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ABSTRACT

Semileptonic B decays are described by the Isgur-Wise form
factor to the leading order in 1/m; four new functions appear
in the first order [5]. Values of these functions are crucial for the
applicability of the whole approach to processes involving ¢ quark.
We obtain the sum rules for three subleading form factors from
the QCD sum rules with finite masses by expanding to the first
order in 1/m. The results respect the pattern of the first 1/m
corrections established in HQET, and obey the Luke’s theorem.
The numerical estimates show that 1/m, corrections are sizable
but not catastrophic.
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1 Introduction

Recently a significant progress has been achieved in the heavy quark physics
in the framework of the Heavy Quark Effective Theory (IIQET) [1], see also
the reviews [2] and references cited therein. The matrix elements of the vector
current Vj, = &y,b for B — D) decays

(DIVu|B) = /mpmp (§4(v+ v )u +&-(v—1'),),

(D*|Vu|B) = /mpmp-§vicuape,vyvs, (1)
to the leading order in 1/m are expressed via the Isgur-Wise form factor:
£y = Ev = &(chy), &~ = 0, where chyp = vv/, v, v' are 4-velocities of B,

D™, £(1) = 1 [3, 4]. First 1/m, corrections involve four new functions [5];
1/my corrections contain no new elements [6]:

&+ = 6[1+(i+i)m],
m. my
17 4 .
S 5(52*’%:) (-3 +p4); @)
v = E[1+(i+i)f+ P?+P1“—p4]=

el TR R mp

where the HQET ground state meson’s energy ¢ = mpg —my = mp — m, =

mp- — m, (these differences are equal up to 1/m corrections). The Luke’s
theorem [5-T7] states that p;(1) = 0, p2(1) = 0.
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The most interesting physical applications of HQET are those to b — ¢
weak transitions. Therefore the applicability of the whole approach to pro-
cesses involving ¢ quark (i. e. the size of 1/m, corrections) is a crucial question
of HQET. If these corrections are large, HQET has only a purely academic
interest; if they are modest, it can be applied to real-werld processes.

A nonperturbative method is needed to calculate form factors. QCD sum
rules [8, 9] were used for investigation of the form factors (1) at finite my, m.
in [10, 11]. HQET sum rule for the Isgur-Wise form factor was considered
in [12, 13]. It coincides with the limit my . — oo of the QCD sum rules.
Results at finite and infinite masses are compared in [14]. There are two
alternative ways to obtain sum rules for the subleading form factors p;. One
can expand the known finite-mass QCD results to the first order in 1/m.
Alternatively, one can start from the HQET lagrangian and currents in the
first order in 1/m. The second way gives more insight into the sources of
the heavy quark symmetry breaking (e. g. the heavy quark chromomagnetic
moment vertex); the general theorems of HQET (like (2) and the Luke’s
theorem) can be traced in the calculation. But the first way is less labour-
consuming provided that the QCD results are already known, and allows to
consider easily also higher 1/m corrections. It also gives a strong check of
the QCD results. Here we use this way.

The situation is similar in a simpler case of 2-point sum rules. Here the
QCD (Borel-transformed) sum rules [15-19] coincide with the leading-order
HQET sum rules [20, 21] in the limit my . — o0o. The first 1/m correction
was obtained by expanding the QCD results [22], and also in the framework
of HQET [23].

2 Sum rules

We consider three-point correlators

Ku(py,pe) = f dzyde.e~"ProetiPere (T ip(24)V,(0)55 (20))
= K40}, 02, 0)pu + K- (03, 9%, 1)ap, (3)
Ku(po,pe) = Kvi(pi, i t)icuvapPatp,

where K, is similar to Ky with jp-, instead of jp; jp = 7vsb, ip = Trse,
ip*y = @yvc are the currents with the quantum numbers of B, D, D*; p =
Dy + Pey, § = pp— Pe, t = q°. We have calculated perturbative spectral

densities p;(ss, s¢,1) and quark condensates’ contributions K(p?, p2,t) up to
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dimension 6 for the invariant functions K;(p?, p?,t) using REDUCE [24]; part
of the results was published in [10].

