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ABSTRACT

The logarithmic part of the Lamb shift, the contribution of the
relative order a’log(1/e) to the atomic state energy, i related to the
usual infrared divergence. This fact allows one to calculate easily such
corrections in positronium, and derive the recoil and electron-electron
terms in the Lamb-shift Hamiltonian in many-electron atoms. Loga-
rithmic energy corrections of the next order, a*log(1/a), are of a dif-
ferent, relativistic nature. Their calculation is reduced to the ordinary
perturbation theory for the nonrelativistic Schrédinger equation. The
perturbation operators have the Breit-type structure and are found by
the calculation of on-mass-shell diagrams. For positronium, the calcu-
lated logarithmic correction does not vanish only in n®S, states and
constitutes ;—qmaﬁlog{lj a)/n®. Logarithmic corrections of the relative
order a’log(1/a) to the positronium decay rate are also of the rela-
tivistic origin and can be easily computed within the same approach.
Arguments are presented in favor of a large numerical factor in the
(e/m)? correction to the positronium decay rate.
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1 Introduction

The increasing precision of the spectroscopic measurements in hydrogen,
muonium and positronium demands higher accuracy of the theoretical calcu-
lations for the QED two-body bound states. Certainly, those problems are
also of an independent theoretical interest.

The generally accepted theoretical approach to them goes back to Refs.
[1, 2, 3]. Its starting point is the introduction of a relativistic two-body wave
equation, which can be solved exactly, and in the nonrelativistic limit reduces
to the Schrodinger equation. Then a perturbation series is developed about
the exact solution.

Our approach is different. The corrections logarithmic in o originate from
the effective operators which can be considered local with the accepted accu-
racy. These operators are found via the calculation of on-mass-shell diagrams.
The corrections discussed are then computed in the standard perturbation
theory for the nonrelativistic Schrodinger equation.

The logarithmic contribution to the Lamb-shift, i.e., the energy correction
of the relative order a®log(1/«), is related to the usual infrared divergence.
It allows one to calculate easily this contribution not only in hydrogen, but
in positronium and many-electron atoms as well. Those considerations are
presented in detail in the second section of the article.

The next logarithmic energy corrections, of the relative order a*log(1/a),
are of different, relativistic origin. This fact is demonstrated in the next
sections of the paper where those corrections are calculated explicitly. Mean-
while, in the Introduction, we restrict to a somewhat formal argument in
favor of the relativistic origin of the contributions discussed: these correc-
tions of high order in @ do not have any power of 7 in the denominator, as
distinct from the usual QED expansion. This is why we avoid in our paper
the common adjective ”radiative” at the noun ” corrections”.

This approach in its simplest form was used previously by two of us to
calculate the corrections of relative order a®log(1/a) to the para- and or-
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thopositronium decay rates [4]. Unfortunately, these corrections are insuffi-
cient to reconcile the theoretical prediction for the orthopositronium decay
rate with its experimental value [5]. We argue in the present paper that
the factor in the nonlogarithmic correction ~ (a/7)? can well turn out large
enough to bring the theoretical number into the agreement with the experi-
mental one.

The calculation of the corrections of the relative order a®log(1/a) to the
energy levels is much more complicated problemn than that of the logarithmic
corrections to the positronium decay rate, The complete result for this energy
correction in the two-body problem was presented in our note [6], where for
brevity we restricted to a formal scheme of calculations. Here we present
in detail somewhat different approach to this problem. It naturally leads
to the same result, but allows for an insight into the physical meaning of
different contributions. Our main object is again positronium. However, at
least to have an extra check on our results we consider the more general case
of particles with different masses, m and M.

2 Infrared divergence, Thomson amplitude
and Lamb-shift

The origin of the Lamb-shift in hydrogen is closely related to the infrared
divergence in the electron scattering on the Coulemb centre. Indeed, at the
regularization via the introduction of the photon mass A, the logarithmic
dependence on it of the vertex part (Fig.la) is cancelled by the analogous
dependence of the Bremsstrahlung (Fig.1b). (We use the Coulomb gauge;
the dashed line here and below refers to the Coulomb field, the wavy one to
a transverse photon.)

