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ABSTRACT

The localized solutions for the 2+l-dimensional in-
tegrable generalization of the sine-Gordon equati-
on-1 (2DISG-I) are studied. General formula for the
exact solutions for the 2DISG-1 equation with non-
trivial time-dependent boundaries is derived. The
broad classes of exact solutions of the perturbed
string and telegraph equations are obtained via
d-dressing method. Exact localized solutions of se-
veral types for the 2DISG-1 equation are calculated

using exact solutions of perturbed string and te-
legraph equations.
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1. INTRODUCTION

Since the discovery in [l] the exponentially localized
solutions of soliton type for the 2+l-dimensional and multi-
dimensional nonlinear equations are studied very intensively
[2-12]. ‘Spectral theory of such localized solitons (dromi-
ons) for the Davey-Stewartson-I (DS-I) equation and their
connection with the initial-boundary value problem for the
DS-I equation have been studied by different methods in a
series of papers [3-7l. Then exponentially localized solu-
tions for the multidimensional nonlinear Schrodinger type
equations were obtained with the use of some direct methods
[8-10]. In the papers [11-12] the exponentially and ration-
ally localized solutions for the Ishimori equation with non-
trivially boundaries were constructed.

The present paper is the second from a series of papers
devoted to the study -of the coherent structures for the
2+1-dimensional integrable generalization of the sine-Gordon
(2DISG) equation. In the part I of the paper it was shown
that the 2DISG equation with nontrivial boundaries ul[n, t)

and uz{ﬁ, t) has the form [14]:
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where £€=x + ¢y, n = X = 0y ; ¢ =1 corresponds to the case of

- 2DISG-I equation and ol=-1 —to the case Df 2DISG+II equa-

tion.

It was demonstrated in the paper-I [14] that the pro-
blem of constructing exact solutions for equation (1.1) is
closely connected with the problem of the explicit solving
the linear equation ofthe type:

¥ (z, t) + ulz, t)¥(z, t) =0, (1.2)
zt

where u = ul{n, t) (or u = uz[E, t)) is given function.

In the paper I the case of constant boundaries ul[n, t)

= mand u (§.1:]=m2 for both types of 2DISG equations (1.1)

has been studied in detail. By the dressing method based on
the mixed nonlocal 8-8-problem the solutions with functional
parameters, line solitons (kinks) and line breathers have
been constructed explicitly. The initial value problem for
2DISG equations has been solved.

In the present paper we study the general case of
time-dependent  boundaries ul('n, t) and UZ(E, t) for the

2DISG-1 equation. Using the exact solutions of equation
(1.2), we construct the exact solutions of 2DISGequation.The
localized and also nonlocalized solutions of several types
are among these solutions. We present several explicit exam-
ples of such solutions.

The paper is organized as follows. In section 2 the
principal results of the paper I are presented for conve-
nience. In section 3 the general formula for the exact solu-
tions of the 2DISG-I equation with nontrivial boundaries
ul[n, 5 uz{E:,', t) is derived.

Exact solutions ¥(z, t) with corresponding solvable
potentials u(z, t) of equation (1.2) in the case of nonzero

. o . e

asymptotical values of u(zt) at infinity (the solutions of
perturbed telegraph equation) are obtained in section 4 via
nonlocal 8-problem. Then in section 5 with the help of these
exact solutions of equation (1.2) for corresponding bounda-
ries ul[*n, t) and uz[E, t) the localized solutions of soli-

ton and breather type of 2DISG-I equation are constructed.

In section 6 the exact solutions ¥(z, t) of equation.
(1.2) with corresponding solvable potentials u(z, t) in the
case of generically zero asymptotical values of u(z, t) at
infinity (the solutions of perturbed string equation) via
another, different from the wused in section 4, nonlocal
g-problem are obtained. Then in section 7 with the use of
these exact solutions of equation (1.2) for corresponding
boundaries ul{n, t) and uz{E, t) the exact but nonlocalized

solutions of 2DISG-—Ibequation are constructed.

2. SOME RESULTS FROM THE PAPER I

Here for convenience we present the main results of
the paper I. It was shown in the paper I that the 2+l-di-
mensional integrable generalization of the sine-Gordon equa-
tion (2DISG) (1.1) or equivalently the equation

6 +LB lﬂ
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is equivalent to the compatibility condition for the fol-
lowing linear system:
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The operator form of the compatibility condition for
the linear system (2.2) looks like [14]:
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Eliminating the variable p from the system (2.1), one

obtains the single equation (1.1) for 6:

n
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So the solution of equation (2.5) with the fixed func-
tions u (m, t) and uztg, t) gives the solution of the 2DISG
1

equation (2.1) with the boundary values of p given by _[2.6}.
The properties of the 2DISG equation, as it was noted in the
paper Il,essentially depend on the boundaries. In the case

e

b e e 0 equation (2.5) is the dispersionless one with the
linear part 9t6n= 0. In this case equation (2.5) possesses

large symmetry group [14].

Similar to the DS and Ishimori equations the second
auxiliary linear problem (2.2b) requires the modification at
the presence of nontrivial boundaries ulin, t) and uZ(E, t).

This modified linear problem (2.2b) is of the form [14]:

z I =1 : i
it atn+ “1‘”’””’""&”311 [egaﬂ)t, .-ré-»enat ;
LEM.@ = i 2 1 -1 ks
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0 0 0 1 and u1 and u2 are the Fouri-

er-transforms ofthe boundaries ul('ﬂ, t)and uz{&', t):

where u*+=[1 0]. c =

= def i ;
.ul{}i-l,t] = —z?Jdn uI(n,t] e

R

in(A-1)
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def
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R

The operator f DI"I‘I:I of the compatibility condition is again
(2.3).
The inverse problem data have been introduced in the



paper I analogously to the case of Davey-Stewartson (DS)
equation [5] by the formulae [14]:

i 1 : - - =iAEstln
S(A,1) = “"75!”,[ ddn(-i8,)- 1, (A) - ,
R2
(2.9)
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where
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oe
are the solutions of the linear integral equations

associated with the linear problem (2.2a).
The derivatives BE and B“ﬂ are obtained from the follo-

wing reconstruction formulae [14]:

8. = ijjdhdl S(h,l)-eimﬂhg-x_ n e
€ n 11
R2
(2.11)
ot  -ilg-iAn -
e'ﬂ = ?Ifdhdl TiA,1)-e xzztll :
p2

The auxiliary linear spectral problem (2.2a) is the
special reduction of the spectral problem for DS equation
[5] and therefore the inverse problem data S(A,1) and T(A,l)
are not independent, they can be expressed through a single
function S(a,1) [14]:

S(A,1) = A-S(A,1), T(A,D) = -A-S(-1,-A) . =12 12)

