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Abstract

The cross section of et e™ pair creation by a-high-energy photon
with capture of the produced e~ in arbitrary bound state of arising
hydrogen-like atom is found using the quasiclassical approach with ex-
act regard for a Coulomb field. Formulae are essentially simplified for
large quantum numbers of the bound state. That permits us to find
the total cross section of the process.
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1 Introduction

During recent years QED processes in a strong Coulomb field attracted sig-
nificant attention, in particularly, connected with construction of relativistic
heavy-ion colliders. Besides other important problems, these colliders will al-
low to check QED predictions for the processes in extremely strong external
fields. The process of bound-electron-positron pairs production is of peculiar
interest, because it limits essentially the beam lifetime.

The consideration of the phenomena may be conveniently performed in
the rest frame of an ion (target ion) capturing an electron. For very high ions
energies, the equivalent-photon method is valid. Within this method the cross
section of the process at ion collision can be expressed via the cross section of
the pair production by the photon in target ion field. Then the cross section
of the process under consideration is proportional to sz Iny , where Z, is
the projectile ion charge (in units of the electron charge) and 7 is its Lorentz-
factor. Recently [1, 2] it was pointed out that for moderate ions energies the
nonperturbative mechanism turns out to be important. This mechanism gives
essentially different Z dependence of the process cross section as compared
to that obtained within the equivalent photon method, but does not contain -
the factor In y that is large in ultrarelativistic case.

To apply the equivalent photon method we must know the correspond-



ing photo-process cross section. The total cross section of bound-electron-
positron pair production is determined by cquwa.lent photon energies of the
order of a few electron masses (we use in this paper the system of units
h=1,c=1). This cross section was calculated for K and L shells in a se-
ries of papers (see reviews [3, 4] and references cited there). The cross section
differential with respect to energies of outgoing positrons is also of obvious
interest. We shall consider the case of ultrarelativistic positrons. Hence, we
must find the cross section of bound-electron-positron pairs production by a
high energy photon in a Coulomb field (w 3> m, m is the electron mass, w
is the photon energy). This cross section was investigated in details for K
and L shells in [5, 6], where earlier published papers are cited as well. As
it was noted in [5], the bounded pair production cross section coincides for
w > m with those of the photoeffect and radiative recombination (up to the
factor connected with summing or averaging over polarizations of involved
particles). The results in [5, 6] were obtained by direct calculation of matrix
elements using Sommerfeld-Maue approximation [7] for wave functions.

The present paper is devoted to the calculation of the cross section of ete~
pair creation by a high-energy photon when a produced electron is captured
into arbitrary state of discrete spectrum with exact regard for a Coulomb
field. The consideration is based on the use of the integral representation
for the electron Green function in a Coulomb field obtained by us in [8].
The quasiclassical limit of this function [9, 10] is used as well. The case of
large electron-state quantum numbers is analyzed in details. The asymptotic
expressions obtained are of a high accuracy that permits us to find the total
(summed up over all discrete electron states) cross section of the process.

2 Green functions and general expression for
the cross section of the process

According to the common Feynman-rules, the cross section of bound-electron-
positron pair production by a photon in a Coulomb field of a nucleus is
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where @ = e = 1/137 is the fine structure constant, summing over ‘the
electron and positron polarization states is assumed. The matrix element M

is
M= [dFID @ e U@ exp (i),

Here g!JH'}(f-) is the bound state wave function; 7,:’);_}(1'-'} is negative frequency
wave function for the continuum state corresponding to positron, e, is the
photon polarization 4-vector, ¢ is the photon wave-vector. According to the

usual definition (see, e.g., [11], (109.19)), the electron Green function in an
external field can be represented in the form
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where G is the Green function in the upper and G~ in the lower half-plane
of the complex variable € . We find from (2)
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Substituting (3) into (1) we get a formula for the cross section expressed via
Green function only: :

= 2 [ [ arar sp { pu(s #)ubG, 7 en — )} exp (17— 7)
(4)

The averaging over photon polarization (e e, — —g,,/2)) is carried out
in (4) since the cross section is independeut of it. Note that in the case of
degeneracy the matrix p, (¥, 7') and correspondingly the cross section o, (4)
is the sum over degenemte states with definite electron energy.