(a) (b)

If there is no acceleration, i.e., at the vanishing momentum transfer q, the
radiation vanishes also. Therefore, it is only natural that the infrared part of
the vertex correction is proportional to ¢. Indeed, with the account for this
correction the potential of the electron interaction with a Coulomb centre is
in the momentum representation (see, e.g., [7], §117)

dre [ ag’ m
) 1

V(@‘J:—?Ll—

Of course, in the bound state problem there is no infrared radiation. But
the electron here is not on the mass shell, the deviation from it coinciding
in the order of magnitude with the binding energy, ~ ma?. On the other
hand, the role of the photon mass in the Bremsstrahlung is in fact to fix the
minimum possible deviation of the final state invariant mass from that of
the free electron. So, in the bound state problem one can put A — ma? in
formula (1) with the logarithmic accuracy.

Since the typical atomic momentum transfer is ¢ ~ ma, the relative
magnitude of the correction to the potential, and that of the energy correction
as well, constitutes a®log(1/a). ;

More accurately, the discussed radiative correction to the potential with
the logarithmic accuracy is in the momentum representation

& iaaE 1

In the coordinate representation it equals evidently

8 o? 1
SV(r) = 3 —5 log —§(7). (3)
From it we find with the logarithmic accuracy the known result for the Lamb-
shift in hydrogen

8 a? 1 8 ma® IL
5En; = ﬁ-}n—zlﬂg EFT,E’JE,:(D)!E = § gy ng Eﬁm. (4)

Here n and ! are the principal and orbital quantum numbers of the atomic
state.

Let us turn now to a more general case of the Lamb-shift in a system of
charged particles of different masses. The essential constituent of this prob-
lem is to find the Lamb interaction of two particles with charges ey, e5 and
masses 11, my. The infrared divergent radiative corrections to the scattering

5




amplitude for these particles are described by the diagrams of the type 2, 3.
In other words, the virtual transverse photon can be absorbed both by the
same particle that has emitted it, as well as by another one. For inlsl;a,nce, in
positronium it could be expected naively that the arising perturbation opera-
tor will turn out 4 times larger than that in hydrogen, and the corresponding
energy correction (with the account for the two times smaller reduced mass
and, correspondingly, eight times smaller value of |(0)|?) will turn out two
times smaller.

(a) (b)
Fig. 2
& |
l
!
I
RGN |
(a) (b)
Fig. 3

However, the situation is different by two reasons. The first of them allows
for a quite simple physical explanation. The arguments below constiifut? a
modification, as applied to the two-body problem, of the intuitive description
of the Lamb-shift in hydrogen ascending to Ref.[8]. Let, due to the vacuum
fluctuations of the electromagnetic field, the radius-vector # of a charged
particle fluctuates as follows: # — 7+ p. Then the interaction potential of
the particles 1 and 2, averaged over the fluctuations, constitutes

V(= 7o+ A= ) = V(R = )+ (51— AV = 7). (5)

6

)*

The mean square fluctuation of the i-th particle coordinate (p?) is propor-
tional with the logarithmic accuracy to (see [8])

efuif™. dio e? 1
ko —-:2_'_2'&'5_:— (6)

M Jmaz @ m

(with the accepted accuracy one can put the binding energy equal to ma?).
The corresponding contribution to the interaction operator is described in
fact by diagrams 2a,b. Let us note that the correction originating from the
mean square fluctuation of the nucleus coordinate is suppressed by the inverse
nucleus mass squared, ~ 1/M?, and will be neglected below.

Let us consider now the average —2(p}52). It does not vanish only for
the fluctuations of the wave length exceeding the size of the atomic system
which is ma with the logarithmic accuracy. For smaller wave lengths, or
higher frequencies, w > mea, the coordinate fluctuations are uncorrelated,
i.e., (p1p2) = 0. In other words, the upper limit for the integration over
frequencies of the virtual quanta in the correlator (p1p2) is not m, as in the
formula (6), but ma. Therefore, with the logarithmic accuracy the contribu-
tion of this correlator is

mdx
— 2(pi /) o —2—2 / — =21 jop— (7)

mims Jjmoz W myma o

We will be interested in the recoil corrections to the Lamb-shift, ~ 1/M, so
this contribution can refer to the electron—nucleus interaction also. It can be
easily seen that the discussed correlator —2(p%55) corresponds to diagrams
da,b. .

