, the lattice

spacing must be much less than the heavy quark Compton wavelength 1/m.

6

2. Mesons .

o

-

‘For b quaﬂ{_ it is impossible at present. The HQET Lagrangian does not in-

volve the heavy quark mass'm, amnd the applicability conditions of the lattice

approximation are the same as for light hadrons [13]. Relation of the lattice

HQET to the contifuum -one was investigated in [14, 15, 16]. Simulation
results ¢an be found in [17}. + °~ - ;

P

Due to the heavy quark spin symmetry, hadrons may be classified according
to the light fields’ apgular momentum and parity j© which are conserved
quantum numbers. In 6ther words, we: can switch off the heavy quark spin
using the superflavour symmetry, ‘HI‘{(]_HICH ‘the hadron’s momentum and
parity will be §7. The Qg mesons are the QCD analog of the hydrogen atom.
The ground-state :(J_‘f—.i'rafe) meson Il:':l-‘:i = %Jr; the excited P-wave mesons

have j©¥ = 17 and 37. When we switch the heavy quark spin on, each of

these mesons becomes a degenerate doublet. Its components are transformed
into each other by the heavy quark spin symmetry operations. We have the
ground-state doublet 07, 17, and the excited P-wave doublets 0%, 1%, and
11, 2%, Splittings in these doublets (hyperfine splittings) are due to the heavy
quark chromomagnetic moment interaction.violating the spin symmetry, and
are proportional to 1/m (Sect. 5).

Form factors of the ground-state mesons in HQET were considered in [10,
18, 19]; applications to semileptonic B decays were discussed in the review [20]
and papers [21], and to ete™ annihilation—in [22, 23]. Transition form fac-
tors to the P-wave mesons were considered in [24, 25]. A general method
of counting independent form factors applicable both to mesons and baryons
was proposed in [26], and an elegant explicit construction—in [27]. It was ap-
plied to ground stale to arbitrary excited meson transitions in [28]. Two-point
HQET sum rules were investigated in [29, 30], and three-point ones—in [31].
Mesons in two-dimensional QCD with the large number of colors were con-
sidered in [32]. Here we shall use correlators of currents with the quantum
numbers of mesons in order to investigate properties of mesons in HQET.

When the heavy qua.r]{js scalar, there is one bilinear heavy-light current
without derivatives 3; = Q7T q (@7 is the heavy antiquark field). it has no
definite parity; the currents 33 = ]—i:f'—‘_;”.; have the parity P = +1 because the
P-conjugation acts as ¢ — yo¢. The current 33 has the quantum numbers of
the ground-state ,l,+ meson, and j_—of the P-wave -;-_ meson. Currents with
the quantum numbers of mesons with higher j necessarily involve derivatives.

In the case of real-world spin -} hcavy quark, there are 4 bilinecar currents

i



without derivatives j = él‘q. Indeed, because of j’ué 5, the current with
I' = 99 reduces to I' = 1; 7575—&3 vs; ooi—to 7i; oij—to E;Jk'}’k‘}‘ﬁ. We are
left with I' = vs, 4 and 1, ¥ys. The first pair with T antlmmmutmg with
7o has the quantum numbers of the ground-state 0~, 1~ doublet; the secnnd
pair with I' commuting with -m—crf the P-wave 07, 1+ doublet.

Figure 1: Correlator of two HQET heavy-light currents

A correlator of any two currents containing the static quark field has the
form (Fig. 1) -

i<TT(2)7t (0)> = 8(F)(z0), (2.1)
I(w) = fﬂ(i]ﬁi”‘dt, H{ty= /H(w]ﬁ_img—f}-.

It obeys the dispersion representation

M(w) =~/’____p(.ﬂ:)d£‘ +

£ —tw — 10
0

n(t}=—§(i)[ﬂ(w)ﬂ"'“”dw+'*' (2.2)

A subtraction polynomial in IT(w) (denoted by dots) gives &(f) and its deriva-
tives in T1(¢). We can analytically continue a correlator from the half-axis

t > 0 to imaginary t = —ir. Then TI(7) and p(w) are related by the Laplace
transform
0o a+tico
I(r) = ifp(w)e_wrdw, plw) = — / I(7)e“  dr, (2.3)
0 a—1ioo

where a is to the right from all singularities of II(7).

The contribution of an mtermedlate state [h> with the energy £ to II(t),
H{w) p(w) is

My(t) = i<0Falh>iS(t)e <h|jH|0>,
I (w) 2 1«::0!32|h}w g "+i0{hl'h 10>,
pr(w) = <O}lh><h[3][0>6(w - E). (2.4)

We remind the reader that the HQET energy € means the true energy minus
the hea.vy quark mass.

The correlator of two meson currents with the scalar heavy quark has the
y-matrix structure (Flg 1),

- i<T5,(2)7,(0)> = §(&),(20), 1, = A+ Byo. (2.5)

For the currents with the definite parity P we have

1+ Pyo

i<Tp(2)ip(0)> = 6(Z)p(20) =

IIP—+A+PB—1TI(1+PT;]]
: (2.6)

‘Due to the linear relations (2.1-2.3), the same y-matrix structures and re-

lations between.Il, and IIp hold in both the coordinate space and the mo-
mentum one, and also for spectral densities. When calculating the correlator
using the Operator Product Expansion (OPE), even-dimensional terms con-
tain an odd number of y-matrices along the light quark line and after all
integrations contribute to -B; odd-dimensional terms contain even number
of y-matrices and contribute to 4. If we denote <0|7;|M, %+::- = fM 14U
where u 1s the meson M wave function, then the meson’s c-antributic:l’f to

ps(w) summed over polarizations is fjﬂ, 140(w — &) 3" uw, or the contribution
'3
to py(w) is M, 1+*5({"’ — £). Similar formulae hold for £~ mesons.

Now let’s switch the heavy quark spin on. The correlator is (Fig. 1)

i<T5(2)5 (0)> = 6(8)TI(zo), T =Tr rzl‘g'*’“ﬁnﬁ. (2.7)

In II,, 70 may be replaced by P = +1 for I'y » (anti-) commuting with 7o,
and II, becomes the scalar function Ilp:

¥ e
I'=Tp Trl'y—tol;. (2.8)



The correlators of the currents Qs ¢ and (Qv;q with the quantum numbers of .

the ground-state 07, 17 mesons are equal to 2114 and 26;;11,. If we denote.
<0|Qysq|M, 07> = faro-5 <0|Q7qIM, 17> = far1+€ (where € is the 17
meson’s polarization vector) then the meson’s contributions to the spectral-
densities are figo-6(w — &-) and & [ 1-8(w — &1-). Therefore the spin
symmetry requires that the mesaons in 0~ and 17 channels are degenerate
(Epn-=€1- =€), and fyro- = - = \/ﬁfM . +. Similar formulae hold for
- L]

P-wave 0, 1T mesons. S X R

In QCD, the meson constants are usually defined as <0|Qy,vsq¢|M,07> =
SM 0-Pu <0|QvuqlM, 17> = mfar1-€y, where the meson states are nor-
malized in the relativistic way: <M,p’'|M,p> = 2poé(p’ —-p). This nor-
malization is senseless in HQET; we must use the non-relativistic nor-

malization <M, p’|M,p> = 6(p’ — p) instead. Then the definitions read -

V2m<0|Qvov59|M, 07> = mfar0-, #2;:1{01‘@fq|.-’v£1'} = mfyy -8 Fr
nally we obtain the scaling law e P L e :

faro- = fma- = 7=~ (2.9)
0
%4 2

Figure 2: Correlator of two HQET heavy-light currents and a heavy-heavy
current,

To investigate hadron form factors in HQET, we_consider correlators of
two currents 7 2 containing the static quark fields @12 with the velocities

vy 2 and the heavy-heavy velocity-changing current J (Fig. 2):

