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ABSTRACT

The phase transition in 3D systems having O(2) symmetry is studi-
ed as a function of the form of nteraction. Conditions of a first order
phase transitions are found. Probabilities of occupation at a point and
their correlations are calculated in a mean-probability approximation.
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1 Introduction

The order in systems with a continuous symmetry group has been intensively
studied. The simplest case is the O(2) symmetry, realized in superfluid He?
[1, 2], superconductors [3], magnets with an easy plane and other systems [6].
In all mentioned systems, a coarse graining from the initial atomic scale a to
some intermediate scale g > a allows to describe the order in the system in
terms of a two-component order parameter which can be chosen in the form
of a complex scalar field #(r). The quantity ¥(r) in a given point r describes
the local order in a cluster of the size Ry with the center in r, the absolute
value | ¢ | and the phase (orientation) ¢(r):

$(r) =| ¥ | expig). 4
At the scale Ry, fluctuations of | ¢ |are supposed to be small,

hence ¢(r) is a well defined quantif}'. The orientation order in a cluster of
the size R is represented by the orientation order parameter

-

Y(r) = exp(ig(r)), (3)

r is the center of the cluster. The some orientation may be described by the
phase ¢, ¢+2m, ¢+4m, ... In Lhe ordered phase, at temperatures T" < T, o(r)
fluctuates around some value ¢g ("the phase of the condensate”). In the
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disordered phase (T' > T.) the long range orientation order is lost. The latter
features are the common ones for continious models in 3D [4, 5].
The probability distribution of a configuration of orientations ¢(r) may
be written as
H{gf;}

Du(r) = exp(— —=—)D¢(r) (4)

H{¢) is the Hamilicuian of the orieniation order, D¢ is an element of the
configuration space

D¢(r) = [ [ d¢:, (5)

for a lattice system with lattice sites r;. For configurations having | Vo |« 1
in all space the Hamiltonian has the universal form

= f{% | Vi |2 —hcos(¢ — do)}dV. (6)

h plays the role of the external field conjugated to ¥. For larger | Vi |,
the Hamiltonian is not universal. The form (6) appears in Landan theory of
second order phase transitions [7, 6].

The concept of the order parameter is more general than in Landan bie-

ory, it assumes only the existence of the ln’rfrmm iate scale Ry mentioned.

above. The nature of the phase transition depends upon the form of the
Hamiltonian at this intermediate scale. For ::}:-,.T.f,ms; CDI]SldCTLd below some
general features are supposed. The general form of the Hamiltonan 1s

7= Hyldlr)) = f h(r, $)dV. W
The O(2) symmetry means that

Ho{¢ + ¢o} = Ho{¢} = Ho{-¢}. (8)

The exact form of H is expected to make statistically insignificant configu-
rations with the most part of the volume occupied by large values of | V¥ |.
Let us consider a configuration with | V4 |« 1 in the most part of the vol-
‘ume. This part of the volume (good material) is supposed to be an infinite
, multiconnected cluster. “The rest of the volume (ba,d material) occupies a
~small fraction of the total volume. The absolute minimum of H{¢} is the
T = 0 configuration (ground state) ¢(r) = qﬁ(ﬂ) the low-energy excitations
are those having | Vi |« 1 with probabilities given by (6).
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We will consider a rather general form of a two point interaction

H{$} = 5 [ Blr—Fcosé(x) — 4@)AVaV - [ hiwio@)av. @)

The interaction energy F(r;cos¢) is assumed to have a minimum at ¢ = 0.
At any r E(r;cos ¢) increases with | cos ¢ | increasing, it depends on r but
not on the orientation of r. The r — 0 behavior of E(r;cos¢) determines
the probabilities of states with high | Vi |. To depress probabilities of
those configurations, E(r;cos ¢) has to increase as r — 0 except for a narrow
vicinity of ¢ = 0:

E(r;cos¢) ~ e(r)¢?, ¢<1. (10)
The Landau-kind behavior H ~ V | V4 | means ¢ ~ k2, or for a 3D system
é(r) = ; ' (11)

The form of E(r;cos ¢) may be described with the aid of coefficients ¢,:

oo
E(r;cos¢) = an(r) cos ng. (12)
n=0
The case ¢,, = 0,n # 1 is the X-Y model one. The phase transition in
X-Y-model is continuous (of second order).