Thus, the perturbation operator §V¢, generated by diagrams 2, 3 with
the Coulomb interaction, equals

s i
for positronium;
5 8 a? !
6Ve(F12) = —gﬁlﬁg a_é(rIE)r (9)
for atomic electrons;
8 Za? 1
o0Ve(F) = gﬁ-lﬂg E(l-l—Zm/M)ﬁ(T_‘)' (1[])

for the electron-nucleus interaction up to the first order in 1/M.
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Certainly, to the given order in o we have considered all the diagrams with
a true infrared divergence which is cut off at ma?. The above arguments,
however, demonstrate that in diagrams 2, 3 with a double exchange there is
a contribution cutting them off effectively at the frequencies larger th‘an tl}e
typical momentum transfer ¢ ~ ma. It is natural therefore to consider in
the same region ma < w < m diagrams with the exchange by two magnetic
quanta. With the accepted accuracy one can neglect in these diagrams the
three-dimensional external momenta of both particles. It is well-known that
in this case, in the totally nonrelativistic limit, the scattering of a transverse
photon is described by the contact operator

6-2 )
V= 1A% (11)
ng

Correspondingly, the double magnetic exchange is reduced to the simple dia-
gram 4 with the vertices generated by the operator above. The computation

—%h

(a) (b)

Fig. 4

of the effective interaction arising in this way 1s of no difficulty. In the coor-
dinate representation it is equal with the logarithmic accuracy to

2eles s s
F13) = -- g —6(712). 12
6V (712) <o log — (712) (12)
which 1s 002
a %l

T mlﬂg(lfﬂ)b(rli) (13)

for electron-electron and electron-positron interaction and
2] Dl
— 222 tog(1/e)é() (14
8

wd P

for the electron-nucleus one.
The total Lamb-shift operator in positronium reads

o O
5V/(7) = 8Vo (i) + 8V (7) = —5 log (), (15)

and the corresponding energy shift for a level with quantum numbers n,!
equals

6o

1 , 3ma’
0En = Hﬁ'log Ewn:{ﬂ)i =

4 wn3
The answer obtained reproduces the logarithmic in o part of the exact result
for the Lamb-shift in positronium found many years ago in Ref. [9] (see also
[10, 11]). The numerical difference of the logarithmic result (16) from the
exact one is small for parapositronium (the total spin S = 0): logl/e = 4.9
is substituted by 4.7 in the exact result. The difference for orthopositronium
(S = 1) is larger: the coefficient analogous to logl/a = 4.9, constitutes 3.0
in the exact result.

Within the presented approach to the logarithmic contribution to the
Lamb-shift in positronium, this contribution independence of S becomes
quite obvious. For the correction V¢ (7) related to the Coulomb interaction
it is spin-independence of the infrared radiation. For the correction §Vjy (7)
due to the doubie magnetic exchange it is spin-independence of the Thomson
amplitude, i.e., of the nonrelativistic limit of the Compton scattering.

The total atomic Lamb-shift operator up to the first order in 1/M with
the logarithmic accuracy reads

1
log Eﬁm. (15)

*"&2 (IE
V. = 30 log(l/a)zi:fﬁ(ﬁ)—%Elog(l/'a)z&ﬁj) (17)

i<y

232{}!2 —, 5
tee lcng(l/cr)zi_lé(r,:),

We assume here that Z is not too large, so that with our accuracy we still
can neglect log Z. The electron-electron term in this expression was obtained
many years ago for the helium [12, 13, 14], the recoil term ~ 1/M is known
for the hydrogen [15].

In conclusion of this section let us emphasize that the logarithmic part of
the Lamb-shift is completely described by the quantum electrodynamics of
nonrelativistic particles. In other words, it is a true radiative correction to
the nonrelativistic bound-state problem.




