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Abstract

The asymptotics of optical activity ny —n_ at w > Ry is w™°
for oriented chiral molecules and crystals, and w™' for isotropic media
of chiral molecules and policrystals. However, with further increase
of w both fall-offs change to w™ due to spin-orbit interaction. The
expectation value in the numerator of the last asymptotics practically
coincides, up to an overall factor, with that of the weak interaction

responsible for the P-odd energy difference of right- and left-handed
molecules.
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1 Introduction

‘Optical isomers are molecules or crystals that are mirror images of one an-

other. An isotropic medium acquires optical activity (OA) when the con-
centration of an optical isomer of one sign exceeds in it that of an isomer
of the opposite sign. We will investigate the asymptotics of OA, i.e., of the
rotation of polarization plane of light, at the frequencies w > Ry where

Ry = ma?/2 = 13.6 €V is the characteristic atomic energy.

The refraction index n(w) is relafed to the forward-scattering amplitude
f(w) through the well-known formula:

n(@) = 14+ 222 f(w), (1)

where N/V is the concentration. The usual asymptotics of the refraction
index is determined by the Thomson amplitude f = —a/m. Optical activity
is caused by the term in f(w) linear in the degree of circular polarization

X = —i([E*E)i) — ieapeacs. (2)

Here € is the photon polarization, 7 is the unit vector of its momentum. The
last form of this equation corresponds to the choice of the direction 7 along
the axis 3. Then a,b=1,2; €46 = —€bq; €12 = 1.

Substituting the photon density matrix for the product of its polariza-
tlons: : ;

€ay —* Pab = 5(5@ — iX€ap), Sl
one gets easily the A-dependent scattering amplitude:
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(4)

Here pq; are the electron momentum operator components, and wg1 1s the
frequency of the transition from the initial state 1 to the intermediate one k.
Obviously, the amplitude f» is an odd function of frequency.

_<1|puefw1k>ck1pbe-mu>] _
W =+ Wg1

At the frequencies w < ma one can use the mulfipole expansion for
the transition operators restricting to the lowest multipolarities. Since the




electron states in a chiral molecule or crystal do not have definite parity,
M1 and E2 matrix elements differ from zero simultaneously with £1. OA
originates from the interference of the opposite parity amplitudes, E'l with
M1 and E2. Let us emphasize that in the anisotropic case F1 and E?2
amplitudes do interfere in the forward scattering.

In the limit of small frequencies OA is due to the interference of E'1 and
M1 amplitudes and being an odd function of w can be easily shown to vanish
[1], the last fact known already by Boltzmann [2].

At the frequencies w ~ Ry the relative magnitude of the OA constitutes
fr/f ~ aé. The fine structure constant « originates from the ratio of M1
(or E2) to E1 amplitudes. The factor £ ~ 10~ reflects the degree of the
molecule geometrical asymmetry.

2 First asymptotic region

To find the high-frequency behaviour of OA we neither use the multipole
expansion, nor make any assumption about the magnitude of wz. So, our
consideration is not restricted to w < ma, but applies to the whole region
W < m.

We expand expression (4) in wy;/w, substitute commutators with the
Hamiltonian for powers of wy1, and perform the summations over intermedi-
ate states by means of the completeness relation.

The zeroth-order term in wgi in this expansion vanishes trivially since
Pa,p commute with etiw? The numerator of the next term in wg; reduces to

— iea{[[H, poe™ "], pae'“?]) = i€ar(VaVsU), ¢ i(a)

where H and U are the Hamiltonian and potential energy respectively, and
vanishes as well.

The numerator of the second-order term in wg transforms to

: P w? :
icap([[H, pre™""], [H, pae™?]]) = —2—car(pa VU (7). (6)

Together with w™2 from the formal expansion, it leads to the contribution ~

w~! to f, nonvanishing even for a spherically symmetric potential and leading

to the correlation A(n! ) It corresponds in fact to the Faraday rotation in the
magnetic field created by the electron orbital angular momentum l. Being

unrelated to the molecule handedness, such contributions will be omitted in
our treatment.

