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ABSTRACT

HQET currents with the quantum numbers of the ground-state
baryons are discussed. One-loop anomalous dimensions are calculated,
and exact one-loop matching to QCD currents is found. Two-point cor-
relators of these currents are calculated taking into account d < 9 terms
of the OPE. Sum rules for heavy baryons Ag and ES} are ;nalyzcd,
Three-point correlators of two baryonic currents and a heavy-heavy
velocity changing current are calculated with the same accuracy. The

baryonic Isgur-Wise form factors are estimated from the corresponding
sum rules.
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1 Introduction

It was noticed long ago [1] that properties of hadrons with a single heavy
quark are simple: it’s mass (and hence flavour) and spin orientation are
irrelevant to the leading order in 1/m. Recently this qualitative physical
picture was incorporated ‘nto the formal framework of the Heavy Quark
Effective Theory (HQET) [2, 3]. The heavy quark spin symmetry [4] leads
to relations among meson [4, 5] and baryon [6-8] form factors. An elegant
general discussion can be found in [9]. Not only the orientation but also the
magnitude of the heavy quark spin is irrelevant, so this symmetry is extended
{o the superflavour symmetry [10}.

Nonperturbative methods {such as sum rules [11]) are needed to obtain
hadron properties in HQET. HQET sum rules for mesons and baryons were
first considered in [1]. They should be improved in order to take into ac-
count the currents’ renormalization in HQET. One-loop anomalous dimen-
sions of HQET meson currents were found in [12], and two-loop ones—in [13].
HQET meson sum rules with the proper account of these effects were consid-
ered in [14]. The meson Isgur-Wise form factors were considered [15] in the
framework of three-point sum rules [16].

Baryonic currents and sum rules in QCD were considered in a number of
papers [17-20]. One-loop anomalous dimensions of QCD baryonic currents
were found in [21], and two-loop ones—in [22] (where the perturbative cor-
rection to the sum rules was also obtained). Three-point sum rules for baryon
form factors were discussed in [23].

In the present work we discuss the HQET currents with the quantum num-
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bers of ground-state baryons. In Sec. 2 we calculate their one-loop anomalous
dimensions (as was done for mesons in [12]), and obtain the exact one-loop
matching of these HQET currents to QCD ones (as was done for mesons
in [2]). Note that non-logarithmic terms in the one-loop matching are useless
unless the two-loop anomalous dimensions are known. They can be found
using the methods of [13]; we hope to return to this question later.

Our further analysis of the heavy baryons is similar to the detailed light
baryon analysis [18]. In Sec. 3 we consider two-point correlators of the HQET
baryonic currents. OPE for diagonal correlators contains even-dimensional
terms; perturbative terms (d = 0), (G?) corrections (d = 4), (q)” terms
(d = 6), and corrections to it (d = 8...) are taken into account. OPE for
nondiagonal correlators contains odd-dimensional terms starting from (79)
(d = 3); m} and (G‘E} corrections {d = 5 and T}, and (Eq)a terms (d = 9)
are also taken into account. After that, the sum rules for Ag and ES}
following from these correlators are analyzed. The diagonal sum rules have
large continuum contributions because the spectral density grows like w?. In
the nondiagonal sum rules it grows like w?, and continuum contributions are
not so important. But higher power corrections (with d > T) are poorly
known. Nevertheless, both types of sum rules give good results consistent
with each other! We disagree with some results of [1].

In Sec. 4 we consider three-point correlators of two HQET baryonic cur-
rents and a heavy-heavy velocity changing current. We calculate diagonal
and nondiagonal correlators with the same accuracy as in the two-point case,
and obtain the baryon Isgur-Wise form factors from the sum rules.

2 Baryonic currents in HQET

Hadrons in HQET are classified according to the light fields’ angular mo-
mentum and parity j*. For ground-state baryons, light quark spins can add
giving j* = 0% or 1*. In the first case their spin wave function is anti-
symmetric; Fermi statistics and antisymmetry in color require antisymmetric
flavour wave functions. Hence light quarks must be different; if they are u,
d then their isospin I = 0. In the second case the flavour wave function is
symmetric; if light quarks are u, d then their isospin I = 1. This gives us
the %'!' baryon with I = 0 called Ag, and the degenerate %+ and %+ baryons
with 7 = 1 called £g and E*Q,

