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Albstract

The relaxation of the density matrix for an arbitrary spin § under magnetic
noise is independent of S under the assmnption that the g-factor is § -independent.
However, the decrements of polarization moments increase with the mualtipolarity {
as {(1 + 1). For isotropic noise created by external fields of arbitrary multipolarities
the relaxation is also S-independent in the classical limit § -+ oo under the analogous
assumption. In the case of anisotropic noise of the multipoiarity higher than unity the
relaxation of a pure state is described in the limit 5 3> [ > 1 by the heat equation.
Here under the same assumption the relaxation falls off at § — oo as 1/5%. If no
such assumption on the S-dependence of the interaction parameters is made, the
relaxation under magnetic noise and arbitrary isotropic one may depend on 5, but
this dependence remains smootl in the limit § — co. The strong-noise situation
is also considered when the characteristic phase shift at a kick is not small and ona
cannot restrict to pair correlators.

() Budker Institute of Nuelear Physics

1 Introduction

The problem of the relaxation of the spin dersity matrix in random external fields is of
great applied interesi, in particular for magnetic resonance and atomic spectroscopy. In the
prese:t article more theoretical aspects of the problem will be studied: how the relaxation
of polarization moments depends on their multipolarity [, as well as on the spin magnitude
S, in particular at the transition to the classical limit § — co.

For some special cases the result for the last problem is fairly obvious. The motion
equations for the polarization vector in arbitrary magnetic fields are the same at any 5 as
long as the g-factor is S-independent. Therefore, the relaxation of this vector in random
magnetic fields is also S-independent. The same result holds for the relaxation of any polar-
ization moment under magnetic noise. On the other hand, the decrements of polarization
moments grow with their multipolarities I as I{! 4+ 1).

The next simple case is the density matrix relaxation under a spatially isotropic noise of
an arbitrary multipolarity. It is quite evident that under isotropic noise the density matrix
parameters of any multipolarity relax inaependently. As to the decrement behaviour with
S, it depends on the assumptions made about the dependence on S of the interaction
parameters. If they have finite limits at § — oo which is a natural generalization of the
assumption r-ade in the magnetic case, the decrements are finite as well. Anyway, those
decrements depend on S smoothly, even for S > 1.

The coneclusions made are not specific to the case of “weak™ noise when the phase shift
under each kick is small and one can restrict to pair correlators. They are demonstrated
to be valid in the case of strong noise as well.

It is only natural to go over to a spatially anisotropic noise of higher multipolarity, than
magnetic one. IHere the relaxation of the density matrix corresponding to a pure state is
deseribed in the limit § > [ > 1 by the heat equation. Under the above assumption on
the interaction strength the decrements fall off at § — oo as 1/5%. In other words, such a
state turas out remarkably stable against noise.

2 Density matrix for an arbitrary spin and its motion
equation

We will present the density matrix for spin § as (1, 2]
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Here O, are polarization operators of the rank [ and projection m. In the natural spin
projection represeniation their matrix elements are
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where C52;.. is the Clebsch-Gordan coefficient. In particular, at [ = 0 Opo is proportional
to the (25 + 1) x (25 + 1) unit matrix:

- 1
= ———1.
Oro V25 +1

(3)
The next polarization operator coincides up to an overall factor with the spin itself:
3 .
v3 S,

61111 i m= (4}
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The polarization moments Py, are in fact the expectation values of the polarization
operators in a state described by the density matrix p:

Pim = Tr{pOm}- (5)

The motion equation for the density matrix is as usual:
ip = [H, p]. ' (6)

The Hamiltonian H is conveniently expanded for our problem in the same operators O
used for the parametrization of the density matrix:

H==5(=)"Omhi-m; (7)
Im

The physical meaning of the parameters hi,—m is clear: h; corresponds to cyclic components
of a magnetic field, hy to those of a gradient of electric field, and so on.

The general commutation relation for the commutator of two arbitrary operators O is
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where { ,{51.* f; ;, } is 6j-symbol. Now, substituting expressions (1), (7) into eq. (6) and
using general formula (8) for the commutators, we get the following motion equations for
the density matrix parameters: '

P!m(t) =

=i 3 1= (=) + D0+ 1}(—}“3*‘*{ Lf? g E}Ci‘_:;lmlhgm{t}fj;,m,(t}.
Ay g
: (©)

It is convenient to start the investigation of the density matrix relaxation in random
fields of arbitrary multipolarities from the simplest case:

3 Relaxation of polarization under magnetii: noise

In the special case of a magnetic field Hamiltonian (7) reduces io

H=- Z[-]mu—msm (10}

m

where the usual spin precession frequency w is introduced instead of h;:

3
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Equation (9) simplifies in this case to
Pra(t) = —i I+ 1) 32 0uCl, P (1) (12)
my

In other words under magnetic field the parameters of a given multipolarity ! change with
time independently of other multipolarities. This is ouly natural. Indeed, the motion equa-
tions are generated by the commutation of the Hamiltonian with the density matrix, and
spin components entering the magnetic interaction are also the generators of the rotation
group under which the tensor operators Oy, of a given multipolarity transform indepen-
dently. Equation (12) becomes especially simpie when the magnetic field does not change
its direction, i.e., at wy = Whne! ;

Py = iwm Py, (13)

We wish in particular to find out how the relaxation depends on the spin value o,
To this end we have to fix the S-dependence of the parameters h; entering Hamiltonian
(7). Just in the case of a magnatic field there is a natural choice for this dependence: the
precession frequency w of the angular momentum has well-defined classical meaning and
is therefore S-independent at least in the classical limit § — oc. In other words, if we
restore explicitly the Planck constant fi, Hamiltonian (10) should be linear in the angular
momentum kS.

Now S simply does not enter equation (12) and therefore the evolution of a generalized
polarization P, in arbitrary magnetic fields, including in particular its relaxation in random
ones, is independent of the spin 5.

It should be kept in mind however, that the S-independence of w is no more than a
natural assumption. Aithough we will use it, one can well imagine for instance the situation
when w together with g-factor is inversely proportional to 5.

‘The motion equation for the polarization vector in a magnetic field, which constitutes
a specific case of equation (12), is well-known. In Cartesian coordinates it is

P; = €ije Piw. (14)

Here £ and w, are cartesian coordinates of the polarization and precession frequency,
respectively.

ok ]



We will investigate eq. {14) in the case of isotropic Gaussian noise, in fact assuming
that the random magnetic field corresponds to instantaneous kicks with the correlator

< -Ldk(.frl]f.di [fg}_'.‘-‘*‘—" %6,,15{11 - tg}'ﬂ? (15)

Here n is related as follows to the typical values of the noise amplitude w, characteristic
time 7, and phase shift at the kicks ¢:

g =wrri= ¢ fr. (16)

One should mention that this problem is only a specific case of a more general one of

a rotational Brownian motion of an asymmetric top. That general problem which includes -

also external random torque and friction has been considered in Ref. [3]. Still the investi-
gation of eq. (14) is appropriate here as a starting point for another general problem we
are interested in, that of the relaxation of all mementa of a density matrix in a random

field of an arbitrary multipolarity.

The formal sclution of {14) can be presented as follows:

= t i1 tn=1
P,[:t} = Zl:—]n-/[; dilf{: I:ﬂg....h[} f,‘;,-l,'lwh{h:lﬁilhizwhE:tg:}i.+E.'"_1kninwk"{tﬂ}f},‘n({]).
. n=0
_ (17)

Let us average this "solution” over the fluctuations of w. It can be easily scen that
under the assumption (15) a nonvanishing contribution to the sum in rhs of (17) originates

from pair correlators of close neighbors only, i.e., of w(t;) with w(ty), w(is) with w(ty), -

and so on. Indeed, when pairing for instance w(i;) with w(#s) in (17), one fixes not only
{3 = 11, but t; = ; as well. However, one Sfunction in the correlator cannot compensate
for two vanishing intervals of integration over time, so this contribution vanishes. After
this observation the average value < Pi(t) > can be found from series (17) directly. But
we are going to do it by a trick which will be convenient in a more general case.

Let us formally sum series (17) into an integral equation:

t . £ 1 :
P0) = P(0) ~ [ dtveusen(t)P(0) + [ dts [ dtacisinltr)esimenlta) Pulta)- - (19)

When averaging over the fluctuations, the term linear in w vanishes, and according to the
above prescription of pairing the fluctuating fields, the equation becomes

t ty
< Bi(t) >= Fi(D) +ju dtlfn drein;€itm < wilti)wi(tz) >< Pulls) > . (19)

This is so-called Bourret’s integral equation. Its applicability limits are discussed in Ref.
[4], but under our assumption (15) it is evidently true. .

We consider expression (lﬁ}‘ as a limit of symmetric correlator with a finite correlation
interval. So, when substituting (15) into {19), we integrate é-function according to

j 5t — )l = % (20)

0
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Then (19) reduces to
n t
< Pi{t) >= P(0) - E[; dt, < P(t,) > (21)

with the obvious solution i
< Pi(t) >= Pi(0) exp(~znt). (22)

Certainly, this result, the exponential damping of poiarization under gaussian magnetic
noise, is well-known.

