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Abstract

Expression is derived for the energy of the flute perturbations in a plasma in which
there exists a population of “hot” particles whose drift frequency around the magnetic
axis greatly exceeds the frequency of the perturbation. It is shown that the contribution
of the hot particles to the overall perturbation energy is of the kinetic type (i.e., scales
as £2). This result considerably affects the conclusions on the stability of various systems
containing hot particles.

©Budker Institute of Nuclear Physics

The velocity of the drift motion in non-uniform magnetic fields scales linearly with particle
energy. Therefore, if the system contains particles with high enough energy, their drift frequency
(1; may exceed the characteristic frequency of the flute perturbations I'. Then, to analyze the
stability of the system, one cannot use the familiar Kruskal-Oberman energy principle [1] and
must switch to its modified version [2, 3] that takes into account the condition

(the so-called “generalized energy principle”). However, if one inserts into the expression for
the energy variation W, presented in the papers [2, 3], the displacement vector £ of the flute
perturbation, :

¢ =[Vx,B)/B’, (2)

with x constant along the field line, then one finds that W, as given in [2, 3], becomes identically
zero (see Appendix). In the present paper, we resolve this paradox and provide the effective
expression for the energy of flute perturbations.

We consider purely electrostatic perturbations that are characterized by a constant value
of the electrostatic potential ¢ along the field line (the latter assumption, identical to the one
made in [2], implies the presence of a cold plasma component). To describe the bounce-averaged
motion of a particle, we use the following coordinate system. First, we assume that at some
(possibly, large) distance from the confinement region, the magnetic field is transformed to a
uniform one, without violating the magnetic field in the confinement region. (Such a situation
is really met in some mirror devices, that incorporate a solenoid with a uniform magnetic field,
but one can use this procedure also as a conceptual one). Then, we mark every field line with
the polar coordinates r,v of its intersection with some plane perpendicular to the uniform
magnetic field (Fig.1). Instead of r, it is sometimes more convenient to use the magnetic
flux ® inside the cylindrical surface of the radius r : ® = xr?By, where By is the uniform
magnetic field. A drift surface can then be described by the equation r = (i) (or ® = &(¢)).

-

Fig. | Magnetic flux surface: [—solenoid region, 2—confinement region.
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At a given configuration of magnetic and electrostatic field, the drift surface for a particle
witl a total energy € and magnetic moment p is determined by the constancy of the longitudinal
action J(e, , ®,) = [ vydl, with the integration carried out between the turning points, and

vy = (2/M)*(e — pB — ep)'/*. (3)

Il the condition (1) is satisfied, then, with the electrostatic potential varying, the drift surface
adjusts itself to keep constant the magnetic flux inside the surface [4]. This occurs via * . riation
ol the particle energy.

To find the change W of the kinetic energy of the particles (just this quantity enters the
energy principle for the perturbations with a scale-length much in excess of the Debye radius),
we use the following approach. We consider some group of particles (of a total number AN)
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that in the initial state have certain values of £ and pu, and that are filling a drift surface
characterized with a certain value of J When we slowly turn on the electrostatic potential of
the perturbation, the drift surface deforms and the kinetic energy of the particles changes. If
we find the change of the kinetic energy AW for this group, then, by summation over all the
groups, we find the required quantity W.

The group AN is drifting along the contour ®(3)) determined by the instantaneous configu-
ration of the electrostatic field and the instantaneous value of £. The number of particles from
this group dAN, occupying the section of the contour of the arc length di» , can be presented in
the form dAN = vdy , where v is the number of particles per unit arc length. The stationarity
condition v = const yields:

ANQ
v==—, ©
2mip
where 1) is the angular velocity of the bounce-averaged drift motion [5]:
. 2rMec
b=—T0s 5)

t) = MJ, is the transit time between the turning points, and £, is the drift frequency,

nd=21[51%}_. (6)

We use the notation J, = 8J/0e, Jp = 0J/8®, etc., for the partial derivatives. The change of
the kinetic energy of these particles is, obviously,

final

) (7)

initial

AW = [ / s erp}d;b]

where the subscripts indicate the difference between the final and initial state. The total
energy ¢ of particles is constant over the drift surface in the time-scale of £037!, while their
kinetic energy & — ey varies from one field line to another according to variation of . In this
respect, AW, if divided by AN, represents the average (over the drift surface) change of the
kinetic energy.