Baryonic currents have the form 7 = E“b“(q?“CFqu)F’@", where C is
the charge conjugation matrix, ¢* means ¢ transposed, 7 is a flavour matrix
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(symmetric for g and antisymmetric for Ag), and é is the efFEctive field
satisfying 700 = Q. We shall abbreviate it to 7 = (¢"CT'q)I'Q. A light
quark pair with j™ = 07 corresponds to the current a = ¢’ Cvsq, and with
j* = 1¥—to @ = ¢ C¥q. One can easily check it using the P-conjugation
¢ — ~og. It is also possible to insert yp into these currents without changing
their quantum numbers. The curren® 7= a@ has spin 1/2; the current J= i_l'c'?_,
contains spin 3/2 and spin 1/2 ¢ ponents. The part Jaje = 1+ 5777
satisfies the condition ¥ - _}: — 0 and hence has spin 3/2. The other part
3:1!'2 = -—%ff-j“: -%?7537”2, Ji/2 = @ -7 v5Q has spin 1/2. Finally we arrive
at the currents

a1 = (T C1s0)Q,  Taz = (" Cro7159)Q,

o1 = (¢7CYq) - 71:Q, Tz = (4" C7079) - 7 15Q, (1)

Jue1 = (¢7CT9)Q + 57(¢" C7q) - 7R,

Fe2 = (T C79)Q + 57(¢° C1o¥0) - Q-
This classification follows ideas of [9, 7]; the currents for Ag and Xg first
appeared in [1].

%
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Figure 1: One-loop proper vertex

Now we consider the one-loop renormalization of these HQET currents. In
the MS scheme (the space dimension D = 4—2¢) the bare fields are related to

i |

: e CAPLEAE A T oy
the renormalized ones by go = i ‘Z;‘mq, Qo=1p Zg @, where % = £,
4 is the normalization point. In the Feynman gauge the renormalization con-
Bl 2 -
stants are Z, = 1-Cp 3=, Zg = 14+2CF oy wrlwmre CFr =52T_1-, N = 3 1sp_1’;he
number of colors. The bare current jo = ¢oqoQo = =3 Z;7, or ¢qQ = Zrj,

where fj = qugggp. Then the matrix element T = (0]qqé|qqé> ~—
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Zp <[]1}'|qqé>, where the matrix element of 7 is finite. Calculating the ul-

o

traviolet divergence of the vertex T' Fig. 1 in the Feynman gauge, we obtain
Zr =1+ CpiL (%—g- + 2), where 7,1'y, = HI', Cp = N—ﬁ{—,l- 3, Using Z, and

S o "r"'r" . " ~ d!. z ¢
Zq we find Z; = Zr; hence the anomalous dimensions y; = -—%—""df;w are

s i
5 = GB%(4 +2), (2)
a1 =—3Cp—, Tma=7m1 = —=Cp~—, o2 = ~Cp—.

T 2 T T

They depend only on the light quark part of the current.

Now we are going to establish relation between these HQET currents and
QCD ones. A QCD current j = (¢F CTq)I"Q matches the corresponding ef-
fective current A7 if they give the same physical matrix elements. In order to
calculate on-shell matrix elements, we have to use the on-shell renormaliza-
tion scheme in which propagators in the on-shell limit are free. For the “mass-
less” fields g, @, the bare on-shell propagators get no corrections because loop
integrals are no-scale (ultraviolet and infrared divergencies cancel). Therefore

the on-she!l renormalized fields coincide with the bare ones: ¢ = Zq i zqo_f,,

é - 5‘5” 2&;’05.' Note however that although the expressions for renormaliza-
tion constants Zg, EQ are the same, all divergencies in them are infrared ones
because these Z factors relate renormalized (ultraviolet-finite) fields. For the
massive quark field @ we have @ = Zéons, Zg=14+Cr2(2-3L+ 1),
where L = log ';J; Note that the infrared divergence of the on-shell massive
quark propagator Zq is the same as that of the effective quark propagator
Zq-

‘W{ihave for the currents j = ZFIZ;IZc;”EqQSqGSQDS, 3= 2513;125”2
QosFosos- Hence the on-shell matrix elements are (0|jlgg@) =
Z[TlZé’lZé;”?F, (0|71¢9@} = Z-’EIZ;IZ{EUEI‘, where the proper vertices I',
I’ are depicted on Fig. 1. Hence we obtain the matching constant

—

I'/Zy Zg i S
A=Ag=———, Ag=1|=" — 8 — | =L-2].
7 A (Zq) O (2I )

3of course, it is a pure formality to write N in formulae based on the fact that a baryon
contains three quarks.

I —TT

Here ultraviolet divergencies cancel in I'/Zr, T'/Zr by definition; infrared
divergencies cancel between these two expressions because the infrared be-
havior of QCD and HQET 1s identical; Ag is finite. We choose all quark
momenta in HQET to be zero; this corresponds to the heavy quark mo-
mentum mv (v = (1,0)) in QCD. Then the HQET loops (Fig. 1) vanish.
The diagram Fig. la vanishes in (but not in Zr). Logarithmic terms in
the matching conditions are determined by the difference between QCD and
HQET anomalous dimensions.