2 < Tz T (1)> = ]mga(mz i ugtg)fdtlﬁ(:n] ot M 1),
0 0
10

e / K(ty, t1)e !+t dtydty, ' (2.10)
K-(izjlt]) — ff{(wziwl)e—iwktn—iwltl d"ﬂm
: I 2T 2w

They obey the double dispersion representation

plea, €1)deade;
- K(wa,wi) = - il g
(w2,w1) f’(Ez i e (2.11)

.f‘ir-(lfg,il) = g(iz)g(fﬂ f p(wg,wl)ﬂ_iwgh_iwldeQdW1 +---

Subtraction terms in K (w2,w;) (denoted by dots) are polynomial in w; with
coefficients that are arbitrary functions of wy (given by single dispersion in-
tegrals) plus vice versa. These terms give 6(¢1) and its derivatives times
arbitrary functions of ¢5 plus vice versa in K(f3,%1). We can analytically con-
tinue K(to,%,) from ;2 > 0 to &3 2 = —iri 2. Then K(7s,71) and p(ws,w)
are related by the double Laplace transform

JIEF(TE, Tl) = _fP(WE,Wl)E_“'iTZ_mlfl di-t-’szwl, (21?)
1 atioo a+ico
P(Wﬁaw” ez (?ﬂ'}g [ dTg / dm f{(*.rg! Tl)ewﬂ"fz'!'wzfz‘
a—i00 B—100

The contribution of intermediate states |hy o> with the energies £1 53 to
K(m,m), K(wz,w1), and p(wa,w)) is

Kpyh, (t2,11) = f.-'?c.:[]|}“izjh.3::-iff(tg)r:“"?‘?-::f.a,gmhl::--ig(tl)e‘i;‘" <h |37 10>,

.-" ¥ 2 i I’ T
Knan, (wa,w) = i2<0|32|h2> knteiRage 2 KR e —ee
Wy — £9 + 10 wi —e1 +10

Phghl(fd-??,{.dl) e ﬂf_OlFﬂhg}{hﬂj““}{hl!ﬁ|U}€5(L:Jg — Eg)fj(w]_ —_ El)* (?]3)

<h|7H0>,

where the sum over h; » polarizations is assumed. Let’s introduce the spin
wave functions 12 of hy 5. Then <0|71,2)h1 2> = fiot1,0, <halJ|h1> =

¥ for1, where fo; is a form factor matrix in the spin space. The spec-
tral density of the correlator of the currents }1{:3@1,3 with some specific

polarizations %) 2 is ¥4 p(w2,wi)¥1. The contribution of |hy 2> to it is

Efﬂf);};l V1 8(we — £2)0(w1 — £1).
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The correlator of two meson currents with the scalar heavy quark Js2, T
and the scalar heavy-heavy current J, = Qlesg has the 4-matrix structure

(Fig. 2)
K, = A+ Biv1 + Bova + C'va®. (214)

For the currents jp,, }_”Pl with the definite parities we have

%TI(]. ~+ P]_ﬁl)(l -+ Pgﬁg)jr{,
14 Py Povy - va

I{PzPl :A+P131+PEBQ+P1PEC: : (215)
Due to the linear relations (2.10-2.12), the same vy-matrix structures and
relations between K, and Kp,p, hold in both the coordinate space and the
momentum one, and also for spectral densities. When calculating the cor-
relator using the OPE, even-dimensional terms contribute to By, Bs, and.
odd-dimensional ones—to A, C. :

It is convenient to use the “brick wall” frame in which #; = —v3 1s directed
along z for counting form factors. Angular momentum projection onto z 1s
conserved: jo; = jiz. The reflection in any plane containing z transforms
the state |j,7.> to Pi%|j, —j,>. Therefore the amplitude for —ji, —Joz 18
equal to that for ji., j2. up to a phase factor; the 0 — 0 transition is allowed

only if the “naturalness” P(—1) is conserved [26]. For example, %+ — %"—,
%+ — %_, and %+ — %— transitions are described by one form factor each:
1t ~ 1t
-c::M?E |Js| M, 5 > = §&(chg)uau,,
<:M,§ |Js| M, 5 > = T712(chp)uaysuy, (2.16)
- +
<M, 5 |Js| M, 3 > = 732(chp)v,lo,uu,

where ch ¢ = vy - v is the cosine of the Minkovskian angle between the world

lines of the incoming and the outgoing heavy quark, and u, is the Rarita-
Schwinger wave function of the spin 2 meson. Here we have slightly changed
the notations as compared to [24]: in the original notations right-hand sides

of (2.16) should contain 275 and \/_3-1'3;3. The contribution of %+ mesons
to the spectral density p,(ws,w1) is };ﬁf(ch gp)l—tfi‘—l%é[wg — Ea)wy — E1),

i. e. the contribution to p44(w2,w;) is faf1€(ch )6(wy — Ea)wy — £1). The
spectral density of the correlator of the currents 7,1 2t 2 with some specific

polarizations u; » is TWap, (w2, w1 )uy. The contribution of %+ mesons to it is
Fafiuiz€(ch p)uy8(ws — €2)6(wy — £1). Similar formulae hold for 17 mesons.

12

Now let’s switch the heavy quark spin on. The correlator of 35 = 5-_,1"-_;:;,
.Tl = Elel, and J = Q1FQ2 18 (Flg 2)

1 - 52 1 - M =

5 I 5 i1 K. (2.17)
in K,, v1 2 may be replaced by P12 = %1 for I'1 2 (anti-) commuting with
v1,2, and K, becomes the scalar function Kp,p,:

K ITII'FE

I e
= (2.18)

K=Kpp ItT
A PPy 2 ) 9

Let’s introduce the currents E.M'é, M = T'yp where 9 is the spin wave func-
tion, i. e. Mg- = ¥5 = —7s, Mi- = ¥,e; = €. The spectral density of

@eirﬂwrrelator is pp,p, Tr Ma l—_—2151[‘.!'&/11; the mesons’ contribution to it is
Fae, Far, < Mo|J| My >6(wg — £2)6(wy — €1). Hence we obtain [10, 18]

1—7y _1—1

e (2.19)

& 1 e
{MQIJ“E{]_} = -é-;f(cll QG)'IT.MQ

This formula expresses all form factors of transitions of a ground-state 07,
1~ meson to a ground-state 07, 17 meson under the action of any heavy-
heavy current J = Ejgfél via one universal Isgur-Wise form factor £(ch ).
A similar formula with 71,5(ch ¢) holds for %T st %_ transitions; M = 1,
evs for 01, 1T mesons.

A three-point correlator at ¢ = 0 is expressed via the corresponding two-
point one: '

I{(tgjil) = ﬂ(i]_ -+ il!}:.

y iz } == H(Lr..’g
K (_wg,wl) = St T - }: (220)
. Wi — g :

plwz,w1) = plwi)b(wz —wi).

The first two forms follow from each other by the Fourier transform. The
third form is necessary and sufficient for the first one because of (2.2); it can
be obtained by the double backward Laplace transform (2.12) of the single

forward Laplace transform (2.3) of the first form at imaginary times. The
third form can be also obtained from the second one by taking the double
discontinuity: the discontinuity of the first term in wy is mié{wy — wq )T (wy),
and the discontinuity of this expression in wy is 3 (2m1)2p(w1)8(we — .L ); the

second term contributes equally.