The condition of flux conservation inside the drift surface can be written in the form:

final
=) (8)

initial

[ awya

0

where ®(4)) is a solution of the equation

J{E, 1P, 'i,!f} E:L: = 0. (Q]

In principle, the equations (4)-(9) allow one to find the particle kinetic energy at arbitrarily
large . However, we will consider only the case of small . The quantities of the first order in
i will be denoted with subscript “1”, the second order corrections by subscript “2”, etc.

In the linear approximation, equation (9) yields:

{51 = 699}-!; + ‘I’lqu@ = D, {1']}
from which, taking into account relationships (4) and (7), we find that .
s Q2 dyp
o it e(i), (11)

where the drift average is defined as {...) = Q4/(27) [37(.. }dt;'.':_,l"'i,e’,r
The next order expansion of (9) gives:

1 1
JE(EE e 3@1‘1"#] =+ J@'@i -+ 'E‘JEE[EI e e‘:")z o Jsﬁ@l(f:l o E‘F] + EJ@I‘@l? = 0. (12]

The condition (8), when applied to @, , yields:

2 g — 2 dyp 1 1
fﬂ wdﬂ) = _,/:} i(g.}ﬂ-(ﬁl — E-EP}E + JE@"I':[(E]. = E!P] + EJ&Q'IH!], [13]

¥ e
while from (7) we find that
ANQq [ 4 d

AW = o : ; [—%(Et —ep) + (e2 — Ei‘i?’@ﬁ'fﬂ (14)
Irom equation [5} one obtains that

i Je (Joa  2Je | Jecdo

—_— = —— e o T - ]'

7 T ( i ) (&1 — ep) (15)

Now, using the relationships (5), (10), (11), (13) and (15), we can express AW in terms of ¢ :

div Sl g Jeo 139 ot Jee  Jedoe
aw = AN (23400 - (g + (o= (o) (232 - J2 - 23]}, o

To perform the summation over the plasma particles, we introduce the distribution function
F(e,p,J), normalized according to the relationship AN = F(e, p, J)AcApAJ. Then, the

energy W of the perturbation acquires its final form:

: |
W =—¢* [ dedudI F(e, , J)x

Js@ ch JEJ¢@)> {1?]

lur_!: a[":' " 2
DS it = $et nosho tee
If a population of particles with a small drift frequency (24 < T'), whose contribution to

the perturbation energy can be obtained by the MHD approach, is present in the system, then
there appear two more terms in the expression for W, scaling schematically as

ME + RE. - (18)

The first term represents the kinetic - nergy of perturbations and the second one describes their
potential energy (determined by the field line curvature ). The expression (17) for W scales
as ®. Since the displacement £ of the fluxtube filled with a cold plasma is determined by the
formula (2), with x = (1/¢) [ wdt, we see that if (17) is expressed in terms of ¢, it scales as
the kinetic energy of the perturbations (~ £*), giving contribution to M, not to R, in the
expression (18). Therefore the presence of fast drifting particles manifests itself in the changing
of the “inertia” of perturbations, not of their “rigidity”. Just these observations explain a
somewhat paradoxical result of paper [2] - cancellation of the energy of the flute perturbation.
The reason, as we see, is that the authors of paper [2] retained only terms proportional to 2,
while the contribution of the fast particles to the energy of the perturbation has a different
structure (it is proportional to ¢? ~ £2).




To illustrate possible effect of non-MHD response of the fast particles, we consider a single
non-paraxial mirror of length L (with a plasma occupying a volume of the order of L?). Let
plasma consist of a thermal population with temperature T and density n, and a hot population
with temperature T, and density n. < n; let also the pressure of the hot component exceed that
of the cold one: n.T, > nT. For the usually most dangerous mode of a global displacement
one can evaluate the plasma kinetic energy (per unit volume) as

n.d. :
(@ + i)

where ¢ is a (small) plasma displacement. The first term here represents a contribution of the
fast particles. The potential energy is just nT(£/L)?, as fast particles do not contribute to it.
If the drift frequency of the fast particles {14 is not too high,

1 fn,T.\Y?
ﬂd{f(nM) :

the inertia of the fast particles dominates. The estimate for the growth-rate I is then

nT 1/2
n.T.) '
As n, T, > nT the growth-rate is automatically less than the drift frequency, ensuring the
applicability of our analysis. So, we see that, indeed, the “inertia” of the fast drifting particles
can be dominant, despite their small density. Similar effects can play a significant role also for
the systems containing several linked mirrors some of which have a population of hot particles
(e.g., for tandem mirror systems [7, 8]). This part of the problem will be considered elsewhere.
Expression (17) can be considerably simplified for the widely used Yin-Yang configuration
(see, e.g. [6]). An important feature of such a configuration is that, if we use the coordinate
frame with the axis coinciding with the magnetic axis, then longitudinal invariant J, up to the
terms linear in @, doesn’t depend on the azimuthal angle ¢ (see [6] ):

rwnd(

J =2 7O (g, u) + 2T (e, ).

