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ABSTRACT

We study the Band Random Matrix model for eonservative Hamiltonian systems,

originally proposed by Wigner in 1955. On the basis of numerical data we show that

both the global structure of eigenstates and the level statistics obey a simple scaling

law based on a single scaling parameter.

@© Budker institute of Nuclear Physics

The first attempt to describe statistical properties of complex quantum systems
by means of a random matrix medel goes back to Wigner (1]. He introduced a Band
Random Matrix (BRM) model to describe conservative systems like atomic nuclei [2].
Specifically, he considered the ensemble of real, infinite, Hamiltonian matrices of the
type

m
Hm;n = "‘II; Etnn + Ymn . Umn = Unm (1]

where p is the mean level density and the off-diagonal matrix elements are random
and statistically independent with < vme. >=0 and < v}, >=v? for |m —n| < b
where b is the band-width while vy, = 0 otherwise. In particular, the simnplest case
of matrix elements with random signs vms = Zv was chosen in Ref. [1].

Wigner introduced the weighted level density
pw(EBym) = > ab,6(E - E) _ (2)
{ ;

where am; are components of the eigenfunctions iy of Hamiltonian (1) in a physically

significant, for example, unperturbed basis {pm}:
P = Z Aim Pm (3)

and where E; are eigenvalues corresponding to .

The weighted level density pw/(E; m), termed strength function by Wigner, pfaved
to be very useful in studies of quantum statistics, and now is called local spectral density
(see, e.g., Ref. [3]). It is directly related to the time lependent Green function of a basic
state p, and characterises the level density of the so-called operative eigenfunctions
[4] which actually control the dynamics of this initial state.

The analytical evaluation of the density (2) turned out to be extremely difficult.

Only in some limit cases Wigner was able to derive an explicit expression for the density
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(2). In particular, for p = co and b3 1, he obtained the semicircle law

pw(B;m) = = /Bt — B2 @)
(a rigorous proof of this law is given in recent papers [5]).

After Wigner’s pioneering work the BRM were almost forgotten (curioulsy enough
by Wigner himself [6]) apparently because of their mathematical inconvenience, namely,
non-invariance with respect to basis rotation. Due to this, attention was paid mainly to
full random matrices for which fairly complete mathematical analysis was possible [7].

Nevertheless, full random Hamiltonian matrices can be used to describe only local
statistical properties of spectra and were criticized by Dyson for "unphysical” semicircle

“law. However, a physically meaningful approach to the analysis of global properties of
Hamiltonians can be obtained by just going back to the original Wigner model with
increasing diagonal elements (1). In this model the semicircle law holds for the weighted
level density (1) only, while the total level density is approximately uniform in the
semiclassical region. Moreover, in physical applications the interaction of unperturbed
states always has a finite range which determines the band structure of Hamiltonian.
For this reason, there has been a revival of interest in BRM [8]. Particulary, in Refs. [9,
10] the original Wigner model (1) with increasing diagonal elements has been restored
and studied. Another source of interest in BRM is related to solid state physics where
band matrices are widely used to describe dynamics of electrons in disordered solids.
Here the localization properties of eigenstates are important as well as their relation to
the spectrum properties.

In this paper we consider model (1} with gaussian distribution for off-diagonal ele-
ments. On the basis of numerical data in Refs. [9, 10] we show that the global structure
of eigenfunctions can be described by a simple scaling theory based on a single scaling
parameter which has a simple physical meaning. A similar scaling approach accounts
very well also for energy level statistics and gives a new insight into the connection
between the statistical properties of eigenstates and those of the eigenvalues.

Qur starting point is the semicircle law (4) which holds for suffficiently large level

density [11-13]. The finite energy width of the semicircle distribution, AE = 4u\/2b,

encompasses the whole spectrum and therefore allows for an estimate of the maximum

number I; of unperturbed states that can be coupled by the perturbation:

Iy = epAE =4cpvv/2b (5)

4

where the numerical factor ¢ (of the order one) depends on how [ is practically mea-
sured (see below). The physical meaning of I is that of a maximal localization length
of eigenstates in number of unperturbed levels, We emphasize that I, is determined by
the "energy shell” AE and makes no reference to any finite matrix size; for this reason
!, will be called transverse localization length (across the energy shell), see Ref. [14].
The actual localization length [, however, is in general different. It depends on the
various parameters in a complicated way [9, 10], except in the limit case p = oo, when
I=1,~ b [15, 16].