In order to consider the limit m, ., — 00, we proceed the new variables
Pf.c = mfjc + 2my, cwp e, t = mg -+ mE — 2mym,. ch . In these variables the
support of perturbative spectral densities [10] is the wedge

e <wfw, < €. (4)

At t > 0 spectral densities are singular at the parabola sf + s2 4 1% — 2535, —
25t — 2s.t = 0 which touches the boundary of the physical region (4) at

mym, sh ¢
t

. mpmcshop

(mg. — mcﬁ"") s i = y

= (—m. + mpe®). (5)
The double dispersion representation should be modified above this point [25].
In the limit m; . — 00, this area goes to infinity and hence lies outside the
lowest mesons’ duality region essential for the sum rules.

Making the double Borel transform from the variables wy . to E; ., we

obtain QCD sum rules (for finite m; )

2 2
f8mp D™D ¢ (ch p)em(epten)/(2E) - 2MBMe

mp me vmpmp

{ / [(mp & mp)ps + (mp F mp)p-] e~ o twe)/ 2E)gy, du,

+4E?B [(mp £ mp)KL + (mp ¥ mp) K] }, (6)

fem%

fD_ mps EV (ch qp)e_(sﬂ'l":ﬂ' ]-"“{EE]
= 8mym./mpmp {/pve"(w”'”‘”(zmdwbdwc -+ 4E2§I{f,} :

where we have taken E, = E, = 2E; m} = m} + 2myep, and similarly for
D). The integrals are calculated over the part of the wedge (4) dual to
the lowest mesons in both channels, i. e. the wedge minus the higher states’
continuum region. It is convenient to introduce the variables w, n instead
of wp e =w(l+ n th? -‘*.}) so that the physical region (4) is —1 < n < 1, and
to measure quantities with the dimension of energy (such as E) in the units
L= %:| (7q) | (mo = 4kEp). Expanding to the first order in 1/my ., we
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obtain
fBmBIDMh  _(enten)/(2E)
g~ ihane 4 ch
TR A
1 1
= E — 4 — | k
A{fp, )+ (mc + mh) B](':.P!E)!
fsmfomp
€ EB+£E]!(2E] = c_h
Grome)oP2] (20) | el
1 H £
= (E = ;‘n-;) ["‘54‘4(?’: E)+ kBé(%E)] ; (7)
fBMEBID*MD*  _(cpteps
3;25”2 e (eB+ep ]f'{?E}EV(.:h ©)
m,' “me’ | (39) |
1 1\&
=1+ (£ + =) 5| 4.0
+kBE({P: E) 3 k(Bl({JG:—E) T B‘i({i:’! E))
me my ;
Here
1 2chp+1EZ a,chyp
A ,E 2 -wad dw Er 3 0 s
(4 E) 4ch* £ fw ; gy 8 B QxR
1 T
Bi(e, F) = 5 f(ch w—5-n"chp+ ng)wde“wmdndu
16 ch® £
E? a,(4chp—1)
R R 7 0
Bo(p, E) = et [(3 — P e/ Edndw — D
% 8ch® £ 27w E?’
1 ; 9E2  a,(4chp+1)
B ,E e 35 24 3 -—w{.ﬁd : 0 L) P .
(¢, E) 8ch® £ f( e e+ 3E t T otk
Similar expansion of 2-point sum rules gives
fhmby b/E 2k B, (0, E)
e 5 - A 0! E g 1 '9
m3| (7q) | 0 me ®)
o
fD‘TD E—EDJ"E e A(U,E)+ ngE(OIE)
me| (79) | me

(the sum rule for fp is similar to the one for fp). From (7) and (9) we obtain
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the sum rules for £(ch¢) [12, 13] and for py,2,4(ch ¢)
Alp, E Bi(¢,E) Bi(0,E
SRS ﬁg(ﬁfi_E))" alkgy = ﬂ:{(: E)) g Al(((}, E))’

_ By(¢,E) _ B:(0,E) _ Ba(p, E)
pa(ch @)/k = ;(% 5 - ;(U, 5" p.i(chw)/k--;;(ﬁ)—.