3 Corrections to the positronium decay rate

3.1 Logarithmic corrections

The theoretical value for the orthopositronium decay rate, as calculated in
Refs. [16, 17, 18, 19], constitutes

6 2("72 5 9)
97

] 0 10:08F ce 1&2 log & = T7.03830us~". “(18)
: T 3 «

I'ih = ma
What is the origin of the logarithmic term in this expression? If it were of
the infrared nature, its relative magnitude would be a®’log(1/a), as it was
argued above, but not a?log(1/a). One more possible source of logarithmic
corrections is the singularity of the relativistic wave function at r — 0, well-
known from the solution of the Dirac equation for the electron in a Coulomb
field. Indeed, at the total electron angular momentum j = 1/2 this solution
behaves at + — 0 as ¥ ~ (mar)V1=®-1 » 1 — L log(mar) (see, e.g.,
Ref. [7], §36 ). Of course, we cannot solve exactly the relativistic two-body
problem for positronium. But the logarithmic nature of the correction we are
looking for allows us to restrict to the momenta range ma < p < m where
relativistic effects can be treated as perturbations. So, we will consider these
(v/c)? corrections via the Breit equation (cf. Ref.[7], §83 ).

The part of the Breit Hamiltonian (BH) that corresponds to the relativis-
tic corrections to the dispersion law of the particles and to their Coulomb
interaction,

4
p T
can be easily transformed to
a? o

Vi— 8, (20)

T 4dmr?  2m?2r?
In (20) we retain only those terms which are sufficiently singular at » — 0 to
influence the behavior of the wave function at small distances. Let us note
that

1
ﬁfRn,DIr'={] = "‘E-an,ﬂif:ﬂ* (21)

where R, o is the radial wave function of the Coulomb state with the principal
quantum number n and vanishing orbital angular momentum {. The Bohr
radius @ in positronium is 2/ma, so that with our accuracy Vi vanishes. The
conclusion that this part of relativistic effects does not work in the a?log(1/a)
corrections to the positronium decay rate, was made already in [18].
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The next spin-independent term in the BH

1

) = 2 e
Vo =~ (07 4 57 (22)

describes the magnetic electron-positron interaction due to the orbital mo-
tion. At [ = 0 it can be easily transformed to

Va = —— (pﬁ -+ %ar) : (23)

m2r

Using the same substitution (see (21)), d, — —ma/2, and retaining only the
terms singular as r~?, we get

o’

Vo — —

2mrd” (24)
Now one can show in a straighforward way that the S-wave radial function,
instead of being constant at r — 0, behaves as

ry —a?f2 a?
Ylrga (a) 2] = log(mar). (25)

The corresponding relative correction to the particle density at the distances
r ~ 1/m, where the annihilation takes place, and therefore to the decay rate
itself is

a’log(1/e). (26)

The spin-orbit part of the BH is irrelevant to cur problem since it does not
work at all in S-states. The part of the BII that describes the tensor spin-spin
interaction does not contribute to the decay rate to the accuracy considered.
Indeed, being applied to the S-state, this interaction either annihilates it (in
the singlet case) or transforms it (in the triplet one) into the D-state with
the same total angular momentum. But the annihilation from a D-state 1s
strongly hampered. So, we are left with the contact spin-spin interaction

Y

Vo= 25 (355 +1)-2) 669, (27)

m

It originates from both the magnetic spin-spin interaction, and from the one-
quantum annihilation contribution which does not vanish in the triplet case
only.
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We will solve the corresponding wave equation

1 « O
__ 5 o vedga g s e = 2
{-5a-2 B+ AZSS() |9 =0, (28)
where - i il

by iterations. In its turn in the inhomogeneous equation

2.2

{a4me_mo bou() = AZS8(0) (29)

we omit the term —m2a?/4, regular at r — 0, and treat ma/r, which is less
singular than A, as a perturbation. Simultaneously this procedure is also an

expansion in a.
The solution of the zeroth order in «,

S = Ly i) (30)

4mr

at the distances r ~ 1/m of interest to us leads evidently to the correction
~ « to the decay rate. The calculation of the corresponding numerical factor
is beyond our accuracy. The first-order solution,

2
519 = A= log(mar)$(0), (31)

gives evidently at r ~ 1/m the relative correction Aa?logaf4 to Y(F)|rai/m
and the correction

{xﬁlog(lfﬂz){ _;}3, gz

I

0
s ()

to [(7)|2, /. and to the decay rate.
The total correction to the decay rate includes both (26) and (32) and
thus constitutes

6F 2 2} S — 0
+ ~a lng(l/a){ T (33)