The choice of QCD currents corresponding to the HQET currents (1)

is not unique. We restrict ourselves here to the simplest variant with T —
-*—1+;” i ——'"—“-12 . 1f we denote {(¢* Cl7 v, [’]q)——"f—“r2 . 1“'—11"1'2 %5, Q) = f(D) (4}, then
the matching constant A = Aq [1 +CBi: (Q(L -3+ %3‘%)]. Indices u, v
here are purely space-like, hence the matching conditions are the same for

pairs of currents with I' — ~voI'. Finally we obtain (in the scheme where 75
anticommutes with all 7,)

1+ 70

(¢" Cs9) 7
s B Oy o = _
(T Crnu) s 100 = g [1 - ot 2D - 4] T B)

i - o i e
5= Cra)—5— (D~ )i vuvy) — Ow] —5—

= Aq [1-Cb (L~ 3)] 710

Q = AgJia1,

These equations should be used to obtain the QCD matrix elements from the
HQET ones calculated, for example, from the HQET sum rules (Sect. 3).

3 Two-point correlators

Two-point correlators have the general structure (= (EFT+C'1E;'T)QF)

i 1+ 70+ it i
i(T}1($)32{0)> = (1“'1 2% F;) §(2) 2 Tr 7rF TTI (o). (4)
The expression (4) without the first factor is the correlator in which the
heavy quark spin is switched off (it’s propagator is S(zg) = —id¥(zo)). For
both j© = 0% and 1% there are two diagonal correlators and one nondiagonal
one (see (1)). Correlators for the physical spin symmetry multiplets (Ag,



L, Xg) are expressed via these ones by (4) due to the superflavour symrme-

try [10]. The normalizing factor T = !zTrI‘lf‘-g for diagonal correlators and
i TryoliT'2 for nendiagonal ones.

a

<

B

Figure 2: Two-point correlator

OPE for diagonal correlators contains even-dimensional terms. We take
into account the perturbative (d = 0) term (Fig. 2a), the gluon condensate
(d = 4) term (Fig. 2b), the (T;’q)z (d = 6, 8...) terms (Fig. 2c). The diagram
Iig. 2d gives a d = 6 contribution; it is of the order of unknown perturbative
corrections to the diagram Fig. 2c, and is not taken into account. We use the
fixed-point gauge z,A,(z) = 0 in which the heavy quark does not interact
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with gluons. The methods of calculation of correlators in this gauge are
reviewed in [24]. We obtain

N13(@) | (G
Mass(t) = '"?i?gl ll + ‘“;;M((N Efl)] ,
@ = Yo @0a0)’ 6

The terms 11,43 appear to be the same for 7171 and 272 correlators; ¢ = 1

for Ag and —-% for EZS). We have factorized a four-quark condensate in
Il. into two two-quark ones. In this approximation TI. is also the same
in two diagonal correlators (though the factorization approximation {11] is
thoroughly checked only for products of vector and axial currents). These
correlators can’t strictly coincide at least because 71 and 73 have different
anomalous dimensions (2).

31‘2 wua{{?:)x“

The nonlocal quark condensate {§(0)g(z)) = (gg) (1+ Rt —gen—
...}, where in the last term the factorization is used for d = 7 quark-gluon
condensates. It may serve as an order-qf—magnitudc estimate only. The

Gaussian anzatz (g(0)g(z)) = (@g) exp (%i) was proposed in [25] instead.
The z? term in it is about 3 times larger than in the factorization estimate.

The perturbative (d = 0) and {Gg)” (d = 6) terms were first considered
in [1]. We agree with the perturbative result. The {gg)° term in [1] had
different signs for Ag and £¢g while these signs are the same in (5). Because
of this, the results [1] on Lq and it’s difference from Ag are incorrect.

OPE for nondiagonal correlators contains odd-dimensional terms. The
diagram Fig. 2d gives d = 3, 5 7T... terms; Fig. 2e—d = 5, 7... ones;

Fig. 2f—d = 7... ones. The diagram Fig. 2¢ contributes a d = 9 (gq)” term.
We obtain

Hg=

1

N @S0 [, mit e (G
Ti N3 7 16 06N

_ . Nl(zg)5(1)
T.(t) = ieTemaN (N — 1)t [Lm

N ra, (Gq)° S(E)3
144 N3

The factorization approximation is used for d = 7 quark-gluon condensates,
so these terms are order-of-magnitude estimates only. In this approximation
the diagram Fig. 2f does not contribute.
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Correlators obey the dispersion representation

o0 o2

T P(E)d&l 3 o =g

nw = [ 2%t 1w =-80 [su)e ot @
0 0

A siubtractiori polynomial in II(w) (denoted by dots) leads to é(f) and it’s

:derwa.tives in TI(t). We analytically continue correlators from ¢ > 0 to imag-

inary t = —ir. Then II(7) and p(w) are related by the Laplace transform

o0 a4i00
(r) = ffp(w)e'“wa, plw) = 2i7r ] I(r)e“" dr, (8)