To prove the first form, let’s consider any diagram for the two-point cor-
relator in the coordinate space (for simplicity, with the scalar -heavy quark).
Vertices along the heavy quark line have the times to € 11-< -+ < lp-1 < in,
and the integration in t3,...,1n—1 18 performed. The integrand is an’ inte-

gral over coordinates of all vertices not belonging to the heavy quark line.-

Now consider all diagrams for the three-point correlator obtained by insert-
ing the heavy-heavy vertex with time ¢ (and ¢ = 0) to all the possible.places

‘along the heavy quark line. These diagrams have the same integrand and ,
the integration regions fp < ;' < - < fnit =1 € ln € S gt { £

(m = 1,...,n). These regions span thé whole integration region of the orig-

inal diagram. Therefore the sum of this set of three-point diagrams is equ‘a[k

to the two-point diagram.

The second form can be easily proved in the momentum Sp_a;ce in the exact.

analogy with the QED Ward identity using the relation ig(w;r-i-lm')iigi{wg‘ +
w') = i5(w1)-i5(w3) (Fig 3). In particular, it implies K(w,w) = LCh

=Wy £ ; ; dw i
Comparing the mesons’ contributions to p(w2,w1) and p(w), we see

L

e el

A A

for any %+ meson. For n-::m-diagdhai %J" - transitions {f(l) = 0 because

p(w2,w1) = 0 off the diagonal. The physical meaning of this is simple: when.

the current J replaces the old heavy quark by the new one with the same

velocity and color, light fields don’t notice it. The formulae for: the form - .
factors at ¢ = 0 equivalent to (2.19, 2.21) were first proposed in the quark

model framework [33]. .
The variable ch ¢ is related to the momentum transfer q° (for simplicity
in the case of equal heavy quark masses) by the formula g2 = 2m?(1 ~ch¢).

Form factors are analytic functions of ¢® with the cut. in the annihilation
channel from 4m? to +o0c0. Therefore the Isgur-Wise function £(ch ) is an - *
analytic function in the ch ¢ plane with the cut from —1 to —oo. Geometri-.

cally speaking, chp > 1 corresponds to Minkovskian angles between the in-
coming and outgoing heavy quark world lines (scattering or decay); chp =1
means the straight world line—no transition at all; nothing special happens
at ch ¢ < 1, only the angle becomes Euclidean; ch ¢ = —1 is really a singular
point where the quark returns along the same world line; ch¢ < —1 corre-
sponds again to Minkovskian angles only one of the world lines is directed to
the past (annihilation).
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Figure 3: Proof of the Ward identity. A digit 1 (2) near a heavy quark line
means that its energy includes wy (w2)

In the rest of this Section, we shall for simplicity live in the world with
the scalar b quark decaying into the scalar ¢ quark plus the scalar W boson.
Their masses can be adjusted in such a way as to give any desired ch .
The quark decay matrix element is simply M = g where g is the coupling
constant.

Until now we discussed exclusive decays of the %+ B meson. Inclu-
sive decays can be also treated in HQET [34, 35]. The matrix element of
the decay B — X + W (where X is any hadronic siate containing the
¢ quark) has the structure M = g¥,(X)u;. Its spin-averaged square is

2 i Sk
IM|2 = & Tr 284, (X)1,(X). Let’s sum over hadronic states X with the
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energy &: | e T _
W(E chy) = Z $a(X)Py(X)6(Ex —E) = a'+ b,
I’ = dTow(F, ch:,o)ds, SEETE . a (z 22)

ol AR
'H.-"(E Ch(P) = 5 +

ch:p)—-a+bch~ap, :

The meson decay rate dI’ differs from the quark decay rate dI‘u by the struc-

ture function w(g, ch) where £ is the energy of the lradronic state X (mmus i
the ¢ quark mass) in the vy rest frame. The quark-hadron duality tells us-

- that the total meson decay rate is equ.d,l to.the quark one. This is- the E_]orken
sum rule [34, 35] : : g

8. 4]

: 0 - .
The second sum rule follows from the mﬁmentum conservation [36] "The

initial ground-state meson has the energy, £, in the vy rest frame. In’ the ve
rest frame this corresponds to the energy £, ch ¢ plus an irrelevant momeutum'
orthogonal to vs. Therefﬂre Lhe average energy of the hadronic system X

must be

00 i v ¥ 4 [ : , ;
f WE R PEE =, che. (22

Inclusive semlleptomc B decay% in HQT‘T were also discussed 1n [ST]
Now we shall explicitly write'down some contribution to this sum rule.

The spm—awra,ged matrix elf:-ments squared for the decays 5 S ]§+_, ;+ —
1, a,nd — 27 (2.16) are
262 ~ 10
g-& 1+v11+v3 zchgp-{-l
lr".»if!2%+ = 2 Tr 2ot = 6 _
: S =4
%% 1+ N '1+U2_ :h Hp=1
|MP%_ = 5 Tr e ] o TUE—“Q——", (2.25) |
(chep +1)*(chp — 1) '
IMF_-%— - gzrﬂ-?fﬂ 3 :
Here we have used the Ranta—Schmng&r density matrix. The decay %+ — %Jr
is S-wave, hence [M]? is constant at ¢ — 0. The decays ggiian %_, %4’ et %_
are P-wave, hence |M|? ~ @?. The decays to the D—wave mesons %+, %+ are
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Z‘Egpht,o+1+z - »::h:,a:'—l_l_z-2 (chp+1)%(chyp —1)

1+ i - a— ; ' ra—
3 SRR - :

/w(é’,ch{p)dé'il el Y )

: D—W&ve with |Mf12 ~ it ete. Matrm elements ﬂquared in the anmhllatmn
’ channel W — BD differ from (2.25) by the absence of the factor 1 5 coming
from’ the averaging over the initial meson spin states.. The first decay W —

1-1+

B is Prwave, the second one W — %_%- is S-wave, and the third one
W —i 1727 is D-wave., This determines the threshold behavior of (2.25) at
ch o — —l : :

Therefnre the BJc-rLen sum rule reads [24]

T3/2 3 +--=1,

2 fon ki 4

(2.26)

e ‘ﬁherelthe sums are over resonances in the ;¥ channels and dots mean con-
~tribitions of other channel$ (see [28]). The Burkardt sum rule (2.24) has the

simiilar. form.- I'he simplest consequerice of (2.26) is that the decay rate to

. the ground Et’lLe 1% meson is less than the total one:

€(¢h‘3’—’}ﬂﬁm- . (2.27)

Of course, at chyp > 1 most de::a;}fs are inelastic, and £(ch ) < 1//ch ¢.
Let’s consider the Bjorken sum rule (2.26) at small ch — 1, and expand
it to the linear terms. The-channels denoted by dots dont cmntrrbute be-

cause they are at least D-wave. Higher resonances in the 2 3 * channel don’t
contribute because they have £(ch ¢) = U(ch 0 — 1), We are left with [24]

) = —————Zmﬂl)-—"Zr&g(w (2%

3.—
F]

This gives us the Bjorken bound £'(1) < —% (evident also from (2.27)).
Similarly, the Burkardt sum rule (2.24) leads to the optical (Thomas-Reiche-

Kuhn) sum rule [38§]

| O

1 o~ i~ 2 1
1 Z(Elfz — &)7i72(1) 3 2(53:’2 €g) T'ajz{l) 2%s (2.29)

It can be used for obtaining bounds on £'(1) [38].

It is also possible to establish the bouns on the Isgur-Wise form factor
at the cut [39]: the decay rate W — BD is less than the total decay rate
W — be. The meson decay rate for each flavour is given by (2.25) without
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the spin-averaging factor ; the quark decay rate is |M|* = g°>N. where N,
is the number of colors. If there are n; light flavours for which £(ch ) is
approximately the same, then

ni|é(chp)|*|chp + 1] < N.. (2.30)

In general the left-hand side is the sum over light flavours. The factor ny
was erroneously omitted in [39]; the phrase justifying this seems to have no
sense. At |chg| > 1, the BD channel constitutes a small fraction of the
total W — be width, and |[é(ch )] € 1/+/|ch¢|. One could include also
higher states’ contributions in the left-hand side; this should be done with
caution because of the possibility of double counting. The inequality (2.30)
is applicable only sufficiently far from the threshold, at [che + 1| 3> x2a3.
Near the threshold the Coulomb interaction between the heavy quark and
antiquark is essential. The total decay width on the right-hand side 1s not
equal to its free-quark value N.; it contains high narrow resonances at the
quarkonium levels. Moreover, the very concept of the Isgur-Wise form factor
is inapplicable in this region. The HQET picture is based on the fact that
heavy quarks move along straight world lines, but at velocities ~ 7o, they
really rotate around each other.