(10)

The results of 1/m expansion of the QCD sum rules obey the structure (2)
and the Luke’s theorem. It is easy to explain why pi(1) = 0. At finite
my = mc, ¢ — 0 the 3-point correlator is related to the 2-point one by

the Ward identity K4+(p?,p%) = d—nai(;';—?)- [10], and hence the QCD sum rule
reproduces the exact result £4(t = 0) = 1. At infinite my ., the Ward identity

is K(w,w) = d—nd—f-dﬂ)‘-, and hence the HQET sum rule reproduces the exact
result £(1) = 1. Then we obtain from (2) p1(1) = 0. Therefore it is not
accidental that the 1/m correction to the sum rule for fp (9) is described
by the same function B; as to the sum rule for &4 (7) but at ¢ = 0. The
similar fact for the sum rule for fp- (9) and 1/m, correction to {v (7) looks
like a miracle in the framework of QCD sum rules, but 1t leads to the Luke’s
theorem for ps in (10). The dependence between 1/my correction to §v

and 1/m corrections to 4 in (7) is one more miracle. From (9) we obtain
(compare with [22])

fﬂz\/%(ui), fﬂ.=\/%(1+-:—::), (11)
where the coefficients are ziven by the sum rules
—’_a!-—e'-ffﬁ = A0, E), (12)
| (g9} | _
afle= %%]C:—;l —2/k, ca2fk= %2((3’—;? ~efk.
3 Results
At the standard values of the condensates, k = 260-280MeV, Ey =28 =

ak
0.85. The 2-point sum rule (12) for f? was analyzed in [20]. The continuum

threshold is wg = 3 and the meson energy is € = 1.65 in the Borel parameter
plato E = 1.7-2.5 (all in & units). Now we know that the perturbative
correction to these results is large [21]. But this correction is unknown in
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the 3-point sum rules. We may hope that it will be partially compensated in
the ratio of 3-point to 2-point sum rules. For consistency, we use the 2-point,
results without perturbative corrections as an input for the 3-point sum rules
analysis. In any case, even a rough estimate of p; is currently valuable.

Figure 1: Continuum models

In the case of 3-point sum rules, e. g. for £(ch ¢) (10), the higher states’
continuum spectral density is modelled by the perturbative spectral density
with some smooth curve as a continuum threshold (Fig. 1). At » — 0 the
wedge becomes infinitesimally narrow, and the continuum starts at wo for
consistency with the 2-point sum rules. The wedge area is ~ ¢, therefore the
spectral density must be ~ 1/ in order to yield the perturbative contribution
~ 1 (of course, the explicit calculations confirm it). The simplest continuum
model is that with the straight line threshold. If one chooses any smooth
curve instead, the difference area is ~ ¢°® (Fig. 1), and the variation of £(ch )
is ~ ¢?. It influences the slope of £(ch ¢) at 1; this freedom is analogous to
the freedom of choosing the continuum threshold in the 2-point sum rule (12)
for fﬂ. But if one chooses a continuum threshold with a cusp in the physical
region (as was done in [12]), the difference area is ~ ¢* (Fig. 1), and the
variation of £(chy) is ~ . This gives an infinite slope of {(ch¢) at 1,
what contradicts to its general analytical properties. Besides that, there are
no physical reasons for the continuum threshold to be non-smooth. Here
we restrict ourselves to the simplest continuum model with the straight-line
threshold; dependence of £(ch ¢) on the threshold curvature was investigated
in [13].

The sum rule for £(ch ¢) (10) is well known [12, 13]. It contains two main
terms: the perturbative contribution and the quark condensate one. The
quark condensate contribution is constant (up to nonlocality effects discussed

8

in [12]). The perturbative contribution contains the light quark propagator
from z. to z3, and falls as 1/(zp— z.)*. The Euclidean distances from 0 to zy
and from 0 to z. are 1/(2E); the angle between these lines is . Hence the
distance from z; to . is ch % /E. The perturbative contribution is suppressed
as 1/ ch* £ compared to the 2-point (straight-line) case. This leads to the
decreasing of £(ch ) with increasing ¢. Graphs for £(ch ) at several Borel
parameters are shown at Fig. 2; the remarkable stability is seen.