where a is to the right from all singularities of II{7). A term S@)/t" (n>1)

in l'l(t.) gives i"¥(w)w™ "1 /(n—1)!in p(w); a term S(t)t" (n > 0) corresponds
to (—i)"*26(")(w) We obtain for the diagonal and nondiagonal correlators

palw) = —i-;i?(w) [% + xa (GP)w :l

‘IN(N - 1)
aa)> ma
I 5w - B8+ )
N (G w? T 2
o) = 40 [ﬂ(u); -5 (1-55) (mﬁﬁ(w) + -%Si,—Glé'(w))

Crpr’a, (E'?}S T
v W

We have also verified the leading terms of these formulae by a direct appli-
cation of the Cutkosky rules in the momentum space.

We equate the OPE-based expressions (5-6) for II(7) to the dispersion
representation (7) with a model spectral density containing the lowest baryon
contribution and the continuum contribution. This procedure is equivalent
to the nonrelativistic Borel sum rules [1].

Baryon residues in QCD are usually defined as (017]B) = fup where the
relativistic normalization of the baryon state |B) and its wave function upg
is implied (and Tr 7+t7 = 1 is assumed). This normalization 1s senseless in
HQET; one should use the nonrelativistic normalization instead. Both sides
of this equation are divided by v2m, and its form does not change. So
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baryonic residues f are constant in the heavy quark limit up to logarithmic
renormalization effects. We have the lowest baryon’s contribution to the
spectral density p(w) = %5(&: — ¢) where ¢ is the HQET baryon’s energy
(i. e. mass minus the heavy quark on-shell mass).

We adopt the standard continuum model: it’s spectral density is equal to
the theoretical one (9) starting at a continuum threshold w, (of course, 5(n)(w)
terms don’t contribute). The continuum contribution is thus subtracted from
the theoretical part of the sum rule leaving an integral over the resonance’s
duality interval (up to wc). A term S(t)/t™ after subtracting the continuum
contribution gets the factor fn_1(w.7) where folz) = 1 =€) o fn—":
Therefore the formulae (9) are n~t necessary to construct the sum rules. We
include all g(t)/t“ terms with n > 1 to the spectral density, as was done
in [18]. If power corrections are not included, it means the absence of such
subtraction for them what leads to their overestimation.

The two diagonal correlators give the identical sum rules for (0(71]B)
and (0[72|B). Therefore these matrix clements are equal with the accepted

accuracy. Following [1], we introduce the dimensionless variables 7 = k—lg,
N {7q)’ na,f{r‘zl
2 = S5bn, mo = 4kko, mrv-) T (kEg)!, we = kEc, € = kb,
2
k® = — 25 (gg). Then we arrive at the two sum rules

/
E B2 B E: as t1
o n) c NS i, Ao - { e (& _ ¢ (z 8
= 2 [fz (_E) (1 2) Ezfu (E) 3 Ll 2) 4 " 27T EG] i

We have used the Gaussian anzatz for the nonlocal quark condensate
the diagonal sum rule. The nondiagonal one is used at larger I where the
nonlocality is not so important. For consistency, we use the factorization
estimate for all of the diagrams Fig. 2d-f (including the nonlocality).

Note that (0]71]|B} and (0|32| B) can’t be always equal because they have
different anomalous dimensions; hence the anomalcus dimensions effects are
out of our control here. We obtain these matrix elements normalized at
a typical Borel parameter scale; if one wants to have them at a different
normalization point (e. g. at mg ior matching with QCD), one should use
the anomalous dimensions (2).

E b o F 52)
i R~ o o c ol e 0
ne IE — E® [f'a (-_E) i C-—E4 fi (——E)] + exp (‘“2?—_?2' (10)
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Figure 3: (page 12). The diagonal sum rules. a) E, as a function of E
at various E. from the logarithmic derivative of the sum rule: three lower
curves—results for Ag at E. = 4.1, 4.6, 5.1; tkree upper curves—results for

Eg} at E, = 5.1, 5.6, 6.1. b) n as a function of F at various F., E,: three

lower curves—results for Ag at £, = 4.1, E, = 2.75; k.= 40, 5, = 299

E, = 5.1, E, = 3.2; three upper curves—results for 2 at E. = 5.1, E, =
q

36, E.=56,E, =38, E.=6.1,E, = 4.05.