If the inequality (2.30) were true everywhere on the cut; we would 1m-
mediately arrive at a paradox [40]. Consider the function f(ch ) analytic
in the ch ¢ plane with the cut from —1 to —oo. On the cut |f]* € -%rf'-i and
f(1) = 1. This is consistent with the maximum modulus theorem only at

what is not the case in our world. The more detailed analysis [40] shows that
it is possible to obtain similar inequalities (with the constant smaller than
2) using weight functions that are rather insensitive to the threshold region,
and the paradox remains.

HQET can also be used for description of heavy to light transitions [41]
and rare B decays [42]. In these cases the heavy quark spin symmetry is not
so restrictive, and more form factors are necessary. Relations between B and
D decays can be established using the heavy quark spin-flavour symmetry
and the isospin symmetry. Inclusive heavy to light decays are considered
in [35]; they are described by several structure functions obeying sum rules

in the deep inelastic region.
2
. . : : 2 . ;
An interesting approach in which the parameter (f—'*-gﬁ) — (Hﬁ-) 1S

considered small was proposed in [43]. To the leading order in this parameter,
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the quark-hadron duwality is perfect: the b — ¢W quark decay rate is équal
to the B — DW meson decay rate (see (2.26)). This is true for all heavy
quark polarizations; in particular, the hadronic tensor <B|j|X><X|7*|B>
summed over ground state mesons X = D, D* is equal to the corresponding
quark tensor summed over ¢ polarizations. ' :

3 Baryons

For ground-state baryons, the light quark spins can add giving j¥ = 0% aor
1%, : In the first case their spin wave function is antisymmetric, the Fermi
statistics an_d the antisymmetry in color require an anti'symm,etrin-: flavour
wave function. Hence the light quarks must be different; if they are u. d then
their isospin I = 0. With the heavy quark spin switched off, we have the 0t
I = 0 baryon Ag. If one of the light quarks is s, we obtain the isodoublet =0
forming together with Ag the SU(3) antitriplet. In the 1T case the flavour
wave function is symmetric; if the light quarks are u, d then their isospin
I = 1. So we have the 171 isotriplet £q; with one s quark—the isodoublet
Eq; with two s quarks—the isosinglet g. Together they form the SU(3)

sextet. With the heavy quark spin switched on, the scalar baryons Ag, =0

i, 2 :
EECGE,G : thf:: vector baryons form degenerate %+, %+ doublets X, 2p%
=@, =55 Y, E?Q.
Baryons and their form factors in HQET were considered in [44, 45, 46].
Two-point and three-point IHQET sum rules were investigated in [47].

Baryon currents. with the scalar heavy quark have the form 7, =

S“bc{qT“CT?‘qt’_]{j}g where g7 means ¢ transposed and C' is the charge con-
jugation matrix (because ¢7 (' is transformed like § under the action of the
Lorentz group). Here 7 is a flavour matrix, symmetric for 0t baryons and
antisymmetric for 1t ones. We shall abbreviate it to 7, = {gTC!.’q:}@.,. A
Iight quark pair with 57 = 0% corresponds to the current ¢ = g'r{?—}-ﬁq; and
with 1t— 11:'_: & = q" C¥q (one can easily check it using the P-conjugation
girs Yogq). It is also possible to insert v into these currents without chang-
ing their quantum numbers. So, the scalar heavy quark currents with the
quantum numbers of Ag, Eg are Jx, = a-:fﬂjs, .?Es .. r}.'@x_

AT Ganlil sVt " ; ~ =

With the real-world spin 35 heavy quark, the current 7 = a@ has the spin
1 =k e
L. s T i R ; L T Pei m
5; the current j = @) contains spin 3 and spin 2 components. The part
; P 1 B pade = -4 i : -
Jaj2 = J+ 377 - Jsatisfies the condition - 35,9 = 0 and hence has the spin

L

The other part 7/, = —397 -7 = %f’fﬁ}”g} Nijp=4a- ‘}7';-'5@ has the spin

[ [y [
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Finally'we'-obta.in the currents 3= (g7 CFq)I"é with the quantum numbers
“of Ag, Xg, Xy [47] ' -

—
—

; i = - o ey 1 — — - :
T = (TOy9)@, . T2 = (0" CYO)T @ Iz = (qTCwq)Qng’r(qTC‘w)-TQ,

(3.1)

and similar currents with the extra 7o inside the brackets.

Figure 4: Correlator of two HQET baryonic currents .

The correlators of two baryon currents with the scalar heavy' quark have
the structure (Iig. 4)

i <TTn(2)75,(0)> = 8(F)Trrra(zo), e )
ii]?ﬂﬂ(ﬁ)ﬁgsj(ﬂ)} = f’-‘gj 5(:1:-) Tr T++‘HE(IU).

From now on we shall for simplicity assume the normalization Tty = 1.
If we denote <0[7alAg,0t> = fa0+ <0[7s|Sq, 1¥> = fp,1+€, then the

baryon contribution to pax(w) 18 figb(w - EAT) |
Now let’s switch the heavy quark spin on. The correlators are (Fig. 4)

-
M= (r; Z“’T‘;) I, (3.3)

where tensor indices may be contracted between II, and I'j ,. The same
relation holds for TI(t), T(w), and p(w). For Ag, g, Ly we obtain

14+ 70
ﬂ;". - 2 pl"'l-ltl
1+ 1+ 70
PR = NiY5 '—Q—E”ﬁ Y58ij pze = 3—5— PSsy (3.4)
1 1470 1
PEs oS (6:':" e 5‘;’%’1’:‘*) 9 (“5jj’ s g'r’j‘}‘j*) birj1pxs
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| 147 £ ' %
Ry (‘5#5 + g?’i‘rj) PEs:
-4 4+ RS v ~
If we denote <O0[jalAg,3 > = fﬁ?%+u, {UIJEIEQ,%+} = fz,_%"'“r
<0|7s. |X¢ ’%*"} = fz*,g"'ﬁ! then the baryon contributions to (3.4) are

Hnfr  18w=Eh), TFeSE 46w —Es), L2 (65 + 37575) f5. 3+8(w—Ex).
Ag is a spin symmetry singlgt, therefore there are no ini;errsestin}_é;2 predictions
of the spin symmetry in this channel. Baryons in Xq and X channels
are degenerate: EE.%"' s E}_‘,-,%Jr = £y 1+, and ﬁfﬂ.%* of fE',%“L = fgll-f-,
Note that both sides of the definitions <0|j|B> = fpu get the same factor
V2m when going from the relativistic normalization to the nonrelativistic

one. Therefore the QCD quantities fgp = fp don’t depend on m (compare
with (2.9)).