The reality condition on the field @ gives the restriction

on the function §(}i,1} [14]:
A% =1 =St (2.13)

The key role in the study of the coherent structures
for the 2DISG-I equation is played by linear  differential

equation for the Fourier-transform S(£, m, t) of the inverse

problem data S(A,1,t) (2.13):

iAE+iln

S(E. a1t 2-—3{-[[-:1&6.1 S(A11)-e (2.14)

RE

As it was shown in the paper 1 the function S(&,7n,t) obeys
the following linear partial differential equation [14]:

S + ul[n,t]-S

t&n + 1.12[5.::,1’,]'5_lri =0, (2.15)

€
where the boundaries ul{'n,t) and uz(E,t} play a role of the

variable coefficients. From (2.13) and (2.14) one can obtain:
-~ -
S [Esnrt} o S[E,'ﬂ,t) . (2—16}

Let us note that analogously to the cases of the DS
[3, 5] and Ishimori [1l, 12] equations equation (2.15) for
the Fourier tran sform of the inverse problem data coincides
with the linearized 2DISG-I equation.



3. EXACT FORMULAE FOR THE COHERENT STRUCTURES
OF THE 2DISG-1 EQUATION

Our aim here is to derive the general formulae for the
exact solutions of the 2DISG-I equation via the solutions of
equation (2.15), where S(&, 7, t) must be real function.- So-
lutions of eq. (2.15) can be constructed by the method of
separation of variables

S(E A1) = XE.1)-Yint), (3.1)

similar to the DS-I ‘equation [3,5] and Ishimori equation
[11, 12). In our case the functions X and Y obey the equa-
tions:

th + UE{Q,UX - ng 3

Yt*ﬂ + u {n.t]Y = —p.Y ; (3.2)

The dependence on separation constant p is trivial and can
be eliminated by the snnpl{: gauge traﬁnsf ormation of the
functions X and Y: X—;}{e o 3¥e t- - Therefore  in the
construction of exact soluti-ons of equation (1.1) we can
use instead of eqs. (3.2) the equatons:

th + uz{E,t)X =0, (3.3)

| Ytn + lll{T,t,t)Y = 0 . (3.4)

The general factorized solution of eq.(2.15) is of the
form:

sEmt = Tp X (EVY @D = T XEDT M), (3.5)
1,]

i

‘where p_j are constants and Xl,Yj are the solutions of the
1

10

eqs. (3.3) and (3.4) respectively and for convenience we in-
troduce the notation Yi= EpuY]. The exact solutions Xi and

J
Y of the equatmns (3.3) and (3.4) may be complex, but the-

ir mixture S{E,'n,t] (3.5) must be real,this impose some
constraints on pij which should be taking into account.

Formula (3.5) as follows from (2.14) leads to the
degenerate inverse problem data S(A, 1, t) and T(A, I, t)

sm,l,t}=~z—jr-”dadn e L WY T

= Z S (xS (3.6)
3 J J

T(A,l1,t)=- %E-”-dgdn EHE-I-D‘T].;:L.g(E,mﬂ &
RZ

=) T, (3.7)
J

where

= - J'dg E_ihg'x ¢(€:t] 3 (3*8]
g
R
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e’ L [ag MExee0 .
B e -’
R
Then using the formula for the exact solutions of the
inverse problem for the DS equation [5] with degenerate
inverse problem data (3.6) and (3.7), one gets for derivati-
ves 6, and Bﬂ of solution 6 of equation (1.1) the following

&
expressions:
i
< ? );lxjéu HRRRAL P
(3.10)
T,.~1
6, =2 z p X (1 + «pBp F et
g oop g
where
K
def " " ;
o= —[dE Xr{f;' 1)
N
def
G Ak 3 8 =S lan' Y in' )2 Y (nl.x) . (3.11)
& (E’,1) Brj Jn r(n i n

4. EXACT SOLUTIONS OF
THE PERTURBED TELEGRAPH EQUATION

So for the study of coherent structures of 2DISG-I
equation one needs the exact solutions X(£,t) and Y(m,t) of
equations (3.3), (3.4) for the fixed boundaries uziﬁ,t] and

12

ul[n.t]. In this section we consider the problem of const-
ructing exact solutions for the equation (as the prototype
of egs.(3.3) and (3.4)):

+ ulEM¥ = 0, (4.1)

2

@ﬁn

where u(€,m) has generically nonzero asymptotic value 8§ o= e
at the infinity:
U[Esn) =5 E[E:“} ¥ um o G{g:'ﬂ] ey

ul(€,n) —— 0. (4.2)
£+ — o«

In other words we consider in this section the problem of
constructing of the exact solutions of the perturbed
telegraph equation:

b, + UEMY = £¥ . (4.3)

The asymptotic value yw - ¢ of the potential is in our case

a parameter.

In order to find exact solutions ¥ with corresponding
exactly solvable potentials u(€,n) of equation (4.3) we exp-
lore the d-dressing method of Zakharov and Manakov [15-19].
The d-dressing method is based on the use of the nonlocal
d-problem [15-19]:

A _ (or)r [ G 200 AR AAK). (4.4)
dA -

The functions ¥ and R in our case are the scalar
complex-valued functions.For the function x we choose the

canonical normalization (X ml). We assume also that the

problem (4.4) is uniquelly solvable.

13




A dependence on the variables £ and 7 is introduced via

the following dependence of the kernel R of 8-problem (4.4)
on £ and n:

—32;* = O/RIN AANE - ROLAAKRENIN.,
(4.5)
dR LE ’ -.r_- 3. doon __ie_
"_a“_]l'?_ s :’LI R[?‘- l?"- th:h:g:ﬂ] + R[?‘* s?"- ,h,h.&:,ﬂ] h !
i.e.
ROALAGANLED =
5 Rn[h',i';l,i]-elm ~A)E-ie(1/A7 =1/A)n : (4.6)
With the use of the operators
P =8+ x, D =98 ~e/A, 4.7)
£ ¢  EEE ' {
the equations [4.-5) can be rewritten as
D.,RI=0,[D ,Rl=0. 4.8
[ £ ] [ = ] (4.8)

According to the general 8-dressing approach [15-18] we
must construct the operator L of the form

1 ..m '
L = Z “m“f'“mg@n , (4.9)

L,m
where ulm{g,n] are some functions, which obeys the condition
[15-18]: [—?, Ll= 0,(4.10) i.e., which has no singularities

8A
on A. For such operator L the function Ly obeys the same

14

R —

d-equation as the function x. If there are several operators
of this type then in virtue of the unique solvability of eq
(4.4), one has:

Lix = Q. (4.11)

It is not difficult to show that the operator which
obeys (4.11) is of the form:

(D.D +VD.+WD_ +u)x=0. (4.12)
£ g n o
Indeed let us consider (4.12) for the series expansion of %
. e 2
near points A =0 and A = o: ¥ = X, + h;}:l + A xz+..., y =