Figure 4: (page 13). The nondiagonal sum rules. a) E, as a function of
E at various E,. from the logarithmic derivative of the sum rule: two lower

curves—results for Ag at E. = 3.4, 3.9; three upper curves—results for Eg]
at B, = 5.1, 5.6, 6.1. b) n as a function of I at various F., F,: two lower
curves—results for Ag at B, = 3.4, E, = 2.65; E, = 3.9, E, = 2.95; three
upper curves—results for Egj at £, = 5.1, B, = 4.2, E. = 5.6, E, = 4.4
E. =31 Ese=406.

At the standard value of the quark condensate, the energy umt k =
280MeV. Tt is stated in [18] that light baryons are described better if the
quark condensate is reduced by 20%. This leads to k = 260MeV; this value
was also used in [1]. We also accept it; the standard values of m? and <GE}
then give Ep = 0.85, Eg = 0.60.

The results of the diagonal sum rules analyses are shown in Fig. 3. In the
selected range of the Borel parameter E, the perturbative contribution, the
gluon condensate one, and the quark condensate one constitute for Ag 60—

40%, 25-15%, and 30-35%, correspondingly. For Zg}] the gluon condensate
contribution is 3 times smaller and has the opposite sign. The continuum
contribution (which is subtracted from the theoretical side of the sum rule)
rapidly grows, and is several times larger than the total result at the right
end of the interval. This means that the relative error due to the rough
continuum model is multiplied by 1-5 in the total result. On the other hand,
the contribution of poorly known higher power corrections (with d > 8)
becomes large at the left end of the interval. Namely, the nonlocal quark
condensate is several times smaller than the local one at this point, and the
d = 6 contribution is almost completely compensated by d > 8 ones. The
remarkable stability of the sum rule in the lower part of this interval i1s a
plausible argument in favor of the Gaussian anzatz for the nonlocal quark
condensate (the results with, e. g., the factorization anzatz are not so stable
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in this region).
Thus we obtain

Ag: €=T80MeV, w,=1200MeV, f[= (1.8 — 2.7) - 10~?GeV?,
58 : e=990MeV, w.=1460MeV, f=(29-4.1)- 10~2GeV®.

Taking into account the recent experimental result [26] ma, = 5640 £ 50 £
30MeV, we obtain a reasonable value mp = 4860MeV. The Aj-—-X; splitting
of 210MeV is in agreement with the potential model expectations of 190MeV
(see e. g. [27]). The distances from the resonance energies to the continuum
thresholds in the Ay and £ channels are 420MeV and 470MeV; they ap-
proximately correspond to the distances to the first excited states in these
channels expected in the potential model [27] 460MeV and 405MeV.

The results of [1] for Ag are € = 700MeV, f = 2 - 1072GeV?; it is an
order of magnitude too low*. The sum rule for Xg in [1] is incorrect. A, and
Y., were considered in the second paper of [20] using relativistic sum rules.
Two matrix elements obtained there reduce to (0[7a1|A.) in the heavy quark
limit, and give fa,1 = 3.2-1072GeV? and 4 10~ 2GeV?3; one matrix element
reduces to (0|izz|E.), and gives fea=12; 10-2GeV?3.

The rtesults of the nondiagonal sum rules analyses are shown in Fig. 4.

In the selected range of the Borel parameter £, the m2 correction in the

A~ sum rule reduces starting from 40%; in the case of ¥(*) it is 7/3 times
Q g Q

larger. Therefore the left end of the interval is not very reliable for Eg}, The
estimated contribution of poorly known d > 7 corrections does not exceed
10%. The continuum contribution grows not so strongly as in the diagonal
case, allowing us to use larger values of E.

The sum rule for Aqg prefers somewhat lower values for the effective con-
tinuum threshold than in the diagonal case, and gives the same results for
tlie resonance energy and the residue. The sum rule for Eg} gives somewhat
too high values for the mass and the residue. In general, the agreement of
these two completely independent sets of sum rules gives us more confidence
in the results.

4 Three-point correlators

Now we shall consider correlators of two HQET baryonic currents fia =
(qTC’I‘qu)F’MQLg (where Q2 = v1,2(Q1,2 are the effective heavy quark

4 At the quoted value of fa,, the right-hand side of the equation (45) in [1] is about
two orders of magnitude less than the right-hand side.
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fields with the velocities vy 9, v; - v2 = chy), and a heavy-heavy current
N élf‘ég. They have the structure

= 1+v, 147
(Tﬁ(h)f(ﬂ)ﬁ(rz)) = (Fi ~I;J1F -Zﬂg_ﬁz) 2Trrr?
oo o
/dtlﬁ(;cl-vltl)fdtgé{zg+v3tg)ﬁ;’{t1,t2), (11)
0 0

The expression (11) without the first factor is the correlator in which the
heavy quark spin is switched off. For j© = 0% K(t1,12) is a scalar function;
for j* = 1% it is a tensor K, = Kjjeqjuea|ly + K181y, Where ey = (v2 —
chpv;)/shp, ey = —(vi — chpvy)/shy are the light fields’ poiarization
vectors in the scattering plane, and 61, = Y. e11u€21, = [chp(viuva, +
VauUiy) — VipVip — vg”uzy]/sh? @ — Quv, €11 = €21 are two orthonormalized
polarization vectors orthogonal to this plane. In each of the three cases
(0t, ll'li', 1T) there are two diagonal correlators and one nondiagonal one.