The. aim of this paper is to study the phase transition as a function of
the form of E(r; ¢). The potential well E(r; ¢) as a function of ¢ is supposed
to have the minimal value at ¢ = 0 and increase monotonous for | ¢ |< .
As a function of r, E(r; ¢) characterized by the interaction radius R.. Main
characteristics of E(r;¢) are the depth of the well and the width s. For the
X-Y model s ~ 7. In the opposite limit of a very narrow well E(r;¢), the
attraction of orientations is only for almost parallel orientations s < 7. As
an example we consider

E(r;cos¢) = E(r)exp(—c—os—qﬁ——)/ﬂ A= ;ff:xp( mf )dé. (13)

As will be shown, a finite such deformation of the X-Y model results in a
change of the order of phase transition.

2 Mean Probability Approach

Let us reformulate the statistical mechanics of the system (10) in terms of
local state vector representation as it was described in our paper [8]. We will
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‘treat the continuous cyclic variable ¢ = hTﬂ*“ =0,1,2,.... We define a N-
dimensional Euclidean space spanned on orthonormal vectors (@) e(@)elP) =
528 The state vector o°(r) is defined to coincide with e(®) if the state in
point r is e. The idea is a straightforward generalization of the Ising variable

in a two-state system. Quantities E(r; — rj;cos(¢f — q&f)) and h cos(¢f') are
represented by a tensor with components E;-:}ﬁ and a vector with components
h¢ consequently in the N-dimensional state space.

Using the o(r) field, we may write the Hamiltonian (9) as

o % f o () B (e~ )" (F)dVdV — / e (r)o(x)dV. (1)

The sum over all states in the Gibbs ensemble (4) means now the sum over
all values of o(r) in all points r of the system. An important feature of
the vector o is that its averages are probabilities. Namely, if w(r;a) is the
probability to have a state a at point r, then :

w(r;a) =< o%(r) > . (15)
Correlation functions of o |
w(rlar_2!_++'1rﬂ; oy, (x3, '”:aﬂ) =< aa(rl)ga(r‘z)”'ﬂ'a(rﬂ) " | (16)

are probabilities of simultaneous occupation of points ry,rsz,...,ry by states
a1, a3, ..., 0n simultaneously. The bilinear form of the Hamiltonian (14) al-
lows one to formulate a mean field approximation for o the Mean Probability
Approximation (MPA)-see [8]. The approximation is valid if the interaction

radius Rin; is large. The regular way to obtain the MPA- equations is to per- -

form the Hubbard-Stratanovich transformation to the Gibbs ensemble with
the energy (14). In MPA, the free energy is given by the formula F = H-T'S,
where H is the energy and S is the combinatorical entropy:

H= [ [ [ [ 5= 5costs - uigire@sndodbavar -
[ [emuenavas, — an

G / f win(w)dédV.  (18)
The equilibrium w(r; ¢) minimize the thermodynamic potential ®

@:H—Ts+fu(fwd¢-1)dv._ | (19)
6

v is the Lagrange multiplier field to fulfill at each point r the condition

] wdé = 1. (20)

In formulas (17,18,19) the limit N — oo is performed.The MPA-equations
have the form

exp(—Zg2))
@) = . ; 21
w(r; ¢) [Py (21)

E(¢;r) = ff E(r — F;cos(¢ — ¢))w($; 7)dgdV — h(g;r)w(dir),  (22)

An interpretation of (21) is that E(r;¢) is the energy of a state ¢ in point
r when surrounding points are occupied corresponding probabilities w(r; é;]
The generalization of (14-22) for a given group G instead of O(2) is straight-
{orward. One has to replace ¢ — g, d¢ — dg, g being a point on the group
manifold, and dg is an invariant volume element on the group G manifold.