One may feel dissatisfied with the above treatment of the spin-spin in-
teraction (27). Have not we buried some contribution ~ a?log(l/a) in the

12

linearly divergent, at » — 0, term 83?7 To reject the suspicion we will calcu-
late the discussed conribution of V3 in a straightforward way, following the
line of reasoning close to that of Refs.[20, 21]. Let us consider the diagram of
Fig.5. Its left vertex corresponds to the interaction (27); in the momentum

Fig. §

representation this amplitude is —Ama/m?*. The right vertex is the annihila-
tion one. In the momentum representation it is, to our accuracy, a constant,
correction to which we are looking for. The Coulomb attraction (the dashed
vertical line) supplements the imaginary part of the corresponding one-loop
diagram by the well-known Coulomb factor ma/(2v) where 2v is the relative
velocity of the particles. So, the imaginary part of the diagram becomes a

constant:

e S Ta?

I =-A 4 =
ikt m2 167 = 20 8 4 (34)
The dispersion integral
1 [™dEImM A , 1
ReM = 2 | e T (35)

is in fact the correction to the annihilation amplitude we are looking for.
The correction to the decay rate is evidently twice as large and coincides
with (32). ]

Our result for orthopositronium coincides with that found earlier. As for
the disagreement with earlier results for parapositronium [18, 22], its origin
can be easily elucidated in the case of Ref.[18]. In that paper the result for
parapositronium was obtained from the result for orthopositronium merely

by neglecting the single-photon annihilation contribution without changing -

the contact magnetic interaction.
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3.2 Nonlogarithmic aside

The theoretical result (18) for the orthopositronium decay rate is in a strong
disagreement with its experimental value [5]

Tezp = 7.0482(16)us 1. (36)

Can one hope to reconcile the theoretical result with the experimental one
by including into (18) the correction ~ (a/m)? which has not been calculated
until now? To resolve the disagreement the numerical factor at (a/m)* in
this correction should be 250(40) which may look unreasonably large.

We believe nevertheless that the natural scale for this factor is about 100.
The argument is as follows. The large, —10.28, factor at the a/7 correction
to the decay rate (see (18)) means that the typical magnitude of the factor
at the o/ correction to the decay amplitude is roughly 5. Correspondingly,
this correction squared contributes about 30(e/7)? tc the decay rate.

In fact, quite recent numerical calculations [23] have given factor 28.8+0.2
at (a/7)? in this contribution.

This contribution is described by diagram 6a for the probability. Here the
wavy lines refer to the decay photons, thin vertical line means the unitarity
cross-section, wavy lines to the left and to the right of this cross-section
denote symbolically the whole set of the first-order corrections to the decay
amplitude.

&

Fig. 6a
« QUaUaY - ot
AT
9UaTas abaled
Y - =a¥a¥a® -
Fig. 6b Fig. 6¢
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It is only natural to expect that each of the diagrams 6b,c where both
radiative-correction quanta are to the left or to the right of the cross-section,
makes about the same contribution, 30(c/7)?, to the decay rate. In other
words, the natural scale for the total second-order radiative correction to the
decay rate is indeed 100(a/7)?. We believe therefore that it is premature to
talk about the contradiction between the QED and the experimental result
(36) now, until the complete calculation of the second-order correction to the
decay rate i1s done.

4 Calculation of the correction ~ a‘log(l/a) to
the bound state energy

In this section we will calculate the correction ~ pa®log(1l/a) to the energy
of a bound state of the two particles with masses m and M (here and below
u = mM/(m + M) is the reduced mass). Considering particles of different
masses allows us to have an additional control of the calculations, in particuiar
by means of the comparison with the results for the hydrogen atom [24]
obtained to the first order in m/M at m < M.

The direct approach to the problem consists in the solution of the Bethe-
Salpeter equation with the expansion in v/c in the momenta region which
contributes to the energy correction of interest to us. Thus an equation arises
which resembles the Breit equation, but includes as compared to the latter
not only the corrections to the Hamiltonian of the order v2/c?, but those
~ v1/c* as well. Let us emphasize that such an expansion is possible since we
are interested in the logarithmic energy corrections which can be calculated in
the nonrelativistic momenta region p < p. This equation is satisfied by the
solution of the Bethe-Salpeter equation projected onto the positive-energy
states and integrated over the relative energy of the two particles.