Correlators for the spin symmetry multiplets (Aq, Xg, Xg) are expressed
via the spinless ones by (11) due to the superflavour symmetry [10].
In the limiting case ¢ = 0 we have

K(t1,13) = (t1 + t2). (12)

Indeed, let’s consider any diagram for the two-point correlator in the coordi-
nate space (for simplicity, with the scalar heavy quark). Vertices along the
heavy quark line have times {5 < t; < --- < t,_1 < iy, and integration in
t1,...,tn—1 is performed. Consider the diagrams obtained by inserting the
heavy-heavy vertex (with the time ¢ and ¢ = 0) to all possible places. These
diagrams have the integration regions 9 < #; < +- < -1 <t <ty <
oo € tp_1 < tn. These regions span the whole integration region of the
original diagram, therefore the sum of all these three-point diagrams is equal

to the two-point diagram. In the momentum space the equation (12) reads
K(wy,ws) = HE“%':%EEE. For ES} correlators at ¢ = 0 we have K| = K
because all directions orthogonal to v are equivalent.
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Figure 5: Three-point correlator
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For the diagonal correlators we obtain (Fig. 5)

st =
ra, (G?)
TY6N(N — 1)

N1 S(t1)5(t2)
Kc(tlltE) =1 Elf\m

(4(N — 2)tit; sh® ¢ + 3{:(4‘:2)2)] , (13)

(@(—vat2)a(vitr))’

where ¢ = vit] +vatsa, r? = i%+t§+2 ch pttz; a = z2 for Al, 22, Y. .1 cases
(1, 2 refer to Ji,2 correlators), and a = y? = chp(t? +12) + 2t1t; for A2, ¥y 1,
Y2 cases; ¢ =1 for Al, ¢ = %— (1-&-2-::115.032-) for A2, e = % (1 —Qchgo%i—)
for yl, ¢ = —% for 2, L1, £12. These results agree with {(5) at ¢ =
0 (12).

The nonlocal quark condensate (g(x)q(y)) in the O-gauge (i. e. the
fixed-point gauge (z — zo)uAu(z) = 0 with zo = 0) can be rewrit-
ten in the gauge-invariant form (q(z)E(z,0)E(0,y)¢(y)), where E(z,y) =
Pexp(—i) [} Au(z)dz,. Using the translational invariance we rewrite

it as ('q'([])E(G',x—-x)E(—x, y—z)q(y—z)), or (G(0)E(—z,y — =)q(y — z))
in the new 0-gauge. In the factorization approximation (giving
only a rough estimate) we can replace E(z,y) in this formula by

; ra{G* e i
(% Tr E(=, y)) =1+ —ﬂgﬁr—l((xry)z — z2y?). This gives (§(—vat2)g(v1t1)) =

ﬂa,{Gg)t";tgﬂh: P

(@(03a(=) [1 g i

For the nondiagonal correlators we obtain (Fig. 5)

N15(t1)S(t2) (@q)
T2 N(z2)?

2.2 12
miz? | 7, (G ) (1,22 2,913
1 2
[a( 5 P et W L aha )
2 4 2
-H?t———ltgsh - (mg i g;}a: )}1 (14)

48 |
| | {G?})

Kapy(ty,ta) = —

16m2N(N — 1)
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——7

2 titash®p [, 7, {(G?) (u z*
il ol kvl el istita o
T3 ) (m”+ e O B

CrN! 5(t:)S(t2)ma, (G)° 2*(t + chptr)d

K.(t1,t2) = e

where a = t; + chts, b=1y,d=1for A and X, a =13+ chepty, b =1,
d=chpforZp;c=1for A, c= —1 for Xy, Z1. These results agree with (6)
at ¢ = 0 (12).