Figure 5: Correlator of two MQET baryonic currents and a heavy-heavy
current

The correlators of two baryon currents with the scalar heavy quark and
the scalar heavy-heavy current J, have the structure (Fig. 5)

2 <Tihs(22),(0)3],(22)> =T 7' T

O (o8]
/(figﬁ(.‘]{!g s "L-'zf-g)\/d!':lé(ﬂ‘?l . iz 1-‘1f1?}f{ﬂ(fg,i1), (35]‘
0 0
2 <TTeeu(@2)d5(0)7E,, (22)> = Trr™r
/(’flgé(ﬂ‘;z — vgia) f dt16(z1 + v1t12) Kep(t2, 1),
0 D

J{ij = I{EHGEHFEIHH o I{Elé_l.ﬁb'!
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!;\

where e;] ‘= (v2 — chivi)/she, ‘eq = —{v1 — chpva)/ sh are the
‘g polarization vectors “i_n ‘the scattering plane, 81, = Y. €1u€ly =
[':h (01,001 + Uzp’i-'w) — V1pVir — Uzpvﬂv]"/ sh” Y= Guv- ; : s ¥

According to the rules [26], the transition Aq — Aq is described by one
form factor (j1, = j2: = 0); Ag — Eq is forbidden by naturalness; ¥ — Yo
is described by two form factors (j1 = j2: = 0 and £1):

<AqlLilAg> = &alchy),

The contribution of Ag, Xq to paxjsilwz,wy) is 'filzgﬁ;glhgi.é‘(l'.ﬂg_.—r
ZA3)8(w1—E€,x). The spectral density of the correlator of the currents '_';.-"F";#e,,

- with some specific polarizations e 3 1S pruv€3,€iv; the Xq contribution to. it

1S JF%EE;WEEHEI:;-

Now let’s switeh the heavy quark spin on. The correlators are- (Flg 5) . :

i e adc s 3
K= (r; +U2F12v1ﬁ)1{, , R

2

‘Let’s introduce the cairrents ji = (@TC‘IET)QB, B= T’fti. Rewriting (3.1) in
the covariant form 7z = (QTCv )T, Q, Js+v = (QT Cy,q)T,, Q, we obtain
Bx = u, By, = ~(yu +vu)u, Be+y = uy. The spectral density of the correla-
tor is (Eg lj;,izFlj;—”lBI) ps (where tensor indices may be contracted bétween

ps and Bj.2); the baryons’ contribution” to it is fng?31{82|f|81 >6(wy —
€2)8(w1 — £1). Hence we obtain [44, 45, 46] |

' L]

<Agll|Ag>. = fﬁ(chw}ﬁérﬂhl

<SolTfe> = gEnuTaltu-+va)isT(w o1 sus,
<Ep|TiTe> = '—‘}—E'es“ﬁmrm—wvﬁm, e (B
{E;;,_ij" o> = Enuwtzlun.

The result for Ag is particularly simple because light fields have i? = QF,
and the spin of Ag is carried by the heavy quark. ;
At the point ¢ =0

22

Ea(1) = €xi(1) =§1;J.{-1): 1 ' A 9

. (3.6)
<Zg|/s|Eg> = Eswerurs, v Z‘Ezn(ﬁh#)ﬂznpﬂlny-if'ﬁni(ﬁhaﬁ)ﬁljp'w

(at this point £xij = §ij because there are no selected directions).

Inclusive Ag decays were treated in [34, 35]. With the scalar heavy quarks,
the miatrix element of the decay Ag — X has the structure M = gp5(X )
where phi, is the.scalar Ag wave function. - The Ag decay rate is given
by (2.22) with the structure function w(E, ch) = T x P35 X)p2(X)é(Ex — )

obeying the Bjorken sum rule (2.23). Transitions to the excited baryons and

their contribution to the Bjorken sum rule were considered in [48, 49].
_ Polarization effects in Aq decays were discussed in [50]. Heavy to light

. baryon transitions were considered in [45, 46]; they are described by several

form factors. Inclusive heavy to light decays and sum rules for them in the

~deep inelastic region were investigated in [35]. At a large number of colors,
" baryons are bound states of a chiral soliton afd a meson; this model was
“considered in [51].

1

e -

4 Renormalization

: Renbrmalizatiun‘properties (anonw'lous dimensions etc.) of HQET are dif-

forent from that of QCD. The ultraviolet behavior of a IHQET" diagram is
determined by the region of loqp momenta much larger than all character-
istic scales of the process but much less than the heavy quark mass which
tends to infinity from the very beginning. It has nothing to do with the ul-
traviolet behavior of the corresponding QCD diagram with the heavy quark

line which is determined by the region of loop momenta much larger than the

heavy quark mass. In the conventional QCD the first region produces hybrid

- logarithms [52, 53], and the problem of summation of these logarithmic cor-

rections is highly nontrivial. In HQET hybrid logarithms become ultraviolet

. logarithmic divergencies governed by the renormalization group with cor-

responding anomalous dimensions. For example, cotrelators of QCD meson
currents contain large hybrid logarithmic corrections a, log 2. Correlators of

- the corresponding HQE'T currents contain instead corrections a, log “ where

L

p is the normalization point. The dependenceé on p is determihedpby the
] s . L] * # i
currents’ anomalous dimensions; the corrections are small at p ~ w.

HQET is closely related to the theory of Wilson lines in QCD [54]. As,
follows from the Lagrangian (1.2), the static quark propagator in a gluon
field is the straight Wilson line’ - e

S(z) = —iﬁ(rg)ﬁ_(:i")Pexpig]A“d’.rﬁ. ‘ - (4.1)

 The effective Lagrangian identical to the HQET Lagrangian'(1.5) (strictly

2




speaking, with the scalar static quark Lagrangian (1.10)) was propesed in [55]
for investigation of Wilson lines. Their renormalization propertlcs were con-
sidered in [56]. ' r

One-loop ren_ormafization of straight Wilson lines (static quark propaga-
tors) and cusps on them (heavy-heavy velocity changing currents) are known
from [54]. Two-loop calculation [57] for straight Wilsen lines is incorrect; the
correct result was obtained in {58]. It was also obtained in [59] starting from
the on-shell renormalization of the QCD heavy quark propagator at finite m,
and in [60, 61] in the HQET framework. Two-loop renormalization of a cusp
on a Wilson line was first considered in [58], but the authors were unable to
- get rid of all double integrals. A simple result containing only simple single
integrals was obtained in [62]. The attempt [63] in the HQET framework was
unsuccessful: the result contains a double integral (with a variable undefined
in the paper); some other integrals are in fact equal to 0 or each other.

One-loop renormalization of the heavy-light bilinear current in HQET was
first considered in [52, 53]. Two-loop corrections were obtained in [60, 61] (in
the second paper, a different external momentum configuration was chosen
which made calculations more difficult). Four-quark operators with two static
quark fields were also investigated in [61]. One-loop renormalization of baryon
currenis was considered in [47].

We shall use MS 'scheme, the space dimension D = 4 — 2¢. The IIQET
lagrangian (1.2) expressed via bare fields and couplings is

L = QFi(d—igAft*)oQs +7;i(0 — igs Ajt®)g
1 i ;
— {'h.”v’ S'HU & ‘2—_(@3, figﬂ)g ¢ f._ghust), (42)
{1y
The bare quantities are related to the renormalized ones as '
ki g 2 { L

Qs = 7 “Zg e L p e e e o
Oy = H J-J-'PJT'(!":' ap = ZAH} (‘{'3)

where Z,, Za, Za are the same as in QCD with n; light flavours (there are
no static quark loops), and i° = u’e”/4n, p is the normalization point.
The static quark field renormalization constant /’?Q 1s determined from the
requirement that the renormalized propagator S S (o) = ab(....r},f,;@ 15 finite.
If 'we denote the sum of bare one-particle-irreducible static quark dmgmmq
"“"'i'.f_.,{-,.({.d{] then the propagator Si(w) = So(w) + So(w)Es(w)So(w) + -

1/(w — Zp(w)).

24

T

- i

K .
fﬁ%i
s e
T.I; w+k w

Figure 6: HQET mass operator

The bare one-loop HQET IMnass operator (Fig. 6) in the Feynman gauge
ap = 0 1s

e s s}
3. ' 4.4
@y = JICFH‘%/ (27)P k2(w + ko) 58
where Cp = %—— A variant of the Feynman parametrmatmn
1 o+ B) v’ ldy (4.5)

a=tp ~ T(a)T(B) J (a+uh)***

s used to combine a square denominator a with a linear denominator b; the
parameter y has the dimension of mass. We have

dDL 1
E() = ~iCrai /dyf (2m)D (k2 + yko + yw)?