=, * xﬂ/;{ + I_lf?t +... In the neigi'lbourhood of A=w, equa-

ting to zero the coefficients for degrees of A ,we obtain:

ALY +Vxﬂ=0;

on
(4.13)
- xn€n+ on§+ Lx_m+ LVx_1+ Wxnn+ uxu = L),
Analogously in the neighbourhood of A = O:
-1 o~ S
A .ixng-rtw;zﬂ—{},
(4.14)
0o ~ ~ ~ ot > i :
7 &F xﬂE'n + qug + onn + uxﬂ —wxle —wal = 0,
where u = u + £ in accordance with (4.2). From (4.13) and

(4.14) one can obtain the condition of potentiality of the
operator L. Operator L is potential iff V = W = 0. Putting
in (4.13) and (4.14) V = W = 0 one obtains the following
condition of potentiality of L:

x =v.,.=0, (4.15)

15




and reconstruction formulae for the potential u:
u = -i = i s, 4.16
u L;g_m/xu Lexlgx’xu ( )

According to (4.15) let us choose the following norma-
lizations for ¥ in the neighbourhood of A = 0 and A =

X =1, x5—>2x,=1. (4.17)

:"’?t-——:mE A —>0

Then the reconstruction formulae (4.16) for u take the form:-

u = X, = X, - (4.18)

The solution of B&-problem (4.4)with the canonical
_normaliza tion (4.17b) is equivalent to the solution of the
following singular integral equation:

x(E,mA) =1 +

dA‘AdA’ ([ duAdp o Sip (1 Toar 37y WTFAY) g
J-_[ZHI[E’ "ol x[#:ﬂ]Rﬂ(H:H.h A e , (4.19)

where F(A) = il& - ien/A.

The reality of u(€,n) also gives the restriction on the
kernel R of the d-problem. In the limit of the weak fields
one finds from (4.18) and (4.19) the following condition of

reality of u:

Rn(—i',—a';-i,—a] = - RG(A',;I*;A,E) : (4.20)

From (4.18) and (4.19) we derive the following formula for

the reconstruction of the potential G[E,n]:

16

e = o5 ik ﬂdw R (w0 eFWFR). (4

The condition of potentiality (4.17) by the use of (4.19)
takes the form

dAAdA [ [duadp F(u)-F(Q)
”th ” : »(A,A) R {u,u AA) e w 0. < {4.22)

The solutions x of integral equation (4.19) and the

dressing formula (4.21) for the potential uunder the fullfi-
led conditions of reality (4.20) and potentiality (4.22)
give us the method of calculating the broad classes of exact

_Ef.[:&g—enz’l.]-

solutions ¥(&,m)=x(&,n) of perturbed telegraph

equation (4.3) with corresponding solvable potentials u.

Following to the formulated 8-dressing let us calculate
some exact solutions of the perturbed telegraph equation.
The conditions of reality (4.20) and potentiality (4.22) are
satisfied (as lengthy calculations show), for example, if
the kernel R is choosen in the following form:

Rﬂ(u,ﬁ;h,i#inz; {SE]{p,;’L}G(p—imk}S{h-iﬁk] +

(2)
(

+ Sk u,h]&(pﬂﬁk]a{lﬂmk]] ,_ (4.23)

(1) (2)

where Si“{- ,=A) S LAY, {u,-—PL] S

.Bk are some real constants and

(,A) « and

(mc JiB) = B, s‘z’{ i8, -l ) . (4.24)

Substituting the kzrnel Ro (4.23) into the integral equation

(4.19) one obtains:

17




¥(A) =1+

{1) (2) : .
S Vx(ie )-exp(AF ) S “'x(-iB )-exp(AF )
“"iz[ k k k5K k Kk ].(4.25}
K

ig, -~ A =ig "< A

(1) def _(1),. y
= ¥ ¢ :
Sk SLl ( . Bk]

(2) def _(2) -
= - - 4.26
Sk Sk ( in, mk] : ( )

def p . Hets e = =
ﬁFk = F(mk} - F(tBkl = (nck Bklﬁ en[i;’mk I/Bk] :

From (4.25) it follows for *

e o ey
X .= 1; {Sk x(:.mk] exp[ﬂFk] +

(2)

+ Sk x{—in]'exp(ﬂFk]} . (4.27)

The system of equations for calculating x(iuck] and x{-in]

as it follows from (4.25)has the form:

5
= ]_z Sl x[Lal}Exp[ﬂFll :
AN

WL A

1 k

(2)
. S x(-ip )exp(AF )
+ z : ‘ s =¥ (4.28)

1 o + 0
1 k

18

S“}x{icx Jexp(AF ) S{ZJx(—iB Jexp(AF )
1 1 1 1 1 k ;
o " + x(-1B )=L.
1 ,81 + Bk 1 B -

k 1

It is supposed that all' the denominators in (4.28) are not
equal to zero.

Let us consider the simplest case of the one term in
the sum (4.23). In this case the system (4.28) has the

solution:

xlia) = x(-iB) = . i 44 99

g (x+B)exp(AF)
2B(o-)

1 +

For u by the use of (4.18), (4.27) and (4.29) one obtains

g ' les exp(AF) («®-B%)/ (aB”)

o S“}{aﬂ‘i}exp{ﬂ}"} ¢
2B(a-B)

u(€,n) = . (4.30)

This expresséorjl for u will be nonsingular if we choose
1
parameters S ', « and B so that

S“]{cuﬁ} def

0 < 7 e s exp[oc—B}ED ; (4.31)

Under the condition (4.31) we have for the uin (4.30) the
following expression

e(m-ﬁ)z

Zaﬁ-chz[ % f&-B](E-ED“ET}/{&B”

ulg,m) = - . (4.32)

Exact solutions ¥(&,m) of perturbed telegraph equation (4.1)
which correspond to uin (4.32) are of the form:

19



(1) Sl o iNES R P
¥(E,n)=x(A)-e Nihoy

expl - —é({x+,'3](€+8‘ﬂ/0t3”

{tx-ﬁ)gu (m-B}(E—ED—ET}/{mB]}
2exXp -—z-—ch 5 :

iAE-ien/A

v?(g,m)=x(A) e e

skl %- (a+B) (E+en/aB) ]

[:x-B]ED (a-f) [E"*En-an/[r:xB}).
2exp - 5 ch 5

Unessential constant multiplier lz’[Zexp[{ﬂc-ﬁ]&ﬂfZ]] in these
expressions for ¥ can be dropped and we obtain two indepen-
dent exact solutions 'I‘mand 'I*{z}c:-f perturbed telegraph

equation (4.1) which correspond to potential u (4.32):

expl = % (a+B) (E+en/(aB)) ]

g, = 7 ,
chl —2{0::—8] (E-ED—E'!V[&B)}]

esaist -%- (a+8) (E+en/(0B))]
v?g,m) = T

chl % [m-B}[E—ED-En/{mB]]]