Three-point correlators obey the double dispersion representation

. p(e1, e2)de1der :

I{(fl,tz) — §{t1)§(tg) f p(wl,WE)E‘iw]tluiwgtgdwlde + -

Subtraction terms in K (w1, ws) (denoted by dots) are polynomials in w; with
coefficients that are arbitrary functions of ws (given by single dispersion in-
tegrals), or vice versa. These terms give 5(")(1,) times arbitrary functions
of t3 (or vice versa) in K(t1,t2). We analytically continue K(t,t3) from
t1 o> 0toti2 = —i72. Then K(m1,72) and p(wy,ws) are related by the
double Laplace transform

I{(Tl g Tg) = [ p(wl ,Lr.?g)ﬁ_.wlﬁ =WaTa dﬂ“di.r.-"g, (16]
. adioa atioo
p(wl ) wg) = (2?1_)? f dTl / dT’gK'(Tl i Tg)ﬂwlf1+w2ﬁ :

All considered correlators have the form K(7, 72) = P(ry, m2)/(—2*)", where
P(m, ™) is a polynomial, and —z2 = 72 + 14 + 2chpnm. Itis convenient
to introduce the new variables z; = ePl2r 4o~ ®l2ry 25 = P12y + 7 %27y,
B = ePl2wy — e~ 2w, Qy = e?!2q — e~?/2w,. We have —2* = zj29,
wit + wory = (121 + Q22)/2sh ¢, and integrals for plwy,ws) factorize.
They don’t vanish only in the region §; > 0, Q2 > 0. This region has the
form of a wedge e”¥ < 22 < €¥ (Fig. 6). Therefore it is convenient to use
the parametrization wy 2 = w(l £ nth £) (or Q2 =2wsh§(1 £ 1)) in which
the physical region is =1 < n < 1. It is evident from (15) that in the limit
¢ — 0 K(t1,12) depends only on t; +1{, as it should (12), and is given by the
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single dispersion representation (7) with

+1

plw) = éﬂ?w th £ fp(w(l +nth £),w(1l —nth £))dn. (17)

-1

Figure 6: Physical region of double spectral densities

For the diagonal correlators we obtain

N! [w‘iﬂ(n)

~ 2nishy | 5! ch? ‘

s ras (G?) (NAZ

ol (S s+ O )|, 09
where A(n) = (1 —n2)?, B(n) = &(1+n)+6'(1 —n) - (3+8sh” $)(6(1 +
M +6(l—n)—1)+ 85h4% for AL, Zy2, .15 A(n) = 2(1 =7, B(n) =
L (67 (i +n) + 8" (1— ) = (1+45h? £)(§'(1+m)+ (1 —n)) +2(1 +25h” £ +
4sh* £)(8(1+n)+6(1 —n) —1) +8sh® £ for A2, )11, £,.2; C(n) = 1 for Al,
C(n) = L(6(1+n)+ 6(1 —n) +2ch p) for A2, C(n) = Lo(L+n)+86(1—mn)—
2chy) for 51, C(n) = -1 for T2, £11, C(n) = —5(8(1 + ) + &(1 = )
for £, 2. For the nondiagenal correlators we obtain

(79) w 4
L LA e
272 sh 2l 2

m2ch £
—(1-%) —E;;JE_E" (e""”&(l Fn)+e ?/25(1+ 1})) ] (19)

in this formula we assuméd N = 3 because it becomes much simpler in this
case. Upper signs are for A, ¥, lower signs—for Zj; c =1for A, ¢ = __% for
Yyj,1- Terms V:Fitll t?w:r 6-fun_ctic-ns nonvanishing only at the crigin w; = 0,
ws = 0 are omitted in equations (18-19). These formulae agree with (9) at
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¢ = 0 (17). We have also verified the leading terms in these formulae by a
direct use of the Cutkosky rules in the momentum space.

In order to obtain the information on the lowest baryons’ form farctors, we
equate the OPE-based expressions (13-14) for K(r;, 2) to the double disper-
sion representation (15) with a model double spectral density containing the
lowest baryons’ contribution in both channels, continuum contribution, and
the mixed contributions with the lowest baryon in the one channel and con-
tinuum in the other one. The last contribution is exponentially suppressed at
sufficiently large 71 2, and is neglected as usual [16]. The subtraction terms
don’t contribute at 71 # 0, T2 # 0. The applicability region of the sum rules
are symmetric with respect to the interchange of r; and 72 (ot nearly sym-
metric in the nondiagonal case). Therefore we shall not loose an important
information if we restrict ourselves to the diagonal 1 = 72 = ¥IY.

The contribution of on the lowest baryons in both channels to & (#1,12) has
the form %flfg‘ e—ifiti—ieatag(ch ), where £ is a scalar function for j© = 0%
and £, = §jeayueaiy + Exbiny fOr )" = 1+. The form factors £(ch ) of
the §° = 0%, 1% baryons with the heavy quark spin switched off are called
{sgur-Wise [6] functions. For the form factors of the physical spin symmetry
multiplets Ag, Eg, £ we have from (11)

(By|J|Ba) = il TThus £(ch p). (20)

This is equivalent to the results of [7, 9]. The contribution to the double
spectral density is 3 f1f3&(ch p)8(w1 — £1)8{we — €2).