The key point in our approach is that all global properties of eigenfunctions are

described by one localization parameter:

[
,Gl'nc o I_“' (ﬁ]
1
which is expected to obey a scaling law, i.e. to depend only on the ratio of the two

characteristic lengths I and [, :

Im ba,fz
Broc = Broe(A)s Aimope . e (7)
with some numerical factor @ ~ 1. The scaling parameter A may also be called
ergodicity parameter, because when it is large, the localization length approaches its
maximal value 1, , which means that the eigenfunctions become ergodic, i.e., completely
delocalized within the energy shell. In the opposite case, when [ < I, we speak of
logitudinal localization (along the layer) [14].
The scaling parameter ), which in our approach naturally appears as the ratio of
two characteristic lengths, was introduced in Refs. [9, 10, 15] where finite matrices of

size N were considered. In that case, N is another characteristic length, and therefore,

besides ), one more scaling parameter appears:

B2

AN = T3 (8)

The statistical properties were conjectured to depend on both parameters A and An

(Bloc = Proc(M, Ax)) [9]. This was confirmed by numerical experiments [9, 10, 17],

both for spectral statistics and for localization properties.
For homogeneous ( p = oo ) BRM the parameter Ay alone is sufficient, and the
scaling law was numerically found to be (with v & 1.4): :
AN

1+ AN

.Blnc{njij\r} = {g)
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for Ay 214 [16, 18]. Recently, an analytical proof of this scaling law was given in
Ref. [21]. .

However, we are here interested in the case of infinite matrices. Though in numerical
studies the matrices are always of finite size N, the data in Refs. [0, 10] pertain to large
matrices for which A > An. According to numerical evidence {9, 10], in this region
only the parameter A is important, and the finite (but large) size of the matrix is not
relevant.

In order to study the scaling (7) we use numerical data [9, 10] for the dependence

of localization length on the model parameters,

i(2) = ¥ f(2) (10)

where + = Aa~! = b*?/(pv) and function f(z) was numerically found in Refs. (9,
10].
In this formulation, the asymptotic behaviour of Bp,.(A) as A — oo is determined
by the asymptotics of z f(z) for * — oo. In Ref [15] it was argued that z f(z)
tends to some nonzero limit ¢; as z — oo, asymptotically for 1 < b €« N. The
definition of [(z) which was used in actual data, was that of "entropy localization
length”, namely,
| = Nexp(< H> —Hgor) (11)

where H is the "entropy” of an eigenstate u, :
i = -Z lun]® In fua)® (12)

and < H > is an average over all cigenve;:.:mrs of an ensemble of random matrices with
the same N ,p,b,v. In the expression (11) the normalization is used in such a way that
for the limit case of full random matrices of size N the localization length [ is equal to
N [18]. For this, the factor exp(—Hgog) is introduced which is the average entropy of
eigenstates taken from the Gaussian Ortogonal Ensemble (GOE). The definition (11-12)
has the meaning of an effective number of unperturbed eigenstates significantly covered
by a given eigenvector. From the data of Ref. [9] and from additional ones kindly
provided by M.Feingold, on increasing z at fixed b = 3 — 9, the product z f(z)
was found to increase towards a maximum value in the range 4.4 — 5.5, and then to
decrease approximately va'd /z : moreover, in this region, the scaling (7) is violated. This

behaviour has been related to perturbation theory [11, 13]. Being mainly interested in
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non-perturbative effects, we restricted ourselves to the range of z values before the
maximum of z f(z). This range is approximately defined [11] by the condition z < =3
with

b pu

1’_b = ﬁ ~ (.3 (13)

The quantity bz is a sort of perturbation parameter, corresponding to the ratio of
the rms perturbation (~ vv/b) to the full detuning (~ b/p). Another interpretation
of border (13) is the ratio I, /b of the maximal (transverse) localization length to the

number of directly coupled unperturbed states.