The next orders of the expansion in wg; /w also do not lead to the asymp-
totics w™! in fy (or w™2 in ny — n_) due to the molecule handedness (up
to negligible relativistic corrections). Curiously enough, such an asymptotics
arises at the multipole expansion in the anisotropic case for the contribution
originating from the interference between £1 and M1 amplitudes. It can be
easily checked however that this term in the multipole expansion is exactly '
cancelled by the corresponding contribution from tlie F'1 — E2 interference.

The first nonvanishing contribution to the asymptotics of f) arises to the
third order in wgy:

Aa
 9Im3w3

f;; = Eab(v U?szU) (7)
The corresponding asymptotics of OA, ny —n_, is evidently w™>. To estimate
the magnitude of the effect let us note first of all that amplitude (7) does not
vanish only if V, and V, are applied to potentials created by different centers.
The strongest Z-dependence orlgmates from V,V,U(7) = —Za(3ryz/r®).
The expectation value of this operator is finite since the contribution of the s-
wave components of both bra and ket states vanishes. On the other hand, this
interaction is singular enough to consider the nuclear charge Z as unscreened.
The wave function squared of the valence electron increases at small distances
as Z (see, e.g., Ref. [3], pp. 20, 45). As long as small distances from the
Coulomb center discussed dominate, the gradient applied to the potential
created by other centers, V,U, reduces to a constant vector. Thus, the OA
of oriented media falls off asymptotically as w=> according to the following
relation:

- N 2 Ry\®
: o~ W Mg (W)@

V mw?

The factor (N/V)(2ra/mw?), singled out in formula (8), corresponds to the
Thomson asymptotics of n — 1.

Let us average now expression (7) over the scatterer orientations. This
is equivalent obviously to the averaging over the directions 7 of the photon
momentum. The last procedure is performed easily after rewriting those ex-
pressions in invariant way via the substitutions: €,3V4...Vy — E;jk?,:...‘l?_;n};,




V., — (ﬁfﬁ). The averaging leads evidently to vanishing of the effect to this
approximation. So, the asymptotics obtained refers to the case of oriented
molecules and crystals only.

To obtain the OA asymptotics for isotropic media we have to proceed
with the expansion in wyy up to the fifth order. The calculations are quite
straightforward, but tedious. They can be simplified by neglecting system-
atically all the terms that will vanish anyway at the averaging over . The
result arising is (in invariant form already)

, Aoy
.f}u = _Wfkmn{pkviva{pjjvivjan}} : (9)
where {..., ...} means anticommutator. As above, V;V,,U and V;V;V,U

refer to different centers. Again the strongest Z-dependence originates from
the more singular expression V;V;V,U, and V;V,,U can be approximated
by a constant symmetric tensor. The expectation value left after separating
that tensor can be transformed as follows: :

et s Y U )) = i < [ﬁ v,-larf’(r)sm] > (10)

2m’ r
e < {T,;(r'-), ?’,-%U’(r)!’m]> .

We have used here the fact that the expectation value of a commutator with
the total Hamiltonian vanishes identically. In the last commutator V(7)
is the sum of potentials V,(|F — 7a|) created by the centers different from

that with the nucleus charge Z and potential U(r) we are interested in at

the moment. Anyway U(r) commutes with its own derivatives and orbital
angular momentum I,,, with respect to the point r = 0. It follows in particular
from formula (11) that the s-wave component of the electron state does not
contribute to the effect. The last commutator equals

V(#), ln] = ekmnta 3 ViVallF=7el) (11)

With our accuracy the sum.in this expression reduces at r — 0 again to
a constant vector. In the expectation value left (r;V;(U'(r)/r)) the purely
s-wave contribution can be neglected and we come finally o the same Z°-
dependence of the effect as in the oriented case. So, the OA of isotropic

media falls off asymptotically as w=" according to the relation:
N 27a _, Ry : " .
Ny —N_ FWEZﬂf (;) .\' . (12)
6

The singled out relative magnitude of the effect is Z%2aé(Ry/w)°.