There is therefore two-fold degeneracy of solutions of equa-

tion (4.1). .
Now let us consider the case of another kernel Ru which

20

satisfies to the conditions of reality (4.20) and potentia-
lity (4.22). Calculations show that the kernel Rn can be

choosen also in the form of the following sum of the paired
terms:

R (1,iiA,A) = in” ) IS (0)8(u-p )80 ) +
+ Sk(—ﬁ,—i)ﬁ{mﬁkmmmk}] , (4.34)

where pr are some complex constants and

#ksk[pk,ﬁk} = ;Eksk[uk,ﬁkl . (4.35)
Substituting this kernel Ru (4.34) into the integral
equation (4.19) one obtains:
S y(u )exp(AF ) g (- Jexp(AF )
x{a)=1+i{[“_k S TS A “],(4.361
K B A =k A
where
S ‘'S (u,p), p =p +ip
k e ik TR kR i
(4.37)
AF “STF(p ) - F(t) = - 2p (€ + en/|p |°
st Hy Bt s
From (4.36) it follows for ¢
a - E [Skx[pk} + Skx[-pk]]*exp{ﬂl?k} : (4.38)

The systemof equations for calculating x{uk] and x(-ﬁk}

as it follows from (4.36) has the form :

21



Slx{ullexp(ﬂFl] Slx(*ul)exp(ﬂFll

x(pk) - i E ~ + L = 1,
: BB, ] 2
7 E (4.39)
. SIX{MIJEXP(QF;) _ i Slxi-pl)exp{ﬂFl}
-IE 5 - +x(-ukJ+LE — = 1,
: B Ry Lo By

where it is assumed that all denominators in (4.39) are

different from zero.
Let us consider the simplest case of the one term in
the sum (4.34). In this case the system (4.39) has the

solution:

1

) = ¥(-p) = . (4.40)
|S|lcosd-exp(AF)
1% 5
My
where S = |S| -.elaand according to (4.35) u= ﬁ-e_zta. For u
with the use of (4.18), (4.38) and (4.40) one obtains :
2 4euIIS[-cosa-exp{ﬂF]
U = (4.41)

Iulz[l 3 |S| 'coza-exp{ﬁl-‘}]z
My

This expression for u will be nonsingular if we choose the
parameters S and p so that

8% |S|-cosd dgfexp(zulﬁn] .

(4.42)
ZpI

Under the condition (4.42) we have for the u in (4.41) the
following expression:

ot

g1

L ; 2ep’
ul€,n) = :

_ (4.43)
Iulz-chziulﬂi-&uwn/lu!2]1

Exact solutions ¥(g,n) of perturbed telegraph equation (4.1)
which correspond to uin (4.43) are of the form:

A ipg-ien/p
‘E‘H}(E.n#x(l]'emg ien/A R=“= e ,
_ o5 | S|cosd-exp(AF)
2|
I
o HE+ien/p
_P{ZlfginJ:x(A}_ELHE—LET]/?L i = :
3 o |S|coss-exp(AF)
2u
I
Dropping in this formulae unessential multiplier

1/(2&:{13(;1150]} one can obtain under the condition (4.42)

more convenient expressions for the independent solutions

(1) (2)
¥ and ¥ of eq. (4.1), which correspond to the poten-

tial u(4.43):

exp ip_(E-en/|ul 2}
'I’mfg;'ﬁ}= 5

2. v 2gm) =
ch MI(E-EG-*EH/IHI )

eprinE(E-en/Iulzﬂ
= o) | (4.44)
ch p (§-§ +en/|u|”)
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5. EXACT SOLUTIONS OF 2DISG-I EQUATION VIA THE
SOLUTIONS OF PERTURBED TELEGRAPH EQUATION

In this section we explore the exact solutions of per-
turbed telegraph equation (4.1) for obtaining by the general
formula (3.10) the exact solutions of 2DISG-I equation. Let
us consider at first the boundaries ulin,t) and uz(g‘,t]

(potentials in egs. (3.3), (3.4) of the type of{4.32}),. i.e
with corresponding changes of variables (£€,7) —(§,t) and
(£,m) —(n,t) in (4.32):

2
€ [fxl— Bl}

¥

ul(n,t] = - g+ e
2&:151-1':11 [ 3 [ml-Blltn—nG—elt/{alﬁl}]}

(5.1)

2
22(0'.2“62]

u [g,t} = - + :
2 2, 1 M
Zmzﬁz-ch [—#-2 (az—.ﬂz][& E,ﬂ Ezt/(txzﬁz}}]

We choose the corresponding exact solutions X(£,t) and Y(,t)
of equations (3.3) and (3.4) (according to (4.33)) in the
form:

expl -é—- (m2+52}(€+ezt/{m'zf32}}]

X(£&,t)

i

1 ¥
chl 5 (az—ﬁzliﬁ—gn—gzv{azﬁzll1
(5.2)
expl -é— [a1+;‘31}(n+elt/{o¢1.81]]]

Y(n,t) T
chl > (al—ﬁll{ﬂ—nﬂ-—elt/(alﬁl}}]

Using (3.11) one finds for the matrices « and B (in this ca-
se they are scalar functions) the following expressions:

L
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L sk |
«= =X, B= Y ht). (5.3)

The matrix p is also simply the real number. Inserting these
o and B into (3.10), one obtains for the 6(€,n,t) the exp-
ression:

6 = 4-arctg pX(E,;]:f{n,t] =

= 4-arctg{p*exp[é— {atz + Ezl(é+282t/(0¢2f323] X

) . t
X exp[z—{ﬂ¢1+!31][11+251t/{&131)]} / {Z'Ch[ % [mz-Bz){E-E{}]] X

1 -
x chl ?(ml-ﬁl}[n-nn}}} i (5.4)

et

where for convenience the wave variables £and mnare
introduced:

Sy g e t/@p) .oy et/(@p) . (5.5)

Imposing on the parameters €, o, .Bk{k=l,2) in (5.4) the

constraint

El{lﬂxl + 1./.81] = - E:Z(l/nt2+ 1/{32] ; (5.6)

one obtains from (5.4) the following solution 8:

o(g,n,t) =

prexpl —é—((cxlﬁﬂll*:} + (nc2+f32}§]}
= 4-arctg

1 = i - A5.7)
2+'chl -5 (ml—ﬁll[n—nﬂ]]-ch[ “2* {ﬂcz—BEJ(E—EG}}
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It is evident that this solution of 2DISG-I equation (1.1)
under the conditions

Itxk- Bkl > Iuk+ Bk!. (k = 1,2) , (5.8)

represents exponentially localized object of dromion type
moving on the plane (§,n) with the velocity

V = Eez/[fxzﬁzl : El/[CE]B]]} : (5.9)

Now let us consider the boundaries ul[n,t] and uz[E,t]

of the type of (4.43). With corresponding changes of inde-
pendent variables one finds from (4.43) the following exp-
ressions for uli‘q,t] and uEEE,t]:

u [n’t} = - E ;4 i~ »
1 - .
I;.Lll ch [putn - nu}
(5.10)
2¢€ uz
27 o
uz[E,t} = —ez+ -

1 %ch®(p, (£ - €)

i

where for the convenience the wave variables £and mare in-
troduced:

Ea)

5 4 v
n—‘n+elt/|ull . §—§+Ezt/|u2§ .- 15.13]

The corresponding exact solutions of equations (3.3) and
(3.4) in accordance with (4.44) are of the form .