It is straightforward to generalize the trick applied beyond the pair correlator approx-
imation. Still we assume the Gaussian distribution with the mean square value o for the
phase shifts ¢ at random kicks:

2
W(#) = g oxpl=3o7)

Therefore all odd powers of the phase shifts vanish at the averaging, and for their even
powers we gel '

{53)

< ¢*" >= 0 (2n — 1) (24)

Clearly, the restriction to the pair correlator corresponds to the assumption ¢ < 1, or to
the case of a "weak” noise.

Now, let # be the unit vector of the magnetic field (or w) at a given kick. Then the
correlator of the order 2n contains the structure

€k EktmVL oty = (=) (8 — vivy) (25)
which being averaged over the directions of ¥ reduces to
2
=l % L o 26
| (s (26)
In this way we arrive at the following expression for the correlator of the order 2n:
2 ; :
;;»—l:—-}”cr*“(?f;x — 1M &bty — 12). B(tgnr — t2n) . (27)
L T

where the characteristic time 7 is introduced by dimensional reasons. The same line of
reasoning as for the weak noise demonstrates that due to the instantaneous nature of the
kicks, we should restrict again to the correlators of the kicks at successive time moments
only. In this case as well each §-fu «tion integration brings the factor 1/2. Thus we come
to the same integral equation (21), the only difference being in the decrement. Now it is

=g SR B B 1 a*n
(=il 9
= iu = drr’ exp{—22*/a?)
e HT’H' Talt j_m 1422
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We have introduced here the error function

erf(z) = %}: dt exp(—t?). (29)

In the weak-noise limit & < 1 this decrement reduces naturally to the previous result
o?{3r. The strong-noise limit, ¢ » 1, gives the decrement ( = 4/37. Naturally, for a
strong noise the relaxation time 1/( coincides (up to a numerical factor which is in fact a
matter of convention) with the characteristic time 7.

The same result (29) for strong noise was obtained earlier by V.V. Sokolov [5].

We are ready now for the discussion of a more general problem:

4 Density matrix relaxation in random fields of arbi-
trary multipolarities

Rewriting (9) as an integral equation:

PO)=P+i "t 0(4)PO) - | ity [ " U(t)0 (1) Pits), (30)

and averaging it over the weak isotropic gaussian noise we get
t i & a :
< P(t) >= P(0) - L dty jﬂ Lty < U(#)0(t2) >< P(ts) > . (31)

The explicit form of the operator U(1) is

. N G
Uimiyms (£) = 21 = (=)0 /2A + 1)@k +1) () { 5SS }Ui,,;,mlhu- (32)
The correlator of hy, will be written as follows:
' 1 '
< hhﬂ(t}h;‘tﬂ[f ] > = N T 1[-—}“&%-6“1,,“&?”7;5[1,‘ -1 } =
= (=) Oanby-wb(t — t'). (33)

Here hyy) is the typical amplitude of fluctuations of multipolarity A, 7 is the corresponding
characteristic time. We have introduced also the characteristic decrement ny induced by

them:
¥ 1

s = mhf”n. (34}
Then, using the identity

§: Ci'm Chm; i}m‘;{_}# L {_]i-H. ||2;1 41

: 5 b (35)
Aplym =144 i m
gy (L35} 1 A 1 V 2!+1 ] %

we finally come to an integral equation

4
< P(t) >= Pin(0) = & fn dty < Im(ty) > (36)
which describes the damping of the polarization moments Pim with the decrement
i ! }l ’ #
(=Yu-rm@enersnd § 5 5 @)
;R

Let us turn to the simplest case of a purely magnetic noise. At A = 1 we get I =1and

¢ %r{u. w?r. (38)

This result looks extremely natural and can be derived practically without calculations
from (13) and (21). Indeed, if according to (13) the instantaneous precession frequcncy is
proportional to the projection m, then it is only natural that the decrement due to the
isotromic pair correlator should increase as I(I +1). The overall numerical factor in (38)
can be restored from the comparison with (21).

Two features of this result deserve special attention. First, according to (38), higher a
polarization moment is, stronger it is damped. Finally, at sufficiently high I (it should be
allowed of course by the condition I < 28) we will arrive at the strong-noise regime with
the decrement ¢ ~ 1/r. This result is not specific to the magnetic noise, but is valid as
well for a noise of any multipolarity, at least for polarization moments with 1 < 25.