It can be shown along the same lines that both asymptotics, w5 and
w=7, for oriented and nonoriented media, respectively, changegneither by
going beyond the one-electron approximation, nor by relativistic corrections
to the dispersion law and to electron-electron interaction. In the next section
they will be shown however to change by including the spin-orbit interaction
and spin current. :

After having derived the asymptotics w7 for the optical activity of isotropic
media, we came across Ref. [4] where the sum rules for the E1 — M1 inter-
ference in the multipole expansion were obtained leading in fact to the same
result, but restricted to the lowest multipole contribution.

The OA asymptotics was also discussed without multipole expansion in
Ref. [5]. However, the conclusion ny —n_ ~ w™3 made in that paper is
obviously a result of the wrong relative sign of the two terms in the expression
analogous to ours (4) for the scattering amplitude.

In the conclusion of this section let us note that the OA asymptotics w="

refers not only to a gas or solution of chiral molecules, but to optically active
policrystals as well. :

( Sl | -
3 Optical activity and spin-orbit interaction

Let us consider now the influence of the intramolecular spin-orbit interaction
on OA. The general expression for this interaction

V() = 1z (GFIVU) (13)

does not depend on whether the charge distribution creating the Coulomb
potential U(7) is spherically-symmetric (as in an atom) or not. The current
operator is modified now both by this interaction directly, and by including
the spin current. So, besides adding V to H in the commutators, we have to
make the following substitution in formula (4):

tiwz _ | Paﬁd:iwz e 1 i

Pat€ = (pa + Hw‘* i Fg—ﬁmﬂ'c)eiiwz* (14)

where w =& x VU.



We proceed again with the expansion of the scattering amplitude in wg!
The term of the zeroth order in wg; produces the correlations of the type
A(é'7) only, nonvanishing even in a spherically-symmetric case and therefore
of no interest for our problem. The first-order contribution is

A

2m2w?

fr= (—i)eas ([[H +.V, Pre™*%], Pac'®?])... (15)
The term in this expression quadratic in the spin-orbit interaction induces
only a correction ~ w?/m? to the amplitude (7) which can be neglected in
the region w < m we are interested in. The linear contributions transform
to

A= oo {caal{pe Vi) = (e, Vawn} = oo, Vewi}) (10

2m3w 2m

*E{ﬁ: Eva?uU} * E{pm EvvaU})'

The first term in (...) is induced by V directly, the second and third are due to
the spin-orbit contributions w, 3 to P, s, the last two contributions originate
from the spin currents.

Now, however, due to the w-dependence of the spin currents we have to
proceed further with the expansion in wg;. The second-order terms of the
expansion result in contributions to the amplitude of too high order in «
which should be neglected. So, let us consider the third order, ~ w$;. The
only contribution of interest originates here from retaining the spin current in
one of the operators and the usual p, 3 in another. So, the resulting effective
operator in the amplitude

Aa
= B
= " 9m3w 2m

({pmﬂ'avﬂy}"l‘g{pzlﬂ'av Vv.U}). - (17)

by itself 1s not related to the spin-orbit interaction.

The spin-dependent amplitude f5 + f3 could be expected to increase with
the nucleus charge as Z3. An extra Z as compared to the spin-independent
amplitude (7) arises since here in the expectation values there is an extra
momentum which increases as Z near unscreened nucleus. However, the

expectation values in expressions (16) and (17) depend on the electron spin -

and do not vanish only if the spin-orbit interaction is taken into account in the
electron state as well. Its relative magnitude is Z2a? [6]. Since the operators
themselves in (16) and (17) are of the relativistic origin, the discussed OA

asymptotics, although falls off more slowly than (8), but is suppressed as
compared to it by the factor Z3a*:

N 2ra e -
ny —n_ -ffrumw‘? VA E . . (18)
Therefore, the OA asymptotics for oriented molecules and crystals switches
from w™% to w™2 at w ~ mZ~%/2. For organic substances where Z is not

large these frequencies are very high.