However, the simplest way to derive the equation discussed and the cor-
responding energy correction is to extend the approach used above for the
derivation of the a?log(1/e) correction to the positronium decay rate. Indeed,
if we take for instance the contact magnetic interaction which gives a correc-
tion ~ a? to the positronium energy, in the momentum region ma < p L m
it is as contact as the annihilation kernel. So, proceeding along the lines used
in Sec. 3.1, we will get an energy correction ~ a*log(1/a). It corresponds to
the iteration of the Breit corrections ~ (v/c)?. Certainly, we have to include
also the corresponding contributions ~ (v/c)*, as well as those of the irre-
ducible diagrams for the scattering amplitude. Our regular approach to the

15
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problem will follow in fact the usual derivation of the Breit equation (eI [,
§83). In this method the correction to the effective interaction Hamiltonian
is found by the expansion in v/c of the on-mass-shell scattering amplitude.
Such an approach is in our opinion not only simpler, but allows also for the
transparent physical interpretation of different contributions to the correction
discussed.

In the nonrelativistic region of interest to us it is convenient to use non-
covariant perturbation theory and the Coulomb gauge. Since this technique
is not too common, let us present the corresponding Feynman rules. We
assume that the particles have opposite charges. Then the exchange by
a Coulomb quantum of a momentum ¢ is described by a factor —4ra/q?,
the exchange by a magnetic quantum gives the factor —a;®a; S;;(7)4mer/2q,
where S;;(¢) = 6ij —qiq;/q* is the photon polarization density matrix. Let us
recall that in the noncovariant perturbation theory the frequency of an inter-
mediate photon equals its momentum. The projectors onto the positive and
negative energy states of a fermion with a momentum p’ are correspondingly

ap + fm
Wp :

A+(p) = i-, (1:*:

wp = y/m? + p2. The projector A_ enters an expression for the effective
potential with the minus sign. Any intermediate state introduces factor (E—
En+i0)~! where E,, is the energy of an intermediate state and E is the energy
of the system. As distinct from Sec.3.1, all the calculations are performed in
the momentum representation.

4.1 Pure Coulomb exchange

Let us start with the correction due to the Coulomb exchange. We will work
in the centre of mass frame where the particle of a mass m has a momentum
7, that of a mass M momentum —p, £ & m + M. Presenting the Dirac

spinors as :
°u= L i 1+ = 4 ( ¢ .
2wy wp +m 0

we find easily that the correction to the Hamiltonian can be written as

Vo(5,7") = VE2#,7") + VS #,8).
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The second-order Breit correction Véﬂj(ﬁ, p") including in particular the rel-

ativistic correction to the dispersion law is

4 ;
. p 1 1 Nikwd ol 1
ira., ., & a
w7t oS (—“mz —Mz) (37)

where & and & are the Pauli matrices for the first and second particles,
§= 7" — . The next in v?/c? relativistic correction to the Breit Hamiltonian
due to the Coulomb exchange constitutes

e T 2 1 1 '
viE ) = - T [mfw +3 (E -+ E) (p° +p‘2)] (38)
T 1 1
_-32-";2 [5 (E{ m) (PE _prﬂ)ﬂ

8 - = — T =5
“W(fﬁpx p')(0,p x P').l :

The energy correction é £, due to the operator Véﬁ equals its mean value over
nonrelativistic wave functions. Calculating the integral with the logarithmic
accuracy in the region pa < p,p’ < p, we obtain

5({m M Ggo'
2

wher € = uﬁ(pﬂ/'mM)lag(lfcr)ﬁ;u/na. The logarithmic contribution arises
only from the last two terms in (38). Let us note that at the expansion
in p/m we get operators which do not lead to contributions logarithmic in
@, but lead to momentum integrals diverging at the upper limit linearly,
not logarithmically (e.g., the term ~ p® from the expansion of wp). Those
operators give tise to corrections ~ a® and hence can be omitted.