Xl = X(&,t), Xz = X(&,t); Yl = Y[n,t), ‘1’2 = Y(n,t) , 15.14)

where

26

expipzn{i-ezt/!uzlzl

X(&,t) = -
ch ,uﬂ{f;' - ED]

expium[n-f:lt/ H.l1 1%)
(5.13)

Y(n,t) = =
| i ”11[_1] 2L

Using (3.11) and (5.12), (5.13) one finds for the matrices «
and B the expressions:

HER

i ¢ [ exp(iwz}, 1-i i sh 2f2]
- 2 O : :
2ch fz 1+1 -ﬁz—lsh Zfz ,expl 21-;02)
(5.14)
Hir
exp(2ip ), 1-i sh 2f
B — l 'J, : u 11 4 ¥
2ch’f 1l it gh PF ,exp(-2ip. )
1 T 1 1
where
z Fa
= — 'F = —
¢, pm('n f:lt/l.ull e £ pH[n nu} ,
(5.15)

2 - A..
= qu(E—ezt/‘t,uzl ), I “zl[g Eu} ;

For the construction of the exact solutions 6 of the
2DISG-1 equation (1.1) one can use several different mixtu-
reg . {3.5) S m ZQUXIYJ of solutions Xi and YJ{S.lZ] of

eqs. (3.3) and (3.4). G

Let us choose for example the matri_x p = 10]. Then calcu-

lations by the formulae (3.10)with the use of (5.14) give

for 6(€,n,t) the expression:
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cusiwl-r.qz}

FJLIRMZE

(5.16)

6(€,n,t) = darctg

chf -chf = shf *shf
1 2 1 2

1121

The mixture S = Ep XY (3.5) with the matrix p = 3y
i 7 e 01

leads by the use (3.10) and (5.14) to the following
B[E:'ﬂ.t]:

cos(rplﬂaz}

lIJ,l RHEE

chf «chf  + 222 ghf «ghf
1 2 1 2
1121

(5.17)

0(&,n,t) = 4arctg

The other mixture S= EPHXIYJ{B'S] with the matrix p = [ﬂ]
: i j

gives by the use of (3.10) and (5.14) the solution @ of the
2DISG-I equation (1.1) of the form:

cosg -cosg,
e(§,m,t) = 4arctg : (5.18)
r:hfl*c:hf‘2

HIEHER

. The solutions @ {5.16), (5.17) under the condition
o P Lry,

*1 and the solution @ (5.18) represent localized objects of

~ the breather type moving on the plane (€,1) with .the

velocity:

T i 2z
V =( Ez/|u2| ’ El/lnll i (5.19)

At last, let us consider the boundaries ulf'n,t) and

28

u (£,t) of different types (4.32) and (4.43). We choose the
- Rl _ '
boundary u (n,t) of the type (4.43), i.e. (5.10):
1
: 2
2 M S
.l (5.20)

u [Tht} = _E1+ 2 A >
1 lwl™-ch™[p (0 - m )]

oy

where m = n + et/ipig. For the corresponding solutit:m YYaf
eq. (3.4) we take real linear combination of solutions Y

Yz (5.12) 5
cos uR[’t}-ElVlul )

Y(n,t) = {5'21_]_

ch .ul{"n-ﬂ n}
Then we choose the boundary uz(E,t] of the type (4.32), i.e.
(5.1):

-8)
Lot (5.22)

53 B S .
g i Zmﬂ-chz[%(m-ﬁlfﬁ'gn”

where é= € - et/(aB). The corresponding solution X(g&,t) of
equation (3.3) has the formu

exply- (0+8) (£ + et/(aB))] A

X(E,t) = ~
;i : chl %{o:-B][E'EU}]

Then the calculations by the use of (3.10), (5.21), [5.23.)'.

give the following solution of 2DISG-I equation (1.1):
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e(&,n,t) =
(5.24)

p-expl 5 (a+B) (E+e_t/(af))] -coslp, (n-e t/|u|?)

= darctg i - =
2chl 5 {:x—B]{E—gD )] ~ch[u1[n—n011

6. EXACT SOLUTIONS OF
THE PERTURBED STRING EQUATION

In this section we consider another class of exact so-
lutions of equations (3.3) and (3.4), which corresponds to
boundaries ul(n,tl and | ug[&,t] with generically zero asymp-

totic values at infinity, i.e. we consider (as 3 prototype
of equations (3.3) and (3.4)) the equation of the perturbed
string:

. + ulEn¥ =0, (6.1)

€

where

WS ) iy )
5
£+ — o

The &-dressing formulated in section 4 now does not
work since all derived formulae collapse at the limit £ —0.
The case (6.1) requires a special treatment.We start with

the 2 x 2 matrix 5—pmblem [15-18]:

XN GeRIAT f 2 A a” SR R R (82
i 2ni - :
aA C

The functions x and' R in our present case are the
complex-valued matrix functions. We assume that the matrix »
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- .10 L3
has the canonical normalization x__}[{}l] and equation (6.2)
' A—>0

has a unique solution. The kernel R is choosen to be
0, Rl(l’,i‘;l,i]

R(A’,A:AA) = (6.3)

R‘Z()"! ,il ;?L,i}, 0

A dependence on the variables £ and m can be introduced via

the following dependence of the kernel R of &-problem (6.2)
on £ and n:
{ ROV A AKEm
g
0 Sl VokeaRar i aaEwnls T Ga
-~ D Hh}‘ R[B" l}" llll?gln ¥ ¥ ? ¥ ¥ 0 "?'4,
8R(AY, A0, 2:€,m) _
an
G i o A )-R(A’ i;_l i_g Tﬂ A A
- 0 0 R{h ?3" :?'-:?*-:gr'ﬁ' ¥ E Rt il e 0 0 L]
i.e.
& 5 PR X ?"’n+}"§
O,Rl[h’,l’;h,h;ﬁ,n] 0, Rw[}l in ;Jl_,?t)'e s
b 3 % = r N7 3 "115“17? reg
Rz{l’,h’;l,h;ﬁ,n],o RZD{?L A AA) e 8 o
' In terms of the operators 5Dg and I}n defined by
def 0 0 gt [?«. O) . (6.6)
r ﬂgx—xg+x[o_l], i)nx X, * X|o o

one can rewrite the equations (6.4) as
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-

