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ABSTRACT

A new concept of plasma kinetic description is
developed. To demonstrate its strength the instrumentation
was elaborated for describing of plasma cross diffusion via
the particle interaction with drift waves. The instrumenta-
tion includes consistent equations of particle distribution
evolution and of drift wave pumping. The effect of plasma
nonstationarity and particle induced scattering are taken
into account, just as the effect of inhomogeneity induced
wave drift in space and wavenumbers.

The descriptive potential of a new concept is higher of
that of a commoniy accepted concept of Bogolubov - Born -
Green - Kircwood - Yven (BBGKY). The new concept do not in-
volve the averaging over the initial data ensemble. In trea-
ting of turbulent plasma it gives possibilities to avoid
the using of the wellknown Random Phase Approximation and of
any renormalizations.

@ Budker Institute of Nuclear Physics

INTRODUCTION

There are many problems in plasma physics, the solving
of which requires a kinetic plasma description.

The commonly accepted concept of kinetics is a BBGKY
concept [1 - 4]. In its basement a knowledge was laid of
plasma being a statistical system. For such a systems the
meaningful entities are those, which are statistically ave-
raged over the initial data ensemble. But the real plasma do
not contain any initial data ensemble: only one set of ini-
tial data is represented. In spite of the fact the reliabi-
lity of the BBGKY kinetics is commonly believed to be out of
any doubt.

Author has déveloped another concept of the plasma kine-
tics. To demonstrate its strength the instrumentation was
elaborated for the correct calculation of the drift wave
contribution to the inhomogeneous plasma diffusion.

Drift waves are always represented in an inhomogeneous
plasma. They are excited due to the so-called "univer-
sal" instability [5].

In the usual case of a nonlinear waves the motion of the
plasma particles in cross plane is slightly irregular, and
plasma - contrary to the case of linear wave field .~ inter-
mingles in this plane.

The plasma with maxwellian distributions was shown to .
have the most unstable waves within the transverse wave-




length range from  electron Larmor radius to ion Larmor
radius [6]. Hence the plasma motion cannot be described
within the frames of the drift approximation.. This is the
reason for the kinetics to be relevant in the situation.

[t should be stressed that the inhomogeneity of plasma
plays a crucial role in the situation. Meanw_hile there was
no valid theory for the inhomogeneous plasma kinetics to a
current moment. '

The problem investigated was the following. The fully
ionized high temperature plasma with low kinetic pressure is
placed into a volume with strong magnetic field. The Coulomb
collisions are negligibly rare. The plasma meets a condi-
tion
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The plasma is inhomogeneous. The typical inhomogeneity
length a satisfies a restriction
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It ensures the drift waves frequencies being small compared

with Wpr; UP to transverse wavelengths A, ~ Ple Waves with

smaller transverse lengths are dumped: their phase veloci-
ties along Z are small compared with the thermal velocity.

The condition (1) provides the waves being potential.
Usually it does not meet, and Alfven and ion-sound waves
should be considered too [7]. The condition is inserted mere
to simplify the physical situation.

The thorough description of the concept and of the kine-
tic equations derivation is sent for publication in Physics
of Fluids B: Plasma Physics. The given paper outlines the
concept and the equations obtained.

The structure of the paper is as follows. The fist part
of the article contains the definition of the basic entities
of the concept. The second part presents without derivation

the kinetic equations for the problem chosen.

The main . entity of the kinetics is the distribution
function. Its definition opens the first section. The time
derivative of the function contain the so-called collision
integral. To -calculate the integral the notion of the
two-time correlative function is defined. This function re-
sembles the wellknown analog in the weak turbulence theory.-
The starting point for the derivation of corresponding evo-
lution equations is the plasma description on the basement
of Klimontovich - Dupree equation [8, 9] and Maxwell equa-
tions. In the section the scheme of the kinetics derivation
is described. Some steps of its realization take advantage
of the graphic formulae writing. The main notions of the
corresponding diagram technic are represented, and some
relevant equations are written. ;

The two-time correlative function can be expressed in
terms of an one-time correlative entity - the spectral
density. Each moment the spectral densities are strictly
determined, and their evolution too. . ;

The ideas formulated are urgent not for the plasma case
only, but for all others areas too, where the BBGKY approach
is used.