The contribution to the energy ~ pablog(1/a) from the Breit Hamiltorian

Véﬂ arises in the second order perturbation theory, i.e. at the iteration of
Véﬂjz

dpdp'dPdP' i g el
o5t = [ EELI VS PGP PIBVE P 7). (10
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Here G(P,P'|E) is the nonrelativistic Coulomb Green’s function. In fact we
need the zeroth and the first terms of its expansion in a:
3c(pD _ DI
op gy ~ (2n)éP—7P)
G\(P,P'|E) B P (41)
(1) NEY =
G (‘JT:,:-';::l IE) E—szﬁ,u (.ﬁ_.ﬁ,)g E—P"E/Z;_.s' (42)
Simple counting of the momenta powers in the integrand of (40) demonstrates
that only the function G(!) contributes to the logarithm. So, we find with
the logarithmic accuracy:

i
SE!, = —Em(ﬂf ) (43)
This contribution is evidently spin-independent, since the only spin-dependent
term in the expression (37) is the spin-orbit interaction which is absent in
the s-state.
Then, there is the contribution due to the negative-energy intermediate
states. It is described by diagrams of the kind of Fig. 7. For "heavy”

intermediate states, where |E — E,| ~ 2m,2M > p, the line of the inverse

- ——— . mmnse
L 3

l.-l.

Fig. 7

direction contracts into a point. Diagrams like that on Fig.7 lead to the
effective operator

8 ms M3

while all other diagrams with heavy intermediate states can be shown to be
non-logarithmic. Perturbation (44) gives rise to the energy shift

o= m M

18

Vil ) oL ( il )q, (44)

Adding up (39), (43) and (45), we get the total energy correction due to the
Coulomb exchange:

2 = o/
M 3 oo
= i B Seal 4
6Ec me(Z-!-G) (46)
In complete accord with the exact solution of the Dirac equation in the
Coulomb field, this correction, logarithmic in «, vanishes when one of the
particles becomes infinitely heavy. The spin-dependent part of expression
(46) has been found previously in Refs. [25, 2, 26].

4.2 Single magnetic exchange

Let us consider now the contribution to the energy due to the exchange by
one magnetic photon. Before taking the expectation value over the Dirac
spinors the interaction operator looks as follows

dma : -
VM:—-—Q'"I—St;(@at@&J E_Qp,—wp—g—l_E—Qp_wP'_q

|- @

We are interested in the region of the variables ¢ > |AE| = |E — Qp — wp].
The energy corrections arise both from expanding in v?/¢? of the expectation
value of the operator a;®«;, as well as from the expansion of the denomi-
nators in the ratio AE/q. Taking the leading terms in the numerator and
denominator, we obtain the well-known magnetic contribution to the Breit
Hamiltonian:

ma [, (Bxp")°
mM Q‘E qE
To find the contribution of this operator to the energy shift, one has to
calculate the second order of the perturbation theory taking Vs as one of

L L 255 + (TGS + 2(F x B 7+ er**)] . (48)

the perturbations and Véﬂj as the other. Now the logarithmic contributions
arise due to the functions G(® and G(1). These energy corrections are

4 :
SEL = —2¢ (1- m*‘;f), (49)
4 2
§E) = gf&'&" ( B m‘;{). (50)

Retaining in the matrix element of the operator a;®a; the next term of the
expansion in v? [c?, we easily get for this relativistic correction:

= 4 % 2
§ES) = 4¢ (1 + Eﬁf-) (1 s m‘;{) . (51)
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Let us turn to the expansion in AFE /¢ of the denominator in (47). Its first
term gives the contribution to the Lamb-shift ~ pa®log(1/a). This correction

originates from the region p,p’ ~ pa, pa? € g € pa. The next term of the
expansion gives the necessary contribution due to the region pa < p,p’ < u:

2
§EY = 2f~rr%w~ (1 + %a’&") : (52)

Now we have to consider the Coulomb exchange between the emission and
absorption of the magnetic photon. Both fermions stay in positive-energy
states here. Counting of the momenta powers in the integrand demonstrates
that the logarithmic contribution originates from diagrams 8a,b with the
exchange by one and two Coulomb quanta in the intermediate state. The