The neglect of the higher order terms in @ is justified in the paraxial region. In the framework
of the paraxial approach, the plasma radial dimension should be small compared to the mirror-
to-mirror distance. This means that the variation of ¢ in ® has a small scale-length, and the
dominant term in (17) is that containing the derivative dp/8®. This allows one to reduce the
general expression (17) to a simplified form :

1 JO)  rar Ao
W= [dedud]. F S [ (0~ (0) e db. I
We have taken into account the independence of both J® and J) on 3. Changing the set of
the integration variables, and performing integration by parts, one can finally obtain:

A JO®| gF  por /
W= ] dedpdd = == [ (e - (o))" (20)

Since the derivative 8F/0® defines the sign of the diamagnetic frequency, it becomes obvious
from (5), (20) that the energy variation would be negative for those particles whose directions
of the drift due to the field line curvature and the diamagnetic drift coincide, and would be
positive in the opposite case.

Appendix

Van Dam-Rosenbluth-Lee energy principle in the case of
the flute perturbations

We start with the introducing the Clebsh coordinates (a, #) [9] with property
B=Vax V4.

The « coordinate is chosen so that the contour surfaces of constant a form a nested series of
topological cylinders, and it is normalized to enclose the magnetic flux 2ra by any « surface.
The @ coordinate is angle-like and of period 27 on each « surface. In the limit of zero 8 the
magnetic field satisfies equation ¥V x B = 0, and hence it can be expressed as a gradient of
some potential y: ;
B = Vy. (21)

Vectors
(Va ,V0 ,Vx) (22)

compose a covariant basis that we are going to deal with. We also define a contrvariant basis
(u,v,7), dual to (22), in such a way that

Vi x Vy
L
VaxVy
e
T_‘Fax?ﬂ_E
i PR e

According to the energy principle [2], derived within the assumption of the fast particle
drift (see condition (1)), the energy variation W consists of two terms:

W = W; + W, (23)

The first one, W}, represents the local part of W and can be written in the Taylor-Hastie form
[10] :

1 :
Wy =z [z [0Qh +(Qh +ojib- (€ x Q) +¢€- V'py
~(1/B)(2Q+£€- VB)E-V'n)|. (24)
Here £ is the displacement vector, Q is the Eulerian magnetic field perturbation,
Q=Vx (E x B:]:l

the subscripts ||, L refer to the parallel and perpendicular components with respect to the

direction of the unperturbed magnetic field, and the coefficients ¢ and (,
a=1-B"Ydp/0B), (=1-(8°py/dB%),

are measures of stability against firchose and mirror anisotropy modes, respectively, Also, the
following notations are introduced:

V' =V — (VB)3/dB,
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g =bb: V§. (25)

The kinetic contribution to the energy variation, Wi, originated from the fast particle drift,
is given by
1 aF aJ\ [(aF
Wi = —3 [ dadodpds | (- A [ 22N 2.
=g [ deatanar (57) e+ (52) (55) ). (20

H = —moflg— uB(V -£ - g), (1)

:'m-:i F = F(J(a,0,e,p),¢, ) is the equilibrium distribution function, depending only on the
integrals of motion (see e.g. [11]). Single angle brackets in (26) describe the bounce average:

()= (‘;—g _lfc_ﬁu““l{“ ik

while double angle brackets denote the average both over bounce and drift motions:

i (i";if‘;i)‘r 4 dﬂ(;,i;—-):{...}, (28)

wher.e ® = § dba(0) is the flux adiabatic invariant (@ = a(f) defines the particle drift-surface,
and integration is performing with J and ¢ being constant), (89/de), is the precessional drift

period, and (9e/da)s = (df/dt) is the bounce-averaged rate of precession [4]. _
Now we turn to the calculation of the energy (23) for the flute-like perturbations, charac-

terized by the following displacement vector & :

€=bl+¢,, (29)

where

BxV
$J_= Bz r}, (ED}

with function 7 constant along the field line,
T ’?(QJE}'

Since

8 a
Ve EE"?“ i gg-va,

the perpendicular displacement (30) can be expressed as

ShRdn el Oy

In the curved coordinate system («,,!) (with ! as a coordinate along the field line, determined
by dl = dx/B ) one obtains:

8 (g d(1dn\ a(1a
R - il 21| 2 e il oo SARNGRE A OB L
e (H)+B [aa (E?Ba) 9a (325‘&” &
o E 6”)_3 535?} 6331; p
T (B B —aﬁa_a"'a?éﬁ]' (32}

As it flows from (25), (29), the expression for g yields:

)
qzﬁiﬂ—fr(b-?]b.