Section 1. The plasma kinetics:
the theory outline

A main notion of plasma kinetics is the distribution
function. It should be defined on the base of a microdist-
ribution function - the entity of the Klimontovich-Dupree
equation. We define the function as follows. Let us average
the microdistribution function

N ;
N_(r,p,t) = T 8 (r-r,(t)) 5°(p-p,(t))
L
in the phase space r, p over the 6-dimensional parallelepi-
ped with the centre at a given point (r,p). We will consider
this averaged distribution as a function of variables r and
p. Let us take for it a denotation




fm(r,p,t] :

The parallelepiped mentioned contains a great number of gi-

ven type particles provided its volume is large enough (V>>
{ma va) /n). In this case the distribution function f is a

smooth function of its variables, and it possesses a defini-
te statistical trustworthiness.

The ratio of different dimensions of the parallelepiped
should be chosen depending on the problem under study. It
means the very entity of the distribution is a relative one.
For our problem we can take the parallelepiped with the spa-
tial Y,Z dimensions up to the corresponding sizes of the
plasma volume. At the expense of them the momentum dimensi-
ons of the parallelepiped can be made small compared with
the thermal velocity, and X dimension - small compared with
the spatial. motion scale. The last two facts are .of essen-
tial use in the derivation of the following equations.

It should be stressed the distribution function is al-

ways spread over its variables. We can achieve small grada-
tions of the function in any of spatial and momentum variab-
les, but at the expense of the remaining 5 variables. Other-
wise the function is not statistically trustworthy and is
useless. '

To derive an equation of distribution function evolution
we average the Klimontovich-Dupree equation over the very
same parallelepiped. Then we will obtain the equation
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(In this formula and further the co- and contravariant
indices are used. The Finstein summation convention Iis
implied. The latin letters are for the indexes of 4-vectors

(i = 0,:.,3), the greekislettersii- with the exclusion of « -

for the indexes of 3-vectors ( v,7,... = 1,2,3 ). The metric
tensor is as usual : its unequal to zero components are

) = = o = - = 1). Right hand side here is
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called a collision integral. The tensor O:t) is the statio-
nary part of the electromagnetic field tensor. It correspond
to the external magnetic field. The tensor SF' represents
the electromagnetic field of the plasma. If the plasma does
not exposed to the external electromagnetic radiation, the
tensor can be expressed in terms of the microdistribution
with the use of wellknown delayed potentials. The corres-
ponding relation is '

A t
: Ay Sogr U
_ 6Fik{r,1_f) = Z ?n: J-d L d pIJ dt x
. o (7

x?ik r,t,rl,vl,tl.] Na[rl,pl,tl] A

with gir}c Eeing a definite integral differential operator.

To calculate the collision integral it is convenient to
introduce a Green function Gﬂc[r,p,t,ri,pl,tl] - the

shl_ﬁtion of the equation
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and a two-point correlative function
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The averaging here is of the same type OVer the parallelegpiw'




ped shaped neighbourhood. The variables r and r, Jafe being
varied synchronously: the difference r-r, is fixed. Such an

averaging - with fixed shifts of variables r from one point
involved to another is a crucial one in the approach develo-
ped. The above introduced function is one of the range of
manypoint correlative functions. They all are physically
meaningful and are the averaged products of one microdist-
ribution function and of a number of elecfromagnetic field
tensors. All the terms of the product are taken in different
points. at- different moments. The shifts - of spatial
coordinates are fixed when averaging.