% +wy, k' =k+ %“U. Usiﬁg the standard

(4.6)

The denominator is equal to

] (—1)"D(n — L <
formula Pr 1 Db = B)E)Pn (4.7)
(Efr)” (k2 — a?)™ o (n— 1)!(471')5‘;'3
we obtain '
f 00 Dj2-2 -
L o (P~ : 4.8
P(w) = o )Df},, %) f ( wy) dy (4.8)
0

The integral

| petftl p(—=1—a— /T(1 + a) (4.9)

[ v+ iy = I(=F)
0
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& . o : ; oy o g
is calculated using the substitution y = = ( = 1). Finally,

=

 $(o0) = ol o

D-3 D
__Eﬂﬁﬁz_%n r3-D)yr(2-1). (4.10)
Requiring the ﬁnlteness of S( ) = gﬂ(ﬁi)/j@ \j.?ith a minimal ZHQ =1+4c%,
we find &
da =1 ; 4.11
Zq + Cp Q;rrg ( : )

Figure 7: Heavy-light vertex

Now we shall consider renormalization of a heavy-light bilinear current.

The bare current 3, = @,Iqy is related to the renormalized one as 7, =

_'3 = | e

”“/ 7, or qu — ,71"_} where ZJ = Zy /]'J /1

Then the matrix ele-

ment ' = < .} Qlqle> = a-f'inh;t}} where the matrix element of 7is finite.
The vertex I does not include corrections on the external legs because it con-
tains renor ~1;rl|i?f d fields. We shall calculate it in the or *P—]m};s approximation
(Fig. 7) in the l-c?}mn.”l gauge. We are interested only in the ultraviolet di-
vergence of the one-loop diagram that does not depend on external momenta.
At zero external momenta we have

i Pk x« 1= icegt [ A7 ]
1 —1C g . =1 BTy A [ s
[ J'rbj (‘) J{-{aJ ! ! J'IJ J, L‘»‘_]’Tw"j {AJJJ

I_.....___I

L=

-+

because k = koyp — k - ¥ and the integral with &

vanishes due to the sym-
metry. If we started from an infrared regularized matrix element (e. g. with
nonzero external momenta or gluon mass) we would obtain an integral with
the same ultraviolet divergence but infrared safe. Separating the ultraviolet
pole we have Zp = Using also (4.11) and the standard QCD
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1 4 Cp e,

renormalization constant Z, = 1 — Cp 7% in the Feynman gauge, we obtain

the gauge invariant renormalization consta.nt (52, 53, 4]

=41 430 = (4.13)

8we

Figure 8: Heavy-heavy vertex

Similarly, the vertex A= {ﬁglégéﬂél} in the one loop approximation
(Fig. 8) in the Feynman gauge 1s

dPk 1

iCrg; (4.14)
e ICFﬂb Ch@_/ (2?1')}} kz(ulk + wi)(’ﬂgk + {.dg)
d’k
= 1-2iCrgi chp]dz/dy Q—r)ﬂ
3
(k2 4+ y(zv1 + (1 - z)vz)k + y(zwr + (1 — z)wa)]
1- CFHI’ ——2_T(l+¢€)chy dIf{fJJ
) )D,fﬂ
-l -1
[%(:z;'2 +(1-2)*+2z(1- :1:) ch )y — zw; — (1 — z)wo]
—2wix — 2w — )2 dx
] Crqg? [—2wiz — 2wsy(l — )]
A = 1- ——-—(4?r)ﬂt;,2fif{25]r(1 —€) r:.h{pf B2 (1= %) + 0a(1— Z)chg)—
0
Retaining only the ultraviolet 1/¢ pole and using the substitution z = (14
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zcth %}, we obtain : 3 ﬂ. 3 _ k& , FE e
tthg
X : dz' 3 i

..1;]-.31

and finally Za =
invariant renormalization constant Z; = FQ Za [54, 58, ﬁ2 18]

Z_r —1—052 (g:acth-:p-—l)

It is equal to 1 at ¢ = 0 because then there is no cusp on tho hedw quark
world line.

Knowledge of the renormalization constants Z allows us to determine the
dependence of the renormalized operators on the normalization point y using
the renormalization group equations. Up to two loops, MS renormalization

constants have the form
wlplei’ as(1) ) (fzz i & by
Adr ¢ 4 c2 T)"+ e

Z({p) = 1—+~ (4.17)
. e al
From gy = #*Z,' g = const we obtain the evo]utmn of es{p): idl-]"‘-’ﬂff—‘i —
O 1
e A B 3 ldlogZs _
2{e + Blas)), Bla,) = I s — B13x + B2 (—L ++, Tt is well known
dia o Mg 2 34 Ar2 13 pr 1 e
Pl il T - A £ ] 1
that 3 = Ve :s”“ o S = (—:;-P»_:- ol ELE Subﬂmtntmg the
form (4.17) for Z, we see that ¢y = —B1, caa = B}, ¢33 = —% =0,
;22 18 not ms:.le[‘:f:l*.mm]i._ Similarly, the ti-dependence of any u[nﬁrator _;r 1s
usually characterized by its ﬂnmr].ﬂolb dimension v; = 4oBZ; _ vy St
ns g i dlogp — flax T
g =
Y2 H—;;] r-l; -+~ Substituting the form (4.17) for /j we see that ¢; = — 1,
L I — 1 [ " S —L .""
C99 s(7 208171), €21 = =T 1. e. again cps is determined by one- luop
quantities. In the case of a non-gauge-invariant operator, Z also depends

+ . . - %
on the gauge parameter a(pu), and the formulae become more complicated.
Solving the renormalization group equation we obtain

» Y2 7B\ as(p)
flf}fjfl J'rf.njlfju' l:]+( b 5 e
J 0. 2D ot ’

where ) is a renormalization group invariant. This formula allows us to
relate j{y1) to j(p2). Here we present for reference the two-loop anomalous

(4.18)
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1 - CF Ms(pcth P. Usmg (4.11) we Dbtall’l the gaugf:;

(4.16)

4

dlmeus-mm of heavy hght ELIld hvavy heavy currents [60, 62]

e AL TR 5 Cra?
G i s —-—C e 2N, :
E D A [Qﬁh 32 B s )2 ] =
e _
e - (tpcthfp—l) (4.19)
¥ 1 /67 #?
| + ——n;u—(gacthgo—l)+i"fc(§ (% 24)(¢¢thcpn~l)
: . gy 4
.;}:th{pfv,bcth?ﬁdwﬁ-cth? f Y(p— 1,!J)cthﬁ()d¢
i : ﬂ' : 0
St o
: sh(p] hethy —1 o Shfp‘d) CFﬂ“E+
- _sh:gcp-rshﬁgb ﬁhﬁb . o
4 0

_ Untll now we discussed the rennrmalmatmn inside HQET. But usually we
are interested in matrix elements of QCD operators (e. g. weak currents).

I"lherefc&re we have to discuss the relation of QCD operators to their HQET

analogues. Operators in HQET differ from those in QCD starting from the
one-loop level even if written in the same form via the fields because their ma-
trix.elements are calculated using different Feynman rules. A-QCD operator j
matches the corresponding HQET operator A7 if they give identical physical
(on-shell) matrix elements between states suitable for HQET treatment (with
residual momenta much less than m). In order to calculate on-shell matrix
elements we have to use the on-shell renormalization scheme in which prop-
agators in the on-shell limit are free. For the * ‘massless” fields ¢, Q) the bare
on-shell pmpdga,torf»z get no corrections because loop integrals are no-scale
(ultrmmlet and infrared divergencies cancel). Therefore the on-shell renor-

g = Z; o, Q= 75'*Focs.