Let us go over now to isétropic media. Averaging fi + f3 over the orien-
tations we get the following expression for the scattering amplitude:

HA - Bho

E0m3t 9 ({d‘p, ﬁU} T {Pi:—g_fving})‘ (19)
In fact, the second operator in the expectation value does not work and can
be Dmltted Indeed, as it was mentioned above, for the spin-dependent matrix
element not to vanish, the electron state ltSElf should be perturbed by the
spin-orbit interaction. Due to the identity

{pg,ﬂ'jv;ij} = Qim[ff, ﬂ'jij] . (20)

fi=—

the expectation value of that operator, to the first order in the spin-orbit
interaction, transforms as follows: -

2“‘“2 (1|[H, .:rvU]|n)(n|V|1) + (1|V |n){n|[H, 7V U]|1) (1)

E, - E,
s e ; 1 i ie;
= 2im(1|[gVU, m{p x ¢]VU]|1).

With our accufa{:y we have now to average the last expression over the spins,
i.e., to make the substitution o;0; — 0;;. After it the commutator obtained
vanishes. ;

Finally, the amplitude of interest simplifies to

TAa
fr= ~ 60m3w Zm(
In this case the same estimate (18) holds evidently for the OA. However, due.

to the different w-dependence of (12) as compared to (8), the asymptotics
changes here at much lower frequencies

{op,AU}). (22)

w ~ maZ 3%, | (23)




4 Discussion

Even the first asymptotics w™® and especially w~" seem to be amusing enough

to become objects of experimental investigation. However, the most inter-
esting problem would be to observe the change of the asymptotics to w™>
due to the spin-orbit interaction and-spin current. Unfortunately, for usual
organic compounds with Z ~ 6 — 8 this transition even for isotropic media
occurs at high photon energies ~ 1KeV. The optical path cannot exceed
assentially the abscorption length which is extremely small here. The obser-
vation of the resulting optical rotation angles ¥ ~ 10~ is far from being
realistic at such photon energies. However, if the compound contains a heavy
atom, the critical photon energy can fall down to -~ 100eV. Here the strong
Z-dependence of the OA, Z%, is not accompanied by as strong Z-dependence
of the absorption, and the rotation angles can reach 10~3. It should be noted
however that all those estimates are of very crude nature. In particular, the
onset of the w™2 asymptotics may well occur earlier, which would lead to
better prospects for thé observation of the effect. These problems can be
reliably cleared up by experiment only.

But what will we learn from all those experiments? Let us note first that
nonvanishing expectation value of the operator {p, AU} leading to the OA
of isotropic media, means evidently that the electron in a chiral molecule has
nonvanishing helicity, i.e., its spin and momentum are correlated. It would

be certainly interesting to observe experimentally this correlation predicted
in Refs. {7], [8].

However, the most interesting is perhaps the fact that the OA of isotropic
media is directly related to the intriguing problem of the energy difference
of right- and left-handed molecules due to parity nonconservation in weak
interactions (see, e.g. Ref. [3]). Indeed, with good accuracy, especially for
high Z, one can substitute 4rZad(7) for AU(r) in the effective operator
{Gp, AU}. But after it this operator coincides up to an overall factor with
that of the P-odd weak interaction. Therefore, the measurement of OA in
the region w > maZ~3/4 may constitute an essential preliminary stage of an
experiment aimed at the discovery of the mentioned P-odd energy difference.
In the case of the success of such an experiment the knowledge of the OA
would allow one to extract from it a reliable quantitative information on
the weak interactions. At least, the OA measurement would be a reliable
test of the accuracy of the theoretical calculations of P-odd effects in chiral
molecules.

10

One should have in mind however that for high Z, in particular at Z ~ 80,
the spin-orbit interaction cannot be treated as a perturbation anymore, and
the w=3 asymptotics of the OA should be calculated within the relativistic
approach. This problem deserves special consideration.
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