To simplify the intermediate calculations it is conve-
nient to use the graphic. formulae writing. Let us take the
following denotations. The Green function we denote with the
solid line, the function f - with the oblong rectangle, the

operator F - with the dashed line, and the formal entity

(SN (r,p,t »
(Ep.t) N, (r ,pt))
- with the wavy line. The given entity is empty in the sta-
tistical sense: it contain an unknown initial data. But in
all equations it enters in a convolution with the operator
F, thus acquiring a physical meaning of a function

$aN _(r,p,t) oFJ(r ,p,t )

o i =

In this definition the following functions are invelved

6Nm[r,p,t_} = Nﬁ(r,p,f] = fﬂc[r,p,ﬁ ,

s r, 1) 25 r, 1) o CFY G 1))

(In our problem the average <SFLJ{r,t}> can be neglected: it
corresponds to the magnetic field of the plasma diamagnetic

currents and is small compared to the external magnetic
field.)
Let us define also an asymmetrical vertex

The vertex we associate with the definite moment £, the spa-
ce point vector r, the momentum p and the coefficient (—em/

¢). The vertex has one entry (on the picture it is from the
left) and two exits. If to rewrite (2) in the form

f. =4 (RES of G214
o o

then the entry of the vertex corresponds to the point of Go;

operation onto right hand side of (2).
The lower exit of the vertex differentiates the adjoi-

ning function over the momentum p. To lessen the difficul-
ties in diagram analytical interpretation this entry is mar-

ked by black.
The upper exit of the vertex is always adjoined by the

: Y

line ?. The corresponding tensor & is convoluted with
velocity v and with the momentum derivative ﬁ/ﬁpv of the
Jower exit adjoined function. (The entity v is related to

the velocity 4-vector, but does not coincide with the lat-
ter. Its time component ) is ¢, and the spatial components

[Vu, p = 1,3) are the usual physical components of the ve-
locity.)




If the vertex entry is adjoined by the .line G, the
integration over the corresponding variables r,p and i takes

place. . il .
The truncated closed equation for the function <-§N6F>

can be obtained up to any desired accuracy with the utiliza-
tion of the perturbation theory. We would not describe the
utilization: it will be presented in the journal publica-
tion.The crucial point of the latter is the smallness of the
characteristic motion scale - the scale is but a correlative
length of the turbulent wave field - compared to thée dimen-
sions of plasma volume.

We present here the resultant equation, which correspond
to plasma description with the three-wave interactions being
kept in the scope. It is
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But the mentioned function <5Nm8?‘> is unusual as the entity

of the Kkinetic theory. It can be expressed with the help of
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the last equation in terms of the two-time correlative
function- :

SR [0 F) aﬁkltrl,tlﬁ .

To present the equation for the latter let us change the no-
tation. In what follows the wavy line we associate with the
two-time correlative function.  The equation (3) leads to the

equation

{ 8N (r,p,t) oF(r ,t ) &
: o 1 T |
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where the operator is defined by the relation

e ool s i g M

-16

(The operator can be regarded to as a renormalized Green
function.)

The two-time correlative function consists of two sum-
mands. One is a collision correlative function. The another
is the wave correlative function. They represent
correlations of fields, which are relevant when treating the
particle collisions and the plasma turbulence, respectively.
In our problem the collision correlative function can be
neglected.

The further constructing of the kinetic description sup-
pose us to revert to the analytic formulae writing.The
Maxwell equations together with any equation of the type (4)
gives the following analytic system

g i >
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In the last equation the denotation c*vmar (r,t,rz,tz} is for

the tensor with the physical meaning of a conductivity
tensor. In general case its analytical expression consists
of many terms corresponding to different diagrams in RHS of
the eq. (4). We would not write down the explicit expression
for the tensor. For the problem on study the latter will be
presented in the second section.

For the case of an homogeneous plasma the Fourier
transformation of the basic equations is of the common
practice. In our case the inhomogeneity effect cannot be
neglected. Nevertheless the typical motion scale is great
compared to the inhomogeneity scale, which is but the
geometrical optics applicability condition. It makes it
possible to derive sufficiently simple equations for the
following way determined Fourier-transform of the two-time
correlative function

ijkl :