Note that although the expressions for the renormalization constants Z,, ZQ
are the same as above, all divergencies in them are infrared ones because
these Z factors relate renormalized (ultra,violet-ﬁnite) fields. For the mas-

sive qua,rk field we have @ = = Z_HEQG;, Zg=1+Cp2 (2 -3L+4), where
=logZ —r The mfra,red divergence of the on-shell massive quark propagator

malized fields coincide wnh the bare ones:

ZQ is the same as that of the static quark propagator ZQ

For the heavy-light bilinear currents we have j = Zp 12_”27Q . IEQOEFQW,
T “IZ_”EZQ”EQWF%S Hence the on-shell matrix elements are
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Figure 9: Light-light — heavy-light matching

<Qlilg> = Z¢ IZ_UEZ_”EF <Qle> = Z IZ_”EZ_UEF where the

proper vertices T'; T are depl-::ted on Fig. 9. We obtain the mmtchmg constant

A= AgtlZr 4o - (2 . b O Tk
Q’f/gr! Q_ ZQ g + FIT? (E —2) (420)

Here ultraviolet divergencies cancel in I'/Zp, I'/Zp by definition; infrared
divergencies cancel between these two expressions because the infrared be-
havior of QCD and HQET is identical; Ag is finite for the same reason. We
choose all quark momenta in [IQFT to be zero; this corresponds to the heavy
quark momentum mv i {1, 0)) in QCD. Then the HQET loops (Fig. 9)
vanish: I' = 1. Let’s calculate the QCD vertex I' (Fig. 9) in the Feynman
gauge

E dﬂk Y E v ] ﬂ:w
-—-zCFyEf( e (4.21)

2m)P  (k2)2(k2 4 2muok)

1
o dP
[~ %iCpg? l/dr(l—m)] s
0
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Fu(k'+ mft = z)% + m)T(k' - mﬂ)h
. 2 - mzrz)a

b

; _whcre k= I:—I-m:r:n The term with two L" in the numerator gives uH (D)T
- - where’ *}’,JI‘j.r,u = H(D)T; terms with one k' vanish. Terms without X gwe

tm?ey,(t—z+ 0Ty, = —-m?z(2+ H(D}x)I‘ where the upper (lower) slgn
is for [ 'anticommuting (commutmg) with o and we have used the fact that v
on the left may be replaced by 1 in the on-shell matrix element. Therefore all

g t'he termis- have the common.y- ;natnx stru-::ture I‘ calculatmg the integrals,
| we have the vertex =

P:HCF% (_) 9 f d”_zf(ll m)[HE(D) ¥II(QD)]

N e HYD) 1l-c¢ H{D
= f ' ' 4.22
+CF (,ug) (1*6](1—26) [ 5 IRNEL RS ]( )
The first dwergence IS ultravmlet
: : ¥, H2
hp= 1+ CF.:ljrr 7, (4.23)
By the way, the one- lmp rencrmahzatmn -::onstant of the QCD bilinear quark
currents is’ Z’J = Zyly =14 Cr 4—;H4£'4, the vector and axial current

(H =-+2) ‘anomalous dimension vanishes. Finally we obtain from (4.20)

~ the ﬁlfatl-':hin g{4]-

i et H:g 3 o 1 =
GI_‘@ — |:]:+FjF—; ('—TL-i‘ 4H .- Hrff - - 2H - 4) ] QFq
Same B gl (4.24)
where H" = i"i This equatmn ho-lds separately for QCD currents with
I' (anti-) mmmutmg with 7o. If it does not have this property, it can be
split into a commuting and an anticommuting part; it then maps onto a
combination of two HQET currents. The logarithmic part of the matching
constant (4.24) is determined by the difference of anomalous dimensions of
the QCD and HQET currents; the non-logarithmic part should be included
account only when the two-loop anomalous dimension is also taken into ac-

count (4.18).

Now we shall consider the current QQI‘Ql in the effective theory where )y
is a heavy quark with the mass m. We can go to the second effective theory
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Figure 10: Heavy-light — heavy-heavy matching

in which this quark is also considered static. The matching is obtained by
comparing the diagrams in Fig. 10. All external momenta are zero in the
second theory, therefore the loops vanish. In the first theory, the heavy
quark has the momentum muv,. The vertex is the matrix I" times

Dk (k+mo 5.
1~ 4Cs i [ d“k (k4 m%; +m)v,

J 2m)Y k2(k2 + 2muik)vak (4'23)
oo i
et o -‘n D e ;‘J‘ e ¢
= 1—2iCFg; /dy f dx,] r"r kﬂ __~y/2+m(l - Z)U1 U3 + muy
?jr uﬂ':" Uv et if /l i f’!'ﬁ:{:z mzy ch )3

Now we calculate the loop integrals. The parametric integrals factorize after
using the substitution y = 2mzz, and the z integrals are trivial. The upper
(lower) sign is for I' anticommuting (commuting) with 5.

o0 i
FoogN —E
T o r r
Coia ‘x e o, e 2_,.1/—2(1—-—.:,}{‘!1 o o AP
i S p e {at ez fdes — (4.26)
=7 1\_;5 Vi b f g i_i _" ?"'-I“ﬁu (_.-]}'1.9 Z
i ]
SNy -'
Ve (il (”ﬂ ; jv"- _2(.,11-15'_]:5}!!{'“55 5;:).-"."':.,
| = gl 2 ! e e A RO S R e L sl
dx-\ g2 ) ] (14 22+ 2zchp)ite
0

The first ultraviolet divergent integral can be calculated by splitting the in-
tegration region at a large 4 and ignoring € in the first region and 1/z in the
second one: : %

A o0

(s 0]
zdz zils dz
P o ' 4.27
/{1+32+23C11§D)1+E /1+zz+2zclup+/ 142¢ ( )
0 0 ‘4

1
= logA—¢pcthe+ = log A.

The second integral is convergent; we need it up to O(g) because it is multi-
plied by the infrared pole 1/¢;

o)

[ s = = [p- S (P -1 - P - )]

(1+ 22+ 2zche)'*c  shyp
(4.28)

where

F(z) = _/ E&%ﬂdy | (4.29)

is the Spence function. Two Spence functions in (4.28) are not independent:
F(e2f — 1)+ F(e=% — 1) = 2¢%. The vertex is

2 | |
S 1+€F§§r\ié - E{pcthgﬂ-f,+2Lgocthga+2+2(pctl1go:t2§$

+cthp (F(e®? - 1) - F(e~?% —1)) (4.30)

The first divergence is ultraviolet: Zr =14+ Cp 32 %; this is the renormaliza-
tion constant of the heavy-light current; and it indeed agrees with what we
have found before (4.13). In the denominator of (4.20), we should use the
renormalization constant of the heavy-heavy current Z found before (4.16).
The infrared divergence cancels as it should do, and we obtain the match-

ing [18, 64]

s | o
1+ Cp:—?r (2!;9?(213]1{,’?4- EL + 2pcthe £ et

Q.I'Ch e

+ cthy (F(e* —1)— F(e™** - 1)) ) + - -].521"@.1 (4.3_1)-.. |
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Figure 11: Li ght—IigHt- — heavy-heavy matching

Finally we shall consider the current Q,I'Qy -where (1,2 are the heavy
quarks with the masses m; 5. We can go to the effective tl;eory in which both
of them are considered static. The matching is obtained by comparing the
diagrams in Fig. 11. All external momenta are zero in the effective theory,
therefore the loops vanish. In QCD, the heavy quarks have the momenta
my av1 2. The vertex is :

: . dPk v, (k + mats + m3)T(k + mi o + my )y
S TPELORIGL L ONEE R

e o - 4.32
27)P k2(k2 + 2myv1 k) (k2 + 2movak) ( )
A d”k
=TI —2iCpg; ] dmldr?(gﬂ)n
jr&if + ma{l — 22)0s — my219; + mg)P(P + my (1 — 21)V; — mals + my )y,
(ﬁ.;r:e B 62}3 ?
where a® = mizi + m3z2 4+ 2mymazizochp. Now we calculate the loop

integrals. The parametric integrals factorize after the substitution Pyg=

= . : = " i %
z(142)/2, and the z integrals are trivial (a? = mymaz2a a_, ag = ch B%E_}_
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zsh LE 2 where ¢ = lc'gﬁt),: .

