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ABSTRACT

The first examples of regular and singular self-similar solutions
of the 3-d nonlinear Schroedinger equation for potential vector
field are found explicitly. Regular solutions relate to the process of
the ”singularities” formation. Singular solutions relate to an early
evolution of the ”singularities”. Together, ' the solutions describe
behavior of Langmuir wave field in the spatiotemporal vicinities
of its "singularities” and provide an effective mechanism of energy
dissipation from the Langmuir condensate.
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In the framework of a weak turbulence theory, the basic nonlinear pro-
cesses lead to accumulation of long Langmuir waves. As a result so-called
Langmuir condensate is formed. The mechanism for the energy dissipation
from the Langmuir condensate remained unclear for a long time. Since 1972,
the subsonic Langmuir collapse was considered to provide such a mechanism
[1]. However, this kind of collapse appeared to be "weak”, so that an in-
finitely small energy gets into arising singularity (where the absorption could
take place). An effective mechanism for the energy dissipation was revealed
recently in the framework of the scalar collapse model. The singularities of
the scalar field were shown not vanish immediately after the absorption oc-
curs of the waves that produced them, but exist a long time and ”suck-in”
new waves [2-5]. As for the true Langmuir wave field (which is a potential
vector and not a scalar), its behavior in the spatiotemporal vicinity of the
singularities is unclear still. To advance in the problem, the true equation for
Langmuir condensate, namely, the 3-d nonlinear Schroedinger equation for
potential vector field is to be studied below. This equation can be written in
the form
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turns equation (1) to
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Here the dot above a or ¢ signify the time derivative and the operator V acts
on the variable p'= 7/a already.

Equation (4) has solutions looking as
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Time-independent function f?(75) satisfies the equation
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The functions f~(p) and f*(5) describe the shape of the electrostatic po-
tential ¥(7,1) in the similarity range before and after the singularity arising
at the point 7= 0. These function are called below as regular and singular
self-similar solutions respectively.

While the singularity is formed at the point 7= 0, the spatial scale, a, of
the field V4(r, t) variation decreases. In the range r > a the field is ” frozen”,
as the typical time of its variation there is much larger than at r < a. While
a tends to zero, the field is *frozen” at any finite r, corresponding at a — 0
to p — co. This entails some relationship between asymptoticses of the

functions f~(4) and f*(p) at p — co. Basically, the function f7(5) looks at
p — 0o as

f?(p) = Fo(@)p™/7", i

The ”freezing” condition implies that, at the moment
appearance, the function
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only. Then, in view of (3), (5) and (7),
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where 7¢ (0 = %1) are constants. Hence, the ”freezing” condition takes the

form =
FHR)e'™ 2= F(R)e'"e . (13)

The solutions of equations (8) can be obtained by means of an expansion
in associated Legendre polynomials:

f7(7) =Y Rin(p)PI"(cos 0) exp(imé). (14)
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The radial functions behave at p — co as
Ry (p) = Fop~* 17 + Crap™' ™" + D p~ 2 exp (1070°/2).  (15)

Here only the main terms of all kinds are presented, though the first i:tem —
corresponding to the ”frozen” field — is dominant and small corrections to
it may be much larger than a whole other item.

For a regular solution, f~ (), the last item in the formula (15) corresp(}n‘ds
to the converging wave, that can be created only artificially and do not arise
at the initial conditions of general kind. Hence,
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The coefficients Fi, and Cj,, are to be chosen to secure the regular behavior
of the solution at p — 0:

Rﬁn (P) = 4"11i1rn.p'9II = BImPI+2 + O(pr+4)' (17)

At infinitely small perturbation of the parameters F, and CI:’E’ the addi-
tion to the regular self-similar solution arises which has the following asymp-

totics at p — O:
SR (p) = 6Aimp +6Bimp' 2 + Eimp™' ' + Gimp™ . (18)

Here again only the main terms of all kinds are presented. The thirdI and
forth items give electric field non-analytical at p — 0. In the asymptotics of
the self-similar solution f~ () both these items are to be absent:

Eym =0, Gim = 0. (19)




The number of conditions (19) coincides with the number of indefinite pa-
rameters £ and C; at any finite approximation of the expansion (14).
However, the solution differing each other only by a constant phase are in
fact identical, and the phase of the function f?(p) was fixed above by the
first of relationships (5). To satisfy this additional condition, the parameter
7 must be used. Hence, the values of ¥ can constitute only a discreet set.

The actual number of the relevant parameters at any finite approximation
of the expansion (14) depends on the symmetry of the solution. Further,
axisymmetric solutions odd with respect to the space reflection, ¥ — —7, are
considered. For such solutions only one value of the "momentum projection”

m and only odd values of the momentum” I are present in the expansion
(14).