(r,t,t) =
1

@, { d°R exp (-i(kR)) x

(2n)’ |
X sildr + R 3 s88 e - R 2y -
2 2

The function @k(r,t,tl}can be expressed in terms of a so

called spectral densities. (In the usual turbulence theory
the notion of quasiparticle distribution is accepted for the
spectral density, but the author does not regard the term as
a meaningful one.) To get the notion of spectral density we
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should solve the problem of the two-time function expressing
in terms of the autocorrelative function fbk[r,t,t). In our

case the task is simplified by the fact that the the wave
polarization does not depend on space position, time and
wavevector. But in the general case the dependencies mentio-
ned must be taken into consideration. The description of the
way to solve the problem both for the general case and for
the problem taken will be presented in journal publication.
This way utilizes the Laplace transform technic. (The very
possibility of consistent expression of all relevant integ-
rals in terms of spectral densities Iis connected with the
fact of plasma being weakly turbulent - in a sense of an
usual theory. It means the inverse evolution time of the
plasma - which does not exceeds the increment of the most
unstable waves, - is small compared to the spectrum
frequency width. In our case this condition is satisfied.
Moreover, the author suppose that in all well posed problems
the plasma weakly turbulent).

The real fact is that the question of plasma turbulence
description is settled. Let us proceed with the results ob-
tained for the problem chosen.

Section 2. The results obtained-

The relevant equation for the function <6NQSF> can be

presented in the form

< 61"-!“ 6F> =

= [_J_l +4 _A“_"ZLH+ 5

+ 4
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‘sufficient to learn about the role of the

It adequately describes in the lowest order the effects of
wave pumping, of plasma nonstationarity, of wave diift in
k - r space (remember the wave package behavior in the in-
homogeneous medium) and of the wave induced scattering on
plasma particles. The corresponding plasma description is
drift vortices in
the plasma, which some scientists suppose to be essential.

If they are essential for the plasma diffusion, the
equations must demonstrate the wave condensation in the
region of long wavelengths.
The dispersion equation for the drift waves is
iw - 4m [u*kw[r,t] + Sﬂ“kw[r,t] +
i 8°
+ =
2 {Tkw(r,ﬂ ] 0 ' (8)
s 6}{6 ar
It contains a conductivity scalar. The latter consists of
the linear term
& -ZEZ‘[G’SP dap " kv k? d
ko e — |
e B ; S Gtka[p’pl] f&(r,pl,t] a2 (9)
k Bpr‘}r

1
and of the nonlinear one
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In these formulae the function G{ka [p,pl} is the Fourier

-Laplace transform of the Green function. Its calculation
contain no difficulties. We restrict ourselves only to pre-
senting of its definition

3
Gmkm(p,pll = I d'r dt Gm(r,p,t,rl,pl,tll X

x exp (iw (t—tl] - i.(k{r—rll}) ,

The index s in formula (10) takes values 1 and -1. The

function ni[r,t] in eq. is related to the spectral density

of drift waves nk(r,r]. The function wi(r,t} is the soluti-
on of eq. (8) and is related to the natural frequency of the
drift wave w, (complex!). The relations can be defined as

k
follows. We choose the index s system to embody the pro-

perty Re wllc > 0. Then we can take a following definitions of

drift waves natural frequency and spectral density

*

o (rt) = or(r,t) = - [ (0], n(rD) = nj(rt) .

. : 8 4
The evolution equation of the function n, s
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(Here and in what follows we omit the variables r and t:
they are implied.) The first two terms of RHS here
correspond to the wave drift forced oscillations. The terms
in square brackets are connected with the effects of
medium time dispersion and of medium nonstationarity. Both
the effects are out of the scope of an usual geometric
optics.

The distribution function of the given type « particles
evolves in accordance with the equation

fs, & a v ] d
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The first square brackets represents the contribution of the
first diagram in RHS of (7). Its first term correspond to
the usual quasilinear. diffusion [10]. All other summands of
the collision integral are the corrections, which are out of
the scope of,an usual theory. But it is these corrections,
the consideration of which is necessary to develop a picture
of plasma diffusion and to learn the role of the vortices.

The last term in the braces issues from the plasma
nonstationarity. The second square bracket represent the
wave effect on plasma. particles in the process of induced
wave scattering. :

The system of equations (8-14)
the plasma evolution up to the accuracy wanted.

coﬁsistentl}r describes
It should be

admitted that these equations are not compact. But they
accord to the goal desired. They would be studied more
thoroughly, with reasonable simplifications. But such a

study should constitute a subject for another article.
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