8

. g

-—-3--

Accounting for ¥ x B = 0, and using the relationships
(b:V)b=-b x(V xb),

v B —%[vﬂxb],

we come to :
_o% _1[0B_0Boy i
=% "B|309a 9ad0]
After simple manipulations one can find from (27), (32), (33) that
I\ rdl , 8 (Mvf )
== — = B
(H) (35) j-v" 37 ( gl ik
aJ\" ¢ dl : dBdn 0Bay
== e el 4
i (ﬁs) fB-u” (Mv] +uB) [aa da  Oa aa] (34)
The contribution from the first integral vanishes, since the particle energy conserves along the
field line.
As it was shown in [9],
aJ Al 8B
S s 35
da By (MUH i FB) da’ 32
aJ dl 2 0B
it i k2 36
86 Boy (Mvi +1B) 5 (36)
Combining (35),(36) with (34), one can rewrite the expression for (H) as
. faJ\T'aJay  (I\T'ad oy
e —(‘a:) 30 9a (85) 900" (87)

Now it is easy to perform the average of (/) over the drift motion. Inserting (37) into (28)

and taking into account that
0o\ _ _0J(0J\" (8 __é‘i(ﬂ i
30/, 90\da) ' \da), " Ba\de) °
88\ oy . o %\ ™
= [ — —_ —_— = ] — d = L
((H)) (ae)J jg(dgaﬁd“aa) (aa)Jf“ G

(#).= () &c).(a7).

one obtains after the substitution of (37) into (26):

1 aJ\ (8F on\*
W= -3 f dodfdude (ﬁ'_cr) (E) ((3_3) i

B @@ ) -
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we have:

Finally, using




Here we have changed the set of the integration variables, and perform the integration over de

instead of d.J.
Now we turn to the calculation of the energy variation W;. Since W; does not depend on

the parallel component £ (see [10]), and besides that the displacement (29) does not perturb
the magnetic field, Q = 0, the expression (24) reduces to

1
Wy =3 [ #2( 5 VEIE V) + 5
The parallel and perpendicular pressure components, presented in (39), are given by
dedp
P = f -"“B M

(39)

PII 80 e A A0

dBdn 9By
00 e Oadl|/)’

s d&dg
pJ_—f LB nBE

The substitution of {31} into (39) leads to
f Pz OPdB 8P] (on\* K 0B[9PdB oP] (4n)’
4+ — —_ £l
12 dex

aBEE_a_a a0 80 (0B 60~ 80

dB PGB 48P 6‘?337} ?E [dP&B  8P) dn oy i
“9a 0B 0 T 90| 360 90 |9Bda  9a) 909a)’ U

where P = P+ PL,

dedyB .,
P= f o (Mot +uB)F (e, 7).

The calculation of the derivatives of P, entering into (40), gives:

apP (Muft + uB)
il i _L_
0B j o (H v )

0P OB (Mv? + uB) dedu B JF
el | bkl e 2 e
aﬂ' fd&f#f‘ 3B (B o ) f v (M'UH S ﬁB) (aa)t, ['11}

9P _ 0B g [, (Mvl+pB) dedyB ., , OF
el dedFF 35 (B’ ) ) -i-f & (M + uB) (ﬁ)z

Now reminding that d*z = dadfdi/B, and accounting for (35), (36), (41), one can transform

(40) to
ar\ (an\’
f dsdﬁdadﬁ{ ﬁa( Ba) (ﬁ) +

LOJ(OF (an\* _ (9 (0F\  aJ(OF\ Y on oy e
80\ 99 ) \de 96\da) " da\d0) ) 308a|" (42)

The latter expression, together with equations
aF\ _aJ(aF ary aJfar
a6 ), ao\aj/' o t_ da\oJ )’

OF\ _oJ(01\" (oF
86) ~ 90\da) \Ba)’

allows one to show easily that Wy equals to the expression (38) with the inverse sign, and hence

the energy variation (23) is found to be identically zero.
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