3 MPA- equations .

Let us transform equations (22) to a more suitable form. We will consider
the homogeneous case h = 0, w(r; ¢) = w(¢). By introducing

e PRt T B = f E(r; cos())dV (23)

one gets from (22)
—tin(1+9) = [ B¢ - S, (24)
z=2m+ | y(9)ds (25)

Here, we fixed the zero level of energy by setting

f " B(6)dé = 0. (26)

il |

For the homogeneous case, MPA Egs. (22) have a trivial solution for all ¢

 Z =9, t=2aT. (27)



This solution describes the symmetric high-temperature phase, it is stable
(corresponds to the absolute minimum of the free energy) for T' > T.. "

The low temperature phase is easy to study for T' < T,. For that tem-
peratures, the solution w(¢) is localized near ¢ = ¢o, choose ¢o = 0. The
T = 0 solution is w = §(¢). The width of the w(¢) is smaller than those of
E(¢), so we write

= 4o i

=F0)+—, s °=—=(0). 28
$)=EO+ 57, 57 =50 (28)

For wr (@) one obtains at T < T
1 s (29)

sv2nT :

The approximation (27) is valid if

| T < E(0). (30)

For a narrow potential well E(¢) the solution (27) is valid up to the phase
transition temperature T.. The equilibrium phase transition temperature T,
is determined by the-condition of equal values of thermodynamic potentials

Fr(w) = Fp(w). (31)

In the limit of small s one obtains

E(0)

1o ™ STa(ifs)

For the X-Y model s ~ 7, and approximation (28,30) is not applicable at
temperatures T' ~ T,. To study the order of the phase transition, let us
examine the spinodal line of the high-temperature phase, where wy becomes
unstable.

4 The spinodal of the symmetric phase

The trivial solution w = 2% becomes unstable at T, = T. for a second
order phase transition but Th, < T. if the phase transition is of the first
order. In a mean-field type of an approximation, one expect that the spinodal
temperature is the branching point where wi branches from wy. The solution

3 .

(32)

L]

wr has the maximum at ¢ = ¢o = 0 as expected to be a periodic symmetric
function: w(¢) = w(—¢) = w(¢ £ 27). The branch wy between Th, and
low-temperature spinodal Tj; does not correspond to any relatively stable
spatially homogeneous state. We will study this unstable solution for | wr —
W l{.ﬂ 1.

The symmetry allows one to write all related function of the angle in
Furie-series in the unit circle:

E(¢) =2 eacos(ng), (33)
n=1
y(#) = o +2 Y yncos(ng). (34)
g n=1 :

The equations (24) in Fourier-representation have the form

: 2
2mentyn = —t(y — 22— + % T (35)

(B), stands for corresponding Furie-amplitude
B(¢) = Y _ Bn cos(ng). (36)

At branching, all y, go to 0. In linear approximation Eq.(35) gives

Yn(2men +1) = 0. (37)

Solutions of Eq.(37) are :
1= —2me,. (38)
For the interaction E(¢) considered here, —2me; gives the highest Tj, =
ths /27, other solutions are unphysical. Close to ¢ = —2me; > 0, in the

second order in y; one obtains

y=0,t <t = -2mrey (39)'
= 2(2?’1’E1 + 1)(2‘}1'{2 -+ f,) 5 2({1 - Eg)(t — tl)
=) e €1

Yo , t>1 = —2me;.  (40)

The low-temperature phase corresponds to ¢ > {.. The slope %%1- gt =
Th; = "‘f]_ iS

dT 1 €9
e E(Q'f—l* =1 (41)
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The phase transition is continuous if 4% < 0. In this case Th, = T.. The
phase transition becomes discontinues at ¢z = %61. This value corresponds to
a finite deformation of the X-Y model. If ¢; is treated as a thermodynamic
parameter, the point ¢z = Le; is an end point of the line of second order
phase transitions. For a narrow function E(¢), the difference €; — €3 is small
| e, — €2 || €1 |. At the spinodal temperature of low-temperature phase, the
width of the function E(¢) and the width of wr(¢) are of the same order.