4
0.8
0.6
2.5
0.4
1.7
0.2'
0 '
1.0 1.5 z.0 2.5 ch g

Figure 2: Isgur-Wise form factor €(ch p) at the Borel parameter values £ =
1.7, 2, and 2.5

Now we present the new results for the 1 /m correction form factors
p124(ch). It is seen from the sum rules (10) that their scale is set by

2 1/3 . : el
the unit k£ = (~'E—| (7q) !) — 260-280MeV. The dimensionless functions 1n

the sum rules don’t contain large numerical factors. Therefore the unit k
determines the scale of 1/m, . corrections in the semileptonic B decays form
factors. The numerical analyses of the sum rules confirms this conclusion;
the results are shown at Fig. 3. The curves p1 2(ch @) are pinned at the origin
by the Luke’s theorem; at ch ¢ > 1 they grow and reach the values of order

9



k. On the other hand, pa(ch ¢) is small and nearly constant. Variation of
the results with the Borel parameter E allows to estimate their accuracy.

-
prk 1.7
1.6
. A
1-1' -ﬁ_,..-""
-_.-F"
e £
- — —
1.2' ___,-"""-" -Fd__.__,.-*""z"
—
...-P"r#’ F"'Hd-'- —
- —
1.0 W e e 2.5
= - e _,..--""J
#"f ""-FF ..-P"'-#
- ..--"-' ‘_.1-""‘
..-*"" i e
- -
0.8 - e
,.-—’,"',__.-v" 1.7
e e
o RO At SRR Y
Walig - or R _.;‘"..J.F _______ S g . e 2
zi-r-l-'-#:=:=' -'f:,..lﬁ ------------- RS ————— Y LT St e el
fff' _____________________________ i ST = e
u-i" ff
A 2.3
s
1 "~
lLZ-'
0 ' . 2 . r v . . . - . . ' . ' . '
1.0 1.5 : 2.0 2.5 ch y

Figure 3: 1/m correction form factors pi (ch¢) (solid curves), p2(chp)
(dashed curves), and ps(ch ) (dashed-dotted curves) at the Borel param-
eter values F = 1.7, 2, and 2.5

In this work we have investigated the sum rules for p; 2 4(chep). It is
sufficient for the decay B — D. Form factors of the decay B — D* also
contain p3(ch ¢). In order to obtain sum rules for it, it is necessary to consider
an axial correlator in addition to (3). Such an analysis will be presented
elsewhere.

When this work was completed and presented at the seminar at SLAC,
M. Neubert informed us about his preprint [26]. In this work the sum rules
for the subleading B — D) form factors were obtained in the framework of
HQET. The results are similar to our ones. We are grateful to M. Neubert
for giving us the preprint [26] and for the useful discussion.
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A Correlators in QCD

Here we present the spectral densities and quark condensates’ contributions
up to dimension 6 for the correlators (3) and the correlator similar to Kup
but with the axial current ¢y,7sb (it has the structure Kaguy + K44Pupv +
Ki—pugy + K4 qupv + K__gqug,). The results for all correlators have been
produced by a single REDUCE [24] program in which only few lines with
the y-matrix structures of currents varied. This allows to avoid bugs in
the programs for separate channels. To minimize the probability of printing
errers, a single REDUCE source was used both for algebraic checking and for
production of IXTEX source of equations in this appendix (using the package
RLFI by R. Liska from the REDUCE library [24]).
The spectral densities are

N
N

+a. ((Smﬁ —- ﬂlb) £+ (3mb = mc) IG)] }

N [ 2
py = W _((mb — m,:) -—t) a4 —I—(.'r:g, -—Ic)ﬂ_],
N [ 9 2
PA = W -&ﬂq_ + ﬂmb (?bl‘ct —_ (Ib — Iﬂ) (mcﬂ’.‘b — mbmc)) ] 3
N'm;.g [
P++ = TIASZ At (@p + z) + A (6zpzc — (M) — mg) (zs — z.))
+6t (x5 + #:) (Zra:r,-; . & mf-‘fb T mf-'fc) - 5152.:52] 3
N
Pl = W [ = &fﬂ:b (Tﬂb . m.:)
—A ((zp — zc) ag — (5 — m.) ((m§ + m?) zp — 2miz.))
—Bimny, (xbmct + (xp — 1:..,) (mﬁ:t:g, = mﬁ:rc)) b] y
1 R,
{3 = m[—'&tmb(mb—{"mc)
+A ((:Eg; -_ :.*:,:) a_ + (mb + mc) ((mf -+ mg) 7 s mea:c))
—b6my (:rbr,:t + (zp — z.) (mfa:b - mf:.-:,;)) &],
e Nmb
P = g (A2
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+A (-2, (223 — z¢)) — (3m?2 4+ m}) 2 + (3m} + m?) z.)
—6t (3 — z.) (m2zp — miz.)
—6 (z (zs — ) + (mf + m2) zp — 2miz.)