Second, if w is S-independent, the decrement (38) also does not depend on S. In
particular nothing happens in the classical limit 5 — oo. In this respect as well the
situation with higher multipolarities is essentially the same. If the generalized precession
frequencies

[b(ﬂ*‘“*“}\/(zﬂ11(2111'41}(-)“*‘{ ’g f; g}cir;,.mlmm (39)

stay finite in the limit S — oo, as finite are the decrements. At any rate, the S-dependence
of decrements is always smooth.

5 Anisotropic Gaussian noise

Since isotropic noise of any multipolarity, as well as arbitrary magnetic one, does not couple
polarization moments of different multipolarities, it is instructive to consider anisotropic
problem. We will restrict to the simplest nontrivial case of qudrupole noise with one
component only:

haw = h(t)8326,0. (40)
The explicit form of motion equation (9) for such a field is
P, = i6VE[(2S — 1)28(25 + 1)(25 + 2)(25 + 3)] 7 mh(t) (41)

@S+ -+ 10+ 1) ~ il iR A e - m?
\I (2! + 1)(21 +3) o @I 1)2i+1) I=1,m -
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In the limit 5 2 ! = m it simplifies to
Py = i3v/5(25)*mh(t)(Prm + Pt m)- (42)

We assume again weak Gaussian noise of the typical amplitude h and characteristic time
7, with the é-function correlator :

< R(OA(L) >= pb(t — ') = R¥1é(1 - t'). (43)
Then we arrive at the equation

45nm?

16.5°

. 1
< B >= — (< Pyam > + < 2P > 4+ < Poam >). (44)

As an initial condition for this equation we choose the pure state with the maximum spin
projection S onto the = axis. To obtain the corresponding initial values of the polarization
moments Py, we construct first those parameters for the pure state with the same spin
projection S onte the z axis and then rotate them by the angle # = 7 /2 around the y axis.
In the state polarized along the z axis the density matrix reduces to pyor = 8,88,:5 and
according to (2), (5) we get

[2A+1 .55 .
Pl 7= ] e  aeipOmo {45}
I 1'|" 25 + 1 Slo
At 5§ = I this expression simplifies to
" |"I o O :
= e (46
.l;ll'rn. |2q+]£'ml:|n \.J':I

Polarization moments, being irreducible tensors, transform under rotation characterized
by the Euler angles o, 3, v as follows:

ll 4 ] '.;J L Y

'IUI-'M = !"}ﬂur:-'['{'\'": ."j! P-"]f Im! :M} J

P ; T 2 b : ST T :

where [, (o, 8, v) are the Wigner functions. In our case, when o = vy =0, o = 7 /2 and
the E';;'i]‘n{ld mosnents corresponding to the jmlewinﬂima along z axis are given by eq. {45),

the transformed polarization moments are

| r - .
1 77 v . -
|z m) 5. 42 F L e |
'Iu"ﬂx - L__ :I PMcos "'J‘," S Iff."-tf',.’_l:I (483
: J'{ '!‘ T ;I! ot ‘3 ||.I ‘u.:llj' + 'l e fha 1 |
where P™ are the associated Legendre polinomials. This expression vanishes at odd values
of | —m. Al even [ — m il simplifies in the limit S > { > 1 to
¥ [
. i e L L o
I{--m — |__ il | ] I=||I - i.i}j.ll
B o
T
reads
' 4hnym”
1 - 42 i oyl g R gl (Y
il t) = ————[f{1 +2,1) = 2f(L, 1) 4 f{i~ 2.1} (50)
i 1652 l

In the limit { 3 1 we come to the heat equation

afil,t) a*f(l,t) 45nm? :
e ST (51)

with the quite common initial and boundary conditions

/2 -
.t =0)~= -5’ 0 <1< 285; (52)

£(0,8) = f(25,8) = 0. (53)

As usual, damping of the function f(l,1) at ¢ — oo is controlled by the lowest eigenvalue
A = (7/25) of the equation
d*¢
di? :
with the boundary condition ¢(0) = ¢(25) = 0. So, the leading decrement both for the
heat equation (54} and for the initial one (51} is

= g (54)

457 igm?®
et sk EX
{ =r(r/25) = T Y Bl (55)

Our usual assumption on the S-dependence of noise corresponds to x staying finite at
§ — oo. Then the leading decrement ¢ falls off as 1/5%. In other words the pure state
discussed turns out remarkably stable against noise.

At any rate, the decrement ¢ is a smooth function of S as long as the characteristic
noise amplitude k (or i) depends on S smoothly.

On the other hand, in the strong-noise limit {r :» 1 it can be shown by simple analysis
that the leading decrement tends roughly to 1/7 as it was in the isotropic case.
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