5 Inhomogeneous Orientation Order

Inhomogeneity in orientation order may be caused by boundaries and by an
inhomogeneous external field. Let us consider an external field h(r; ¢). The
part of the energy describing the interaction with field h is

dH = —/h(r;qﬁ)w(r;d))diquﬁ. (42)

The form (42) has the advantage that it allows to obtain the many point
probability distributions. The pair connected correlation function

G(lr—*%|;0,¢)
Glx—F |;6,8) =< 0s(r)oy(F) > — < oy(r) >< o3(F) > (43)

gives the probability distribution of pairs of values ¢, ¢ at the distance r (sec
formula (16)). From the definition (14) one has

G(lr—F;6,8) = 5;33‘1&_'-5* (44)

We will study here correlations in the high-temperature phase T > T., wp =
L. Due to the symmetry of high-temperature phase, G(r;¢,¢) depends only

on the difference ¢ — ¢, G(r; ¢ — qg) = u(r; ¢ — ¢). Besides; at r — 00 G(r; ¢)

goes to 0. Linearized MPA equations for u(r;é — ¢) are
Tu(r;¢) = —fdf"fd@f?(r — F;cos(¢ — @))u(®) + h(r;¢) — £,  (45)

E= f f E(r — ¥; cos(¢ — ¢))u(¢; F)dpdV, (46)

hix; ¢) = é(r — v)b(¢ — A.;E) (47)
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In the Fourier- representation

E(r;cos¢) = Z €n(r) exp(ing), enlr) = z €n:k exp(—ikr), (48)
k

u(r; @) = Z un(r)exp(ing), ua(r)= Zuﬂ;k exp(—ikr)-, (49)
n k

here sums over n include all n = 0,%1,%2,... . In this representation, the

solution of (45) has the form

1
; = . 50
(T + Eﬂ';k)uﬂpk .2# ( )

For u,(r), we obtain

1 exp(—ikr) - exp(—knr)

un(r) = 5- P - (51)
k = ik, is the solutions of the equation
T+éenx =0 (52)
for ¢, one gets: : .
Cn = WR&{I.:/ Tl N (53)

where the unit volume of the lattice is supposed to be equal 1. As we see,
every partial harmonic u, has its correlation radius re(n):

R el (54)

At the spinodal line Eq. (37) gives k1 = 0, the correlation radius riis in-
finite. For functions E(r;cos¢) having features described above, the dipole
harmonic 7 = 1 has the largest correlation radius, rc(n) decreases with n
increasing as slowly as s is small. At the largest distances

re(2)
"2 ) -T2 e

taking into account only the first term of the Furie series (49) one obtains
u(r; 6) = 2ui(r) cos(9). (56)
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At smaller r, the width of u(r;¢) as a function of ¢ decreases due to other
harmonics u,,. At the inverse to (55) limit case, the form of u(r; @) is

u(r; ) = ~(9), (57)

the width of f(4) is of the same order as the width of E(r;cos ¢). The linear
approximation is valid if v < 1, or r > f(0).

6 Conclusions

In this and previous [8] papers we have presented the formalism of local state
representation intended for models of orientation order. MPA was defined
to describe statistical properties of the simplest discrete [8] and continuous
models. The most straightforward possibility to investigate 3D models is
to consider homogeneous MPA. Different phases appear via violation of the
interaction symmetry. Both orders of phase transitions are available. So,
studies of the narrow width O(2) model show that there is the strong first
order phase transition neither in the X-¥ model case.

Let us review briefly some of the topics related to the orientation order
models that can be studied via the formalism of local state representation
but are been out of the scope of this papers. l.Investigation of other models
of orientation order as SO(3) model having much to do with 3D melting
[9, 10, 11] or S? model of nonhaisenberg magnetics [12, 13]. 2.Study of effects
of vortexes in abelian and nonabelian continuous models. 3.Investigation of
~ an arbitrary O(2) model in 2D. Some of these problems are at progress now.
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