As b increases, the border z; also increases, and the maximum of z f(z) becomes
broad and flat; this justifies our restriction £ < 3 and the determination of ¢ as
a fitting parameter. The direct calculation of the constant ¢y requires new data for
larger b. For the largest available b = 9, the mean value of z f(z) on the plateau
(which includes only 7 points) is 5.42, while the value of ¢y obtained from the fitting
(see Fig. 1) is ¢p = 5.29.
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Fig. 1. Dependence of the localization (squares) and repulsion (dots for ¢ and circles for
(16)) parameters on the ergodicity parameter A as compared to the simple exponential scaling (14) -

{salid line): the rms deviation for Jj,, — 3 is 0.7%.
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A detailed processing of the data in the region r < z3 yields evidence of = simple
scaling (Fig. 1):
Bloc(A) =

zﬁx} ~ 1 — exp(—A) = Fa(A) (14)

where 3y is defined by the last equality. To suppress fluctuations in numerical data
for large A we used the so-called moving window avcraging over 6 neighbouring points.
The least square fit gives ¢y = 5.29, a = 0.216 with rms deviation of 6 % . We would like
to stress that the scaling (14) is quite different from (9) found for finite homogeneous
BRM.

Although the agreement between numerical data and the scaling law (14) shown
in Fig.1 is overall quite good, there is also a small systematic deviation. This deviation

Bioe — o can be substantially reduced by the slight change in the scaling (14), namely
Bo(A) = Bi(A) =1 —exp(—A + X — v) (15)

with p = 0.039, v = 0.055 and a close value of a = 0.226 ( ¢p = 5.29 as before). Using
the latter parameter values, the numerical factor v = acy = 1.2 is also close to the
previously found one in different models [16]. Factor ¢ & 1.07 in Eq. (5) corresponds to
a particular definition of localization length used in all the above mentioned numerical
experiments, namely, the entropy localization length [18].

Another goal of this paper was to investigate the relation of the above discussed
global properties of the eigenfunctions to the statistical properties of the energy spee-
trum. The most widely used quantity for the latter is the repulsion parameter for
couples of neighbouring levels [7]. To determine this parameter one needs to compare
numerical data with some expression for the distribution of level spacings. In Ref.[10]
this was done for the model (1) by using the so-called Brody distribution, which depends
on one fitting parameter g. We used instead a different theoretical distribution, which
appears more physical in the analysis of intermediate statistics produced by localization
effects [18, 19]. This distribution, too, depends on one spectral parameter 3, which is

approximately related to ¢ [19]:
g = 0.654q + 0.4114° : (16)

This relation was obtained by a least square fitting of one distribution to the other.
In previous studies [18, 20] of dynamical models it was conjectured and numerically

supported that the localization parameter i, is close to the repulsion parameter 3.
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In the present case, this conjecture is fully supported by numerical data, see F‘ig. 1.
We emphasize that in spite of some statistically significant deviations of both 8 and
Bise from the simple exponential scaling (14), the difference fj,c — # remains well
within statistical fluctuations in the whole range of available data for ¢(A). The rms
fluctuations of (1 — #)/(1 — §) are about 2% only. This in our opinion clearly
indicates that parameter § is much more suited than the Brody parameter for the
description of statistical properties of quantum chaos.

It would be very interesting to extend numerical experiments [9, 10] on larger values
of ergodicity patameter A in order to follow the transition to the unperturbed system
as represented by the diagonal matrix elements. Also, it is not completely clear whether
the present results remain unchanged with the different, particulary Poissonian statistics
of the diagonal matrix elements in the model (1). Most likely, they do but a direct check
would be certainly desirable.

In conclusion, we have provided evidence for the new scaling law which holds for
BRM of the form (1); besides thqt, we have shown that for this model the spectral
parameter [ and the localization parameter f§j,. are surprisingly close. The latter
striking result is still waiting for a theoretical explanation.

We most gratefully thank M.Feingold who supplied us a great deal of published

and unpublished data of his own.
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