[Dg,R] =0, [fDn,R] =0 . (6.7)

Our goal is to construct the operator L of the form
(4.9) which obeys the condition (4.10). In our case one
constructs operator L (4.9) of the form:

10 00 | o
=4 i q . —
Ly = ( [D D].‘DE + [0 l]i}n s # [r D] x =0 . (6.8)
The equations of the system (6.8) are:

D + = i
&-}EH Ao B Dijxlz tax,, = i

(6.9)

D + T = O -
nxm X1 : anzz 4 rxlz 5

where the action of the operators DE and D_on the components
n

of x induces by the formulae (6.6) of the action of Df;‘ and
D on ¥: ' '
7 X

Exu e xu&' ! anu = xm} : ?an 5
Ele % leg i anzl o xzm e 1221 ;
i (6.10)
F,xlz = xle ¥ :"«X]z ’ anu 7 xlzn 4
D i T ?ﬁ. =
&'xzz. xzzg‘ Aoz anzz xzzn

Now let us perform the reduction of the 5—problem (6.2)
for the DS equation which converts it to *he &-problemfor
the perturbed string equation (6.1). The required reduction
is q = 1. Indeed, from (6.9) one obtains under q = I:
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Danxn = ey o, Danxlz 2t 0. (6.11)
= 2 ;"L'-I'] ol - I-?if,
In the terms of components ‘Ifu ety T and 11’12— X, e
one has
!Ifug_n— r*ll}u = D,*Plzgﬂ.- r'Iflz =0, (6.12)
that is nothing but (6.1) for u .= =< r. So @as the result of

reduction q = 1 we obtain from d-problem (6.2) for DS equa-

tion the &-problem which is applicable to equation (6.1).
Spectral problems (6.12) in terms of X, and X have in ac-

cordance with (6.11) the forms:

+ .‘&xng o A b xlEEn - }inzn- X = 0. (6.13)

X1gn

In order to obtain the restrictions on the components x
under the reduction q = 1 and the formulae for reconstructi-
on of potenti al r let us consider the system (6.9) for the
series expansion of y near the point A = o

G, Seh el e
i1 11 12 12
o 0 (-1 0 (-1) ; (6.14)
+ [ -
le G le doy : 122 xzz /A

Equating the coefficients of (6.9) with x from (6.14) for
certain degrees of A to zero we obtain the relations:

(0) (0) (0) (-1} (0) (-1) (-1}
= =0 = = =] =- i A5
X2 21 v Ko TRy T RypT Ko xuf;f (6,15)
Co R G SRR A
22~ Kz 221 o 11E

1 From (6.2) one has the system of equations of our
d-problem for the component s X, and £
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8%, (A, A) _ ox (A2)
== (¥ s R JAA), —
3A | A

={xuo Rl}(h,hi, (6.16)

where for x. and xlz,accc-rding (6.15), one can choose the

following series expansions at the point A =

(-1) | (-2)
- e 1+ o "R B X - 1I/7A + Al e (6.17)

!

def def
Let us denote X = A%, xlé x,, and redefine the Kkernels

R and R as follows: mlw,i';a,i] #tha*,i';a,i), Rsz.

A’ ;h,i}/h’@sz AR

In the terms of X, and X, and redefined kernels R1 and R2

one obtains from (€.16) the desired system of equations of
d-problem for the construction of exact solutions of equa-
tion (6.1)

axl(l,i}
aA
dA’ AdA’ LR iy m RN G
-j ot 2 (AR (YA 0) e ,
2
8x_(A,A) -
. dA’ AdA’ - - - ;
o =,[ ey A A AR (A, A7 50,0) - ek , (6.18)
ax 1 10
C
where near the point A =
¥ (-1) 3 (-1)
X, 1 + X, TP E TR - e 1 + x? P T (6.19)
The formulae for the reconstruction of the potential u = -r
34

and the constraint from the reduction q = 1 in terms of X
and X, have according to (6.15) the forms:

e e o S
u=-r= xlg xzn : (6.20)

29 = . (6.21)

= With the use of (6.19) the system of (6.18) of our
d-problem is equivalent to the system of singular integral

equations:

¥ (AA) =

duadu darndi’_ i e
v[vl‘zﬂi'{“-h} 21'[1 xz{?“' ’?L }Rzﬂ('}"' ’P" ’“‘"“‘] € ¥ (6.22}

L
xz[}l,l) =
dundu dATA) ) (ar KR (A7) e THE
211:1(;.1 Pt) 2ni b T e
: = (-1) | wa i '
Using the condition (6.20) xlE = - xzn in the limit of

weak fields (xl oo 8 S 1) one obtains from (6.22) the

relation between the kernels Rm and Rzu
R (A, A7:A,2) = =AR__(=A,-A;-A',-A") . (6.23)
20 10

The reality of u = - r imposes on the Kkernels Rm and Rzn

the other restrictions. Under u = u in the limit of the weak
fields one has from (6.22):
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RO A AV=R A XA,
10 10

Rm[l ) A ;P{,l]ﬁRw[l N S G o (6.24)

The solution X X, of “the system of integral equations

(6.22) and the dressing formulae (6.20) for the potential u
= -r under fulfiled conditions of the reduction q = 1 and
reality u = u (6.20), (6.21) or (6:23), (6.24) give us the
method of calculation of the broad classes of exact solu-

. A . :
tions ¥ = x ‘e 9 or perturbed string equation (6.1) together

with corresponding solvable potentials u.