: : : g g
FaLd Gy f MMo -4 i
.1{1_{_01;4# ( JTE :) _/(a+a..)£

H?*(D) ch ¢

8e(1 —¢) ¥ e(1 —2¢)ata

che + 2shyp H(_D)(l-u- z%) - (4.33)
(l — 2E)ﬂ-+_ﬂ-_ lﬁ{l —= E)'{I.+_EI_ :
_ S22 ' :
" E o e (e = itk FT o0 2
.—Tflrc-f":ﬂ;i‘[ ara_ [1—z+ gHE (l’f‘i") ]
i 41 f .
Y O g az ;o S 9
- Dl e —— 1 sHe ¥(1 -
lvi.(_‘f‘_'_,_i_jr? aya_ [.+z+5 ETX z)]
-1
as H [1-2° : ' - S

dz.

_EIFEEC'FFE ﬂ+ﬂ

- At m; = 0 (¢ — —o0) this vertex reduces to (4.22), and at my = 0 {¢p —
- 400)—to the mirror symmetric expression. In order to check this, we.should

take the lirit beforé £ — 0. Ultraviolet divergencies are the same (4.23), but
the structure of infrared 1/e poles is different at zero and nonzero masses.
The integrals in z are easily calculable:

ekl - =2 "
dz :2—-‘25("%]'@ 1,)5‘111,;_‘_2)] _ (434)
che —chy _ :

dz 1 o e? —e~¥
(aza-) ¥  shy {?*’ . [ (F (T_—) o ~¢))

o shig
(= =)+ 2log —5=-| ¢,

sh 5%

+1
zdz 2 pshyp—¢shy
aya_ she chp—chy
=1
e . 2 2
2idz o 4 41y sh ¢ 20 sh®p+sh“y
aya_  chep—chy (chp—chy)?  shp(che—chy)?
=] : = I
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The Spence functmns here ‘are not mdependent‘ F (:4:—';“’—“) + (rp — rp)

Llog® ?3—— Matching is determined by the formula similar to (4.20). but

w1th AQlAQg, infrared dwergenmes cancel as they should do, and we ﬁnally
obtain [23, 64]

'@2_1"@1 = A@zfé1 + A,Q,5:TQ; + A2Q,T5,Q + 1‘11252511'?251_,' . (4.35)
g H? . H? [ psh —t;bshwg‘; e -
A = |4 Clprm '—('—-— 20 ctl *3)L— W Gkt - ;
R ‘-"4“[ e Bk 1 ( SRy

yshy
(chy — chy)? chp—tl{:f;z)

_f{( @ éhf,&thtﬁ—l
4 \shp(chp—chy)?

—HH' +

¥ ¥ _g=¥ . : : 5 Bhﬂi‘ﬂ
vn{(H(525) o) e
;o(‘ o) T =) - oo e ravieg Tt
b © chfpchyﬁ-—?c.hz.go-{-i_z yshy 4
shy =  chp=chy chp—chy |’
& 7 i © chpochy -1  pshyp—1sh .
A 2O o S £
; .F_-‘-i?r [4, 3 (Sh{,o ((chgo—cht,b]g_l_ ch e — ch ¢ +1)

-~ yshy T e 1;<pshﬂﬁ—1,bsh{,o-
(che —ch¢)?2  chp—chy / shgo ch¢ —ch ;

e T chipchy —1 sh¥ — ¢ sh
; Par [4 (Shgo (ch g — chy)? chg — ch ¢ .
Y sh i 1 @ wsh ) —hsh e
i RO , + 45—t 1+
(ch —ch ) ch — ch v sh chg —chvy ’
Alg:C;:-Ei{( p chpchyp—1 ¥ sh 1 = 1
4 4 \shp(chp—ch¥)? (chp—chy)? chp—chy

where L = log ™72 ”J

The one-loop matching of the baryonic currents was considered in [47).
Now we are in a position to make some statements of Sec. 2, 3 more
precise. The QCD meson constants (2.9) are related to the HQET constant
by the matching (4.24):
e
—_ S(Tn) ++..) :

_2?{??&)
= (1 -

(4.36)
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“where ¢ = 4 for vector mesons and ¢ = "' for pseudosca:lar mesons (if a fully

antmommutlng V5 18 used) ‘The HQET constant depends on the nﬂrma.hza—

‘tion pmnt as (4.18-4. 19)

285 — 7x? 107

o —2/8, s “sf“) @ e e g
i) = fa%ﬁ(u}(l IO ) k=2 A
e (4.37)

There are two appmaches tob the.b — ¢ weak decays: cmeust.ep match-

1 lng [23 64] and two-step matchmg [18, 65, 64]. We are interested in hadmmc
. matrix elements of the vector "and axial weak currents j = e, I = Tu
" or 7,7s. These currents are_deﬁned in QCD at a high normallzatmn point

gt ~ my. In the first approach, we use QCD at the scales from my down

- o some not exact_ly.deﬁnable border M ~ my ~ m.. By a chance, the QCD

anomalous dimensions of these currents vanish, and j(Mm) = j(mw). At

= m we perform the matching (4.35) to the HQET in which both b and ¢

quarks are considered static. The vector current becomes a combination. of

~ eTb with T = v, v,,and v.,,; the axial current—of the similar currents with

the extra 95. Then we scale down to a typical hadronic g using the HQET
heavy- hcavy anomalous . dimension' (4.19). At this point we use the heavy
quark spin symmetry, and express the matrix elements via the Isgur-Wise
form factors.

In the two-step approach, we use QCD from g = my down to u = m,.
At this point we perform the matching (4.24) to the HQET-1 in which b is
static while ¢ is still dynamic. The vector current becomes a combination of
el'b with ' = 4, and v, (and the extra s in the axial case). Then we use the
HQET heavy-light anomalous dimension (4.19) to scale these currents down
to yt = m.. At this point we perform the matching (4.31) to the HQET-2 in
which both b and ¢ are static. We obtain a combination of T with T' = Aris
by, and ve, (with the extra 75 in the axial case). Then we use the HQET
heavy-heavy anomalous dimension (1.19) and the spin symmetry as before.

In the one-step aporoach, we can’t sum the a, log =2 corrections; we can
do it in the two-step apy ruar} ven in the suble admg jorde r). On the other
hand, the first matching m the two- -step method gives a series in 2 because
m, 1s the largest mass scale in the intermediate HQE'T. In the above descrip-

Tri

tion all ¢ corrections were discarded, and this is not a good approximation
in the real world. The first 2= correction can be included [65] (the leading
a log =& corrections are summed in this term using the one-loop anomalous
dime mmnq) but incorporating the second term would require a large work,
The one-step matching seems more adequate in our world in which FE{
is not very small and log {°* 1s not too large. It is possible to obtain the
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optimal combination of both approaches [64]. We expand the result of the
one-step matching in me- Then we extract the zu_mtli term from the series,
‘and replace it by the result of the two-step matching. We also extract the
first term, and replace it by the first power correction from the two-step

matching. The errors of this procedure are of the order of af, or %:qs, or

2
. m ; LY
(ﬁ) o, log e they all are small.
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