In our paper [8] the convenient integral representation for the electron

Green function in a Coulomb field was obtained. Using formulae (19)-(22)
of this paper we find for p, (7, 7*):
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where n is the radial quantum number, Z is the nucleus charge (in units of
le]), ¥ = (12 = (Za)?)/2, 1 = j+1/2, j is the total angular momentum of the
state, £, is the energy of the bound state

E, =m(y+n)/ ((v + n)? + (Z&)E)lfﬂ :
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Here Joy is the Bessel function. The integration with respect to 7 in (J}
can be easily carried out by means of the residue theory if we expand the
Bessel function in the series, go over to the variable v = tan 7 and close the
integration contour in the upper v half-plane. We have:
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The main contribution to the cross section (4) comes from the distances r, r'
of the order of electron Compton wave length 1/m and the angles between
vectors k, 7, 7' of the order of unity. The contribution from small distances
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r, 7' ~ w1 as wall as froni small angles (~ 1n/w) is suppressed as some power

of the small parameter m/w. For w > m, the energy of a produced positron
is approximately equal to w. Hence, the characteristic values of the positron
angular momentum, giving the main contribution to the cross section are
large: I, ~ wr ~ w/m > 1. Therefore in the expression for the quantity
6G(7, 7| €) (4) corresponding to positron we can use quasiclassical limit of
the Green function which is much more simply than exact one. This function
was obtained in [9, 10]. Making use of Eq. (5) from [10], we have
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Substituting (8) and (5) into (4) we can take the trace of y-matrices in
(4). Now some transformations simplifying [urther calculations can be conve-
niently done. As the cross section is independent of the momentuin direction
of an incoming photon, we can average over these directions in (4). Then

sin(w|i” — 7'|)
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After that the integrand in (4) turns out to be dependent only on r, v’ and
z = (iiii’). Let us introduce new variables: r = p(1 +1)/2, ' = p(1 —1)/2.
From what was said above it follows that the main contribution to the cross
section is given by p ~ 1/, & ~ 1, where the arguinents of exponential
functions in (4), (8) and Bessel functions in (8) are large (~ w/m). Therefore
we can use asymptotics of the Bessel functions and the stationary phase
method to take the integral with respect to t. The stationary point tg is
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Using (7) we can now take the inlegral over p that reduces to Euler’s i
function. In addition, it is convenient to go over from the variable z to
the variable y = (cosh®s — 2/(1 + :1:})”'i /sinh s and to shift the integration
contour with respect lo variable s: s — s — iw/2, aller which to go over
to the variable u = tanhs. Carrying out the indicated transformations, we
obtain the final expression for the bound-electron-positron pair production

cross section at w 3> m for the electron with definite energy belonging to any
state of discrete spectrum:
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In this expression
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The integration contour over u in (9) goes over the real axis. Differentiation
with respect to v in (9) can be easily carried out in the explicit form. We
keep this differentiation to make the notation shorter, Note else that for any
values of [ and n with the help of the relation
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where F(a,b;c;z) is the hypergeometric function, the integral over y in (9)
can be reduced to the integral
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where bypass rule over the variable u is taken into account. For n = 0 the
expression (9) for the cross section is essentially simplified:
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For | = 1 (lsy;y-state) it goes over into that obtained in [5] if we make
change of variables u = 1/ and deform the contour of integration over z to
the closed interval [0, 1]. Eq. (9) is very convenient for performing numerical
calculations and obtaining asymptotics, which will be considered in the next
section.