By the use of formulated in this section é-dressing let
us calculate some exact solutions of the perturbed string
equation (6.1). The conditions (6.23) and (6.24) of the re-
duction gq=1 and the reality u=u are satisfied if the Kkernels
Rm and Rzn are choosen, for instance, in the form of the

following sum of delta-functional terms:

Rm[pl,p.;h,h] = ZTI:ZZ Skh*ﬁfp-kaG(A-Ak] :
(6.25)

Rzﬂ[u,p;h,m = an)]; Skh-a(mthS(?Huk] i

where Sk = Sk. Substituting these kernels RlD and Rzn into
the system (6.22), one obtains:

ZSkukxz ( —?'..k] * eprk

xl{m 2 Z L o+ A s
K k
(6.26)
o z ZSkhkxIka]-eprk 3
. - hk - A '
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: - (-1)
where deéf.ukn + }ikE. From (6.26) it follows for - S5

= (-1)
= =X ] ; 6.27
X, 2g Skukxz[ lk] expF ( )
The system of equations for calculating xl{uk] and xz(-hk]
has due to the equations (6.26) the form:

ZSlple(_—hl}-eprl

() - =1,

(6.28)
e . Zslllxltull-exp}?‘l L
XN A+ A :
1 1 k

It is assumed that in (6.28) all denominators are not equal

10 Zero. : :
Now let us calculate the simplest exact solutions of

equation (6.1) For the Kkernels R10 and Rzn (6.25) with one

term in the sums the system (6.28) has the solution:

(-2) = : , (6.29)

b= Sp'eprﬂ

x1[“ﬂ] = X,

where Fu = o+ P;GE. For u with the use of (6.20), (6.27)

and (6.29) one obtains:

28 - 1o eXpk “A M
g-o» g - ki ,(6.30)

u=-r= =
(1 - Su-expl?n)z Zchzi

{hﬂﬁ+unn+ﬂn] ]

where for providing the nonsingularity of u we imposed on
the parameter So the condition:
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def .
0< - Su =" exp CG : (6.31)

Two independent exact solutions ¥ of the problem (6.1) which
correspond to potential u (6.30) have, due to the (6.29),
the form:

e ne2.eMp )], =
0
1
5 Zexp{,unn] : EXP?(HDH"?‘LUE-CD}
1 ¥
1 SG eprD ch—z—(ln§+p0n+cn]
(6.32)
(2) def, ~AE' i
(g, = 2-e xz(?t] e,
0
1
Zexp(lgg} exXp - (hng—pﬂn—Cﬂ}

1
1 So Epru ch - (1D§+MDH+CD]

The more complicated solutions of equation (6.1) cor-
respond to kernels Rm and Rzn in the form of the following

sums of the paired delta-functional terms:

R (mAR) = an[Sk{p.th-Sip—uklﬁ(?x—?tkl +

+ Sk(p,h]l-sm-uk}a(h-?«k] :

— - 2 2
R, (kmA,A) =2m )i;[sk[—a,-mm{makjaumki +

38

+ Sk(~h, -p}ﬁﬁ[m}\k}a[}\mk]. (6.33)

For the kernels (6.33) the conditions (6.23), (6.24) of the
reduction q = 1 and reality u = u, as can be easily seen,
are satisfied. Substituting these kernels Rm and Rzn into

the system of integral equations (6.22), one obtains:

ZSkuk'xz( —}’Lk] . epr'k ZSkpkxz( —lk } eprk
xl{l} -Z —z o fen

% g+ A K o+ A
(6.34)
ZSkhkxl{uk] rexpF ZSkhkxlluk) . eprk
xz[.?t]_ T s = — i :
K A -2 K A -2
k k
- dgf d;f i i ]
where Sk Sk[uk,hk],Fk pn o+ ?Lk&. From (6.34) it follows
for x;'”:
(-1) : Lol = =
X % 22; [Skukxzi—hk} eprk + Sk“kx?.{ hk) eprk] : (6.35)

The system of equations for calculating x, (), xl{ﬁk] and
xzi—hk], xzt-ik) according to (6.34) has the form:

ZSl,u]xz{ -?l] ) rexpF ZSI,ul;xz( o 3 epr[
i) = - - = L,
Ik : ' . : =
H K 1 k
- z Zsluixz{*hl]rexplfl - Z ZSlulxzt—ll}-eprl i
xluk 1 + 1 1 L o+ U :
gy I s
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'Y : X Y avnk
S E 2',5l lxl(,ull eprl : Z ZSIlIxI(pll -:-.Jq:aF1 a

et o %iw i Ao

1 k Sh K
G 2S A x (u )-expF 2S A x (p ) -expF

xz[_&k}_E R i 1 _Z 1 1_1 1_ EL e
1 A+ A 1 A+ A
1 k 1 k

It is supposed that in (6.36) all denominators are not

equalto zero.
Let us calculate the exact solution of equation (6.1)
which corresponds to the kernels RH} and Rzu of the type

(6.33) with one term in the sums. The system (6.36) has in
this case the solution:

1oe LPvH F

= W o1 "oR
:rl[.uﬂ} = xl{uﬂ} = = "

=P = P=9
(6.37)

_ - e gy it

xz{—-}\n)= xzi—lﬂ} = = ’
1 = P .= P+0
where A
9 So'exPFu s '?‘urpoxf(lun”nn} ’

Fn = ?Lug R (6.38)

By the formula of reconstruction (6.20) using (6.35) and
(6.37) one finds for the potential ul(€.q) in (6.1) the
expression:

U(E-'ﬂ] =i X

At (P+QI1-P)+X 1 (P+Q)(1-P)+(A i +X u )(IP|%+Q)
x — (6.39)
(1 - P - P -Q)
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For providing the nonsingularity of the potential u (6.39)
let us impose on the parameters hﬂ, Ky and Sﬂthe conditions:

A
01701 : = -3 s
- 0TSl g e e = O (6.40)

'l‘JR“DR

e
0

Under the conditions (6.40) one obtains for u from (6.39)
the expression:

22 1 P 23 it P

(6.41)

e e
‘L -P) (1=-P]

The exact solutions ¥ of (6.1) which correspond to u in

(6.41) as follows from (6.12), (6.37) and (6.40) are:

(1) e L AT &
‘;' (E!n)“xl(?t] e ;\:“

oo Y Py L Y aeabiin)
- Py = o1’ Por : o e
' It - P

In conclusion of this section let us make some remarks
about another approaches to the spectral problem (6.1) which
is known as equation of perturbed string.

Nizhnik developed [20, 21] approach to this spectral
problem which is based on the classical scattering theory
for the hyperbolic equations. In the frameworks of this
approach [20, 21] general formulae were obtained for the
transparent potentials u(&,m) and corresponding to this po-
tentials wave functions ¥(&,n). The Cauchy problem in the
class of rapidly decreasing at infinity initial data was al-
so solved.

In the paper of Baiti. et al {22] another approach to
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the spectral problem (6.1) was developed. This approach is
based on the use of nonlocal Riemann-Hilbert problem. In the
paper [22] the general formulae of inverse problem for cal-
culating potentials u and corresponding wave functions ¥ we-
re obtained, the time evolution of the inverse problem data
was found. The possibility of solution of the Cauchy problem
in the class of rapidly decreasing at infinity initial data
has been discussed.