(::c{:cc —zp) + (mﬁ 4 mf) Le— 21"”-327&) ] e

2
Whﬂre Ibic L S&!c = m%,ﬁ!‘ 'ﬂ-i 3 mcmb i mb$51 b = Iﬁ = mc + m'f Tl mc-

The results for §(vs,7.)c — F(1, 7w 7s)c, b(vu, Yuys)e = b(YuYs, Yu)e can
be easily obtained by
I‘f: - #K,’(mc — —mc). (13)

There is an interesting check of these formulae. If we multiply a correlator
with g, ¢ by pes and use the identity Sq(k)7y Se(pe +k)pey = meSg(k)Se(pe+
k) 4+ S, (k) — Sc(pc + k), we obtain the corresponding correlator with gc plus
terms having no double discontinuity. Therefore

pa+(sp 435 —pry + (8 — se —)py— = —2p4(me — —me),
—pa+(sp+38c—p_y + (86— 5 —p-— = —2p_(mc— —mec).

The quark condensates’ contributions are

K! my +m m?2 ( m?2 m? e )
+ [ 0 b c

= - -k my + m - 4
| (7q) | 2zpx, 4 L 2 3z, z3zy  dxiz?

2 (2mp + m 2m. +m
B 2 c_+ cz b)
3 Ty TIxp
m3 \ ms m? 2(mp—m Pt
e Tl[—“(mg,+mc)ﬂ+ (_7:4& 3 462+§( Ec)
.
3

(mb (mp + 2m.) % m. (me + 2my) A c— 215)

2z, z3xy z3

4 1 . 1
* r%::c %5

Kt my —m, e ( m} m?2 ¢
= —(mp—m — + .
| (79} | 2zpx. b i i) 3z, wEEy  OEN)

+g _Smb—mc 3dm. —my
3 IEIc xEra

3 2 2 2
mi mj ms 2(mp —m.) —1
— | {mpy —m.)a . il

3 [( L (Igzg v e

4 (mpxp + mezc)a- 8 ( 1

3 w2l SNE 2.0 gim

1 mi | m} m2 ¢ 2
3 - St i reeadv pr Risree,
T, 4 |zyz, zixpy  3zjz;  3zpT.

mg

4

-+

My

3

+.

3 ) 2
4 B e W m; . M, .
3 T\ 2822 ' ziz?

3

3
(fnb'+7nc)2"t s 1

4 ( my  2m, mp+m,
e aon z3

21:;,::6 2:;,
s

4.3
L e

E(}nb-*rnc)j—-t)

[(emma*=0) (3

3
pLe

A

o

m? m?  3m] 4+ 4m? + 9mym, — 4t

3 +

2m? + 3m? + 3mym, — 2t

3IE$5

3

3.8
3 - FE

[— ((mbﬂnc)z—t) a+(

+g(mb—mc)2-—t) m3

a2
3\

+mh (3mf - ng + Imym,. — 2!.)

3ziz.

m, (lﬂmg -+ llmf + 19mym, — lﬂt)

3I§Ib

6m3 + 5mim, + Trmym?2 — 2m? — 2 (3my — m.) 1

Sz

13

2
b

2
Ze

)




s

E(mb Fimc+mb+4mc+mb-2mc)]

t3 P R iz, 3y where ¢ = 2m? + 2m? — nébmc —2t; mi = i(q9Gi t%ouq) / (37), mi =
K1, 1 ol [ 12 e S Qt] (_;i_ (@Jﬁigﬁq} / (Eg}zz _-frﬂrcuﬁ {g‘q) in ;l:e lfaiorlza;u:in :},]pproxm;atlnr;
- = — 8 = DI (0 dt% e, OF =15 = J 1s the number o
| (g9} | 2z 4 |zyTe  TiT 3zt corours} : g : 45
3 2 3 24 9m2 -2t m?+2mi -2
o R (e g
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