We adopt the standard continuum model: the continuum spectral den-
sity is equal to the theoretical one (18-19) starting from a smooth curve—
continnum threshold. Note that a non-smooth behavior of the continuum
threshold imposed in the first paper of [15] has no physical justification, and
leads to an infinite slope of form factors at the origin. We choose the simplest
variant—a straight line continuum threshold (Fig. 6). This triangular con-
tinuum model works well in the pion form factor case [16]. If the threshold
is curved, then the contributions of the shaded regions in Fig. 6 should be
subtracted. This will influence the form factor slope. This degree of freedom
for the slope is analogous to the freedom of varying the continuum threshold
in two-point sum rules, and should not be very significant if the sum rules
are applicable. With the straight line threshold at 7, = 72, we don’t need
p(w1,ws) to write down the sum rule; the one-variable function p(w) (given
by (17) without the limit sign) is enough. Moreover, this function
tional to w™ where n is evident from the dimensional analysis. ITence spectral
densities (18-19) are unnecessary: we can use terms of the coordinate space

i= E.“ﬂ;‘.‘{_’)]'-—
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results (13-14) at t; = t2 = —it/2 multiplied by the corresponding fn(w.T).
Using the dimensionless variables, we obtain the sum rules

B fﬁ(Ec/E)
n€(ch p)e Fr/E = B o raa 7
B [Li(E./E) 7.9 1 )
+E4 chgg C+§Sh ) ﬁ+§
EE E-!
+ exp (-— E—gchzg-{*%-g—%sh?ga) (21)
g |
fo(E:/E) o\ 3 \ oy B 2
= 98° |22l (1-5) P fo(Ee/E) + 3 (1= 5) 7 b gJ
2
a,dch® £
27w E3
Here ¢ = 1 for A and ¢ = —% for ©; in the diagonal sum rule § = 1 for
A2, § = =1 for Eyl, and 6 = 0 otherwise; in the nondiagonal sum rule

d = chy for I and d = 1 otherwise. In the diagonal sum rule we have
included the effect of noncollinearity in the nonlocal quark condensate to the
exponent; this is.an order-of-magnitude estimate only, and should not be used
when this effect is significant. At ¢ = 0 these sum rules coincide with (10).
Dividing (21) by (10), we obtain the formulae for the Isgur-Wise form factors
not containing E,; the normalization at ¢ = 0 is automatically correct.

The results of the sum rules analyses for £(ch ¢) are shown in Fig. 7. We
have taken the best values of the continuum threshold E. and the intervals
of the Borel parameter F from the two-point sum rules. Variation of these
parameters in reasonable bounds lead only to slight changes of these curves.
The diagonal sum rules are very stable with respect to varying E, but only
at E > 1.2; this bound is higher than in the two-point case. This can be
explained by a not very accurate consideration of the noncollinearity effect
in the nonlocal quark condensate. In the case of Ag, the two diagonal sum
rules are in a reasonable agreement with each other; the nondiagonal sum
rule predicts somewhat lower slope and a more straight shape, but 1s not
in a sharp disagreement with the diagonal ones. In the case of E(*), the
second diagonal sum rule predicts the equal form factors for the two possible
light fields’ polarizations; the first one yields the same result for X, but a
somewhat different result for Xj. Therefore the accuracy of the approach
doesn’t allow as to distinguish between &);(ch ) and £, (ch ). The results of
the diagonal sum rules are in a reasonable agreement with each other.
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Figure 7: (page 23). Sum rules for the Isgur-Wise form factors. a) Ag: lower
curve—the diagonal sum rule 1 at E, = 4.6, £ = 1.2; middle curve—the
diagonal sum rule 2 at the same values; upper curve—the nondiagonal sum
rule at E. = 3.9, E = 3. b) Eg): lower curve—the diagonal sum rule 1
for Xy at B, = 5.6, E = 1.2; middle curve—the diagonal sum rule 2 for Xy
and both diagonal sum rules for £, at the same values; upper curve—the
nondiagonal sum rule for Yy at B, = 5.6, E = 3 (for T, it differs by less
than the line width).

On the other hand, the nondiagonal sum rule predicts a significantly lower
slope and a more straight shape. The nondiagonal sum rules for X and X

differ only in the very small d = 9 ('q“q)ﬁ term, and the predicted carves
are undistinguishable. We remind that in the two-point case an agreement

between the nondiagonal sum rule and the diagonal ones for £ also was
much worse than for Ag. It would be interesting to understand the reason
of this poor agreemeni.

Note that in the case of the nucleon form factors a thorough analysis of
the sum rules appeared impossible, and a simplified local duality approach
was used [23]. It corresponds to working at infinite Borel parameters, and
using the continuum threshold from the two-point sum rules. Moreover, only
one correlator was used, so no self-consistency check was possible. Here we
are in a somewhat better position: we do have wide stability regions in Borel
parameters, and the comparison of different correlators allows us to estimate
the accuracy (though it is not high).
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