EXACT SOLUTIONS OF 2DISG-I EQUATION VIA

THE SOLUTIONS OF PERTURBED STRING EQUATION

In this section we explore the exact solutions of
perturbed string equation (6.1) for obtaining via the

general formulae (3.10) the: exact solutions of 2DISG-I
equation (l.1).Let us choose at first the boundaries u (9,t)
1

and  u(£,t) (potentials in (3.3), (3.4)) of the type of
(6.30), i.e. with corresponding changes of the variables

(€,m) —(&,t) and (§,n)—>(n,t) in (6.30):

| A M
ul[n,t} i 3} — :
2ch v {?Ll'n+p1t+f:1]
(7.1)
A_M
u(£,t) = - st

2 1
2ch né—{hzg+p2t+cz}
The corresponding to these boundaries the exact solutions

X(€,t) and Y(mt) of equations (3.3) and (3.4) we choose,
according to (6.32), in the form:

1
eXPp - [hzg—pzt )

X(€,t) = ,
ch —'2- (?ﬁzg'i"“ztﬁ-cz}
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exp % (?Ll'n—pl‘t )
Y(n,t) = 1 . (7.2)
ch T [?‘1”"'{111:4'61}

Using (3.10) and (7.2), after simple calculations we obtain
corresponding exact solution 6(g€,n,t) of the 2DISG-I equa-

tion:

prexpl % (h1;}+lzé) -p.lt-p.ét]
a(g,n,t) = 4_arc1:g 7 - 1 - , (7.3)
2chl '"2- ;“l]-[ﬂ"ﬂﬂ} ] +chl ?RE(E—EG}J

where for convenience the wave variables

n=7n+ j.xlt/}\l - E=E + j.[zt/?\z - (7.4)

are in.troduced. Imposing on the parameters ho K, the condi-
tion:

-t = 0, (7.5)
one obtains from (7.3)

prexpl %{ll;’-bhzé”

e(&,n,t) = 4 arctg . (7.6)

2chl % . (;;—nu] foih! %azté—gun

This solution describes nonlocalized object which moves on
the plane (£€,n) with velocity: '

V= (/A=-pn/A , p/A) . (7.7)

Now we consider the boundaries ul['r],t] and uz[f;',t] of

the type of (6.41). With corresponding changes of variables
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one finds from (6.41) the following expressions for u (m,t)
and uz[E,t]:

21 u P 22 u P
Ul(ﬂ.t] L 11 12 = 1 1_1 .,
(1 - PI} (1 - PI}
(7.8)
22 P 2A 1 P
uz(S,t} a5 22 2? St 2_2 ,
(Y 29 % S
where
Pl = Sl-exp[hlmulﬂ E l:’2 = Sz-exp(h2£+nztl : (7.9)

The corresponding to these boundaries exact solutions of
equations (3.3} and (3.4) we choose in the form

X =X, X =X(Et), Y = Yat), Y =Y(nt), (7.10)

where _
xfg S {1*1P2uZIx’uERJ-exp{u2t]
| PEAE i
2

- (7.11)
( 1-“:)1“1 I/'ulﬂ ). exp(uﬁ)

Yin.t) =
- 11 =P |®

Parameters ?tk, R Sk (k =1,2) in (7.8)-(7.11) satisfy

according to {6.40) to the conditions:

AP “

!
-
4]
>

ol

+

-1
Gy ey

il

o

lkE“kR
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—Sk >0 Ak L2y (7.12)

Using (3.10) and (7.10), one obtains for the matrices « and
B the expressions:

isz -expl ZAZRt)

X, Xl :
1 ji={aF
|x[2; LﬂzR'EXP(ZRERt} 22
2 ]
I
(7.13)
g LulR-exPIZAIRt}
- 2
B = _%. ”11'1_P1;
e LulR-exp(Ztht) o2
2 »
“11'1_P2|

For the construction of the exact solutions 6 of
2DISG-I equation (1.1) one <can wuse several different

mixtures (3.4) S(&,n,t) = Zpu){i‘f]of solutions Xi,YJ{?.ID]
1,]

of equations (3.3) and (3.4). Let us take for example the

matrix p = [?é] Then calculations by thew formula (3.10)

with the use of (7.13) give for 6(£,n,t) the expression:

e(g,n,t) =
g P M P = \
[[1+t’. i 2]r(l—i". e 1)-exp[(u1+u2}t} P e
2R 1R J
=4arctg .(7.14)

P 5 ep 1 o S o ol o

1 2 i Pletl o THok
T1 21 /
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We impose on the parameters B M the restriction

g w O, (7.15)
then
M 2
= 1rM28 = Hir 25 o
TS 2
11" 21 T3

The formula (7.14) for 6 takes the form:
e(g,n,t) =

(1+ip P / J(1-i
= 4arctg[ 1 2 Hor ( wllpl/‘um) fEk g

| (7.16)
: |1-1=*1|z|1—1-"z[2+.a2 |

This solution describes nonlocalized ob JEC’L which moves on
the plane (g,n) with velocity

V= (-p 72

2R 2R _”/ ) =

o {u /;1

> H-m/lm). (7.17)

~ Another mixture (3.4) §

i,]

of equations (3.3) and (3.4) with the matrix p = i S leads

after some calculations by the use of (3.10), (7.10)-(7.13)

-and (7.15) to the following solution ©(£,m,t) of 2DISG-I
equation (1.1):

e(g,n,t) =
558 = = (7.20)
[ e (P + l} 2“21(P3+Pz-) ig p, (P PiPp )
= +
MR Hor ”m“zn J

=4arctg
. 2 > 2 2
S Pl £
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Ep XY of solutions (7.10) -

e

This solution describes nonlocalized object which moves on
the plane (£,m) with velocity (7.17). So, exact solutions
(7.6), (7.16) and (7.20) 6 of the 2DISG-I equation with ge-
nerically zero values at infinity boundaries ulin,t] and

uzig,t} are not localized.

In conclusion of this section let us consider the
curious example of the exact solution of 2DISG-I equation
which can be obtained using the following exact "hand"
solution of eq. (6.1). It is not difficult to check that

equation (6.1) with potental

sl 1) o BEENL s - (7.21)
[(E-Vn)? + 7°]

has the solution ¥ of the form:

YE,D) = -, (7.22)
(£ - V) +

_where ¥ and V are some real parameters.

Taking the boundaries ul[n,t] and uz[‘g',t} (with corres-

ponding changes variables) of the type (7.21):

(€-V_t)*-27]
2. 2.3 uz(g’t} 1 HE L e
[{n_—vlt] +'ar1] [(E-V_t)"+ 7,1
and corresponding exact solutions X and Y of egs. (3.3),
(3.4) in the form (7.22):

X(£,t) = L Yo e =

2 2
(g—vzt} {—n—vlt] +

with the use of the formulae (3.10) and (7.24)one obtains
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the following exact localized solution ©(£,m,t) of the
2DISG-I equation:

e(€,n,t) = 4arctg = g
2[(n-V £)° + 1% 1E-V )% + . F

This solution describes moving on the plane (£€,m) with
velocity [Vz, Vl} localized ob ject.
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