[(y — iZau)a + (b] . (11)

'3 Asymptotics of the cross section and

discussion

Consider the dependence of the cross section on the radial quantum number
n, the total angular momentum j (remind that the parameter [ in (9) is equal
to j + 1/2) and the quantity Za. Let us start with the case il n~l
Making use of the integral representation for the Legendre polynomials at
the argument larger than unity (see [13]), we easily find that for [ > 1

221'&--(32+y9)”2
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It follows from (12) thai the main contribution to the integral (9) for { > 1
is given by the region of variables y ~ u ~ 1/+/1. Substituting (12) into (9),
expanding the integrand at small u and taking the integrals, we obtain

ra(20)" /I ( 270 )"”“ e (13)

Swmn! L4+n

Pi(w) ~ (12)

ay(I>1) =
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It is seen that even at Za ~ 1 the cross section is numerically suppressed for
> 1. Comparing (13) with the results of numerical calculations performed
in [6] for | = 2, n = 0 (2p3/2 -state), we find that already at | = 2 an accuracy
of (13) in the region Za < 0.7 (Z < 96) is better than 5%. If we additionally



take into account that the contribution of 2p3;,-state to the cross section
when an electron is captured on the L shell (6L = oy(I=1,n=1)+0,(l =
2,n = 0)) does not exceed 11%, than it is clear that the use of (13) provides
an accuracy in obtaining o better than 1%.

Consider now the case n 3> 1, [ = 1. The leading term of expansion (9)
in powers of 1/n has the form

F(Za)
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where g = 4ma(Za)®/mw and the function I'(Za) reads
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where :
d=M+7v, m=vV1-(Za)’, R=d+ iZau.

The function F'(Za) tends to unity at Za — 0 in accordance with caleulations
performed-in Born-approximation [12]. Note that, as it follows from (13),
when an electron is captured into the state with [ > 2 the process cross section
contains at Za < 1 an additional (as compared with I = 1 case) suppressing
factor  (Za)*'~1) (see also discussion in [6]). The result of summation
in (15) can be expressed via the Bessel function Joy,(2Zav/u? — y?) and
its derivative. Such form of notation can be directly obtained from (4) if
we note that for n > 1 small values of 7/2 — |7| ~ kE/E, = Zaf(n + 7)
contribute to the integral in (5). At such derivation of the asymptotics it can
be easily proved that in evaluating corrections to (14) the quantity (k/E,)?
is the parameter of expansion. With account for the first correction in this
parameter the process cross section for n 3> 1 takes the form

Welle R e
TG )P [l (T1+“) e

(16)

In view of awkwardness of the function f(Z«) we don’t give here its explicit
form. Estimations show that for 0.1 < Za < 0.9 the function f(Za) changes

10

(not monotonically) in the interval 0.9 < f(Za) < 2. This permits one to
estimate an accuracy of (14). It is interesting that if we simply put f(Za) =
4/3 in (16) than this formula fits for Za < 0.7 the results of numerical
calculations performed in [6] within 1.6%.

he function F(Za) is plotted in Fig.1. At calculating £'(Z«) the inte-
gral over y was taken by means of (10) after which the integral over u was

1.
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Fig. 1. Function F(Za) determining dependence of the cross sec-
tion g4 on Za for n > 1 (see (15)).
expressed in terms of hypergeometric {unctions, so that the result was repre-
sented as a double sum containing these functions. Note that with increasing
Za the function F(Za) first decreases rapidly owing to the factor exp (~7Z«)
in (15) while in the region 0.55 < Za < 0.95 it is almost cuné;;ant,

Obtained approximate expressions (13) and (16) for partial (with given values
of | and n) cross sections oI, n) provide finding within an accuracy of 1%
the total cross section of the process

o0 00
Tor =D ) ox(lin).

n=0 [=1
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For contributions to this sum from K shell (1s;/9-state, ox = o4(1,0)) and
L shell (2512, 2p1/2 and 2ps;, states, or = 0,(1,1) + 0(2,0)) we use the
numerical results obtained in [6]. For the sum of all the other contributions
OM' = Otot — 0 — or we use (13) and (16). The dependence on Za of the
ratio o4t /oo is shown in Fig. 2 in the interval Za < 0.7. It is seen that an
exact account for a Coulomb field drastically changes the result as compared
to Born approximation.

The dependence on Z« of relative contributions o /oy, and op foior to
the total cross section is shown in Fig. 3. It is seen that at any values of the
quantity Zea the partial cross section prevails with a capture of an electron
to the ground state. However the relative contribution of the other states
increases with increasing Zo.
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Fig. 2. Total cross section of the process in units of ag.
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