The most interesting are, probably, the solutions with m = 0 and m — o |
Those have non-zero pressure of high-frequency field P(5) = |V~ (p)]* at
p = 0, in contrast to the solutions with larger values of |m|. Noteworthy,
that non-zero field V f~(5) at the center of the cavity is produced only by
dipole terms of the expansion (14). At a relatively small weight of such terms
in the expansion, the high-frequency pressure at the center of cavity would be
reduced. This looks hardly compatible with the stable collapse to the point
r = 0 (though the stability problem is not the subject of the current study).
That is why the solutions of dipole kind are to be studied first.

Such solutions appear to be well computable by taking into account the
first three terms in the expansion (14), namely the terms with = 1, 3 and
9. The basic parameters of thus found solutions of dipole kind are presented
in the table 1 (the cases m = 1 and m = —1 are identical, as they are turned
one into another by reflection in a plane containing symmetry axis).

Figure 1 shows isolines of the pressure P(p), computed for one, two and
three terms taken into account in the expansion (14). In the vicinity of the
center the pressure is given by the formula

PPl
P(p) = P(0) (1 - 571 - 32—) s (20)
L I
The values of the parameters P(0), by and by are also presented in the
table 1. As seen from the figure 1 and formula (20), the cavity is oblate at
m = 0 and prolate at m = 1. :

After the singularity has formed, the singular self-similar solution (9
1s relevant. At p >> 1 its radial function, R;i'n (p), depend on three complex
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Figure 1: Isolines of the pressure P(j) for regular self-similar solutions of
dipole kind in the plane (P, pL). The left figures correspond tom = 0
and the right ones — to [m| = 1. The upper, middle and lower figures are
computed, respectively, for the first, third and fifth harmonics taken into
account in the expansion (14).
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Table 1: The basic parameters of regular self-similar solutions of dipole kind.

m 0 1

o 0.85 0.72

Aim 2.53 1.93

Ao —0.34 — 0.042: 0.047 + 0.0062

Azm 0.059 -+ 0.0088 0.0027 + 0.00043¢
Bl —0.91— 0.232 —0.63 — 0.2

Boa 0.36 + 0.073¢ —0.043 — 0.011z
Bam —0.11 — 0.0212 —0.0041 — 0.00094¢
F 0.79 + 2.05 0.38 + 1.58¢

5, —0.18 + 0.041¢ 0.029 + 0.0562

= 0.046 + 0.068¢ 0.0025 + 0.0027z
P(0) 6.3 7.4

by 1.79 0.83

by 0.58 1.67

parameters: F;-, C;t and Dif, (see (15)). The first of them is linked with

the parameter F;_ by the relationship
— = _ ot

Fit = F,, exp (1Am), Ang=T1 — 75, (21)
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as follows from the ”freezing” condition (13). The coeﬁic'lents ¢, and D

are to be chosen to secure the proper behavior of the function f*(p) at p — 0.

In the region p < 1, where the electric field V4 is capablm? of ch.anging
in a time 67 ~ r? « a? ~ t —t; , a quasi-stationary state is set in, the
quantum flux to the singularity being independent of r. The singular self-
similar solution of dipole kind, f*(7), is given there by the formulae
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At infinitely small perturbation of the parameters Cﬂ'n and D,; , an ad-
dition to the solution f¥ () arises which, generally speal‘cing, has bafi a,symf
totics at p — 0. For each I > 1 two bad asymptoticses in the function o Ry,
arise, proportional to p~'=! and p~'*! (as in (18)). For I = 1 only one bad
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asymptotics arise, proportional to p~% . Hence, the number of indefinite com-
plex parameters, C;‘n and Dfr'n, exceeds the number of bad asymptoticses in
the function 6 f+(p) by the unity. Additional real condition (5) is balanced
by additional real parameter Ay in (21). When all the coefficients at bad
asymptotic are turned to zeros, one complex, i.e., two real parameters remain
free still. For instance, the phase gap A7, and constant ¢ in the formulae
(21) and (22) can be treated as such free parameters. Their values depend on
what happens inside the “singularity”, say, do it absorb or reflect all coming
to it quanta. In the latter case, the quantum flux to the singularity is to be
absent. However, the physical nature of the singularities is a quite another
topic. The results of current study can be formulated by the following way.

The existence of regular and singular self-similar solutions of the three-
dimensional Schroedinger equation for potential vector field with attracting
cubic nonlinearity is proved. Regular solutions, which describe the singular-
ities formation, are shown to constitute a discreet set. Singular solutions,
describing an early evolution of the singularities, contain continuous free
parameters. This makes the field outside the singularities compatible with
the singularities of different absorption properties. The simplest solutions
of dipole kind are presented explicitly. The quasi-stationary asymptoticses
(22) of singular self-similar solutions is relevant also for further — not nec-
essarily self-similar — evolution of electric field in spatial vicinities of the
singularities. Noteworthy that no direct analytical or numerical evidence on

the long-living singularities existence in the Langmuir condensate were given
earlier.
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