(a) (b)

energy denominators here are of the type E — E’ — k where E’ is the energy
of the particles in the intermediate state and k is the photon energy. The
logarithmic contribution arises from the energy region & >> |E — E’|. There-
fore the denominators can be expanded in the ratio AE/k. In the case of the
single Coulomb exchange the leading term of the expansion gives the Lamb-
shift correction ~ pa®log(1/a). One could expect that the energy correction
of the necessary order of magnitude, ua®log(1/a), arises if the next term of
the expansion in AFE/k, is included. It would correspond evidently to the
correction of the first order in v/c to the Lamb-shift . However, there is one
more correction of the same order of magnitude originating from diagrams
8b. Its meaning is the expansion of the Green’s function not in AE/k, but
in the ratio of the Coulomb potential to k, which is also ~ v/c. Meanwhile
a relativistic correction should start from v?/c? ~ a®. Therefore the total
contribution of diagrams 8a and 8b to the energy correction we are inter-
ested in, vanishes. The vanishing of this contribution is also confirmed by
the direct calculation [6]. (Unfortunately, in our paper [6] Figs.2d and 2c
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were interchanged).

At last, let us consider the energy shift due to the transitions into the
negative-energy states. Corresponding diagrams of the noncovariant per-
turbation theory are presented in Fig.9. As it was mentioned above, the
line corresponding to a particle of negative energy can be contracted into a

e e

(a) (b)
Fig. 9

point. In this case an effective vertex arises corresponding to the emission of
a Coulomb and magnetic quanta. Such an interaction is evidently of a spin
nature. After simple calculations we find the effective operator corresponding
to diagrams in Fig.9,

. 2
iy o5 (?nl) q .. 53
= GumM s ()

and the energy correction induced by i,
5) _ _2 s
By = 300 - (54)

Adding up the corrections 6}35;5) we get the total contribution to the energy
from the single magnetic exchange:

2

9 ;
el P.' _"?_ .”‘ = =t f 55
{SEu,,fH—E(Z—}-?mM 3mMﬂ'ﬂ'>. ( )

Its spin-dependent part was calculated previously [2].

One can check also that the anomalous magnetic moment of the heavy
particle does not influence the spin-independent term in this correction to the
first order in 1/M which means that this contribution refers also to hydrogen.
Indeed, the first term in the brackets agrees with the corresponding correction
for hydrogen found recently in Ref.[24].
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4.3 Double magnetic exchange

Our consideration of the double-magnetic-exchange contribution to the en-
ergy shift will start from the second-order perturbation theory in Vs (cf.

formula (40), where Vs should be substituted now for Vé,z)g. Again we have
to take into account in the Green’s function G the terms G(°) and G() only.
In the first case the energy correction is

2

§ES) = ¢ r;‘M (1+357), (56)

while in the second one,

2
I 5 Bk b
§ED) = —¢ 2 (§ = gw*) : (57)

Let us consider now the contributions of the negative-energy states, start-
ing from the case presented in Fig.10 when only one particle goes over into

7

Fig. 10

the negative-energy state. To our approximation such a zigzag in a diagram
contracts into a vertex described by the two-photon operator e2A2/2m of
the nonrelativistic electrodynamics. Since this vertex is spin-independent,

the perturbation operator originating from the diagrams presented in Fig.10
1s also spin-independent:

3) _ _ (ma)’q
The corresponding energy correction equals
§ES) = —e. (59)

Let us consider now the case when both particles go over into the negative-
energy states (see diagrams 11). By the same reasons as above, these contri-
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(a) (b)

f— s s —

Fig. 11

butions are spin-independent. If one retains the photons energy k4 ¢ only in
the energy denominators of diagrams 11a corresponding to two particles with
positive energies, the Lamb-shift contribution (12) of the order pa’log(1/a)
arises. As well as in the case of the single magnetic excnange, the corrections
to the Lamb-shift of the first order in v/c arising due to the next term of
the expansion of diagrams 11a in AE/(k + q), are exactly cancelled with the
next correction of the same order of magnitude originating from diagrams
11b, its meaning being the expansion of the Green’s function in the ratio
of the Coulomb potential to k + gq. Vanishing of the total contribution of
diagrams 11 to the energy correction ~ pa®log(1/«) is also confirmed by the
direct calculation (see [6]).

Besides, it has been checked that the diagrams where magnetic quanta
are emitted and absorbed by the same particle, do not contribute to the
correction of interest to us.

Therefore, the total contribution of the double magnetic exchange equals

| ol S B
T (PR o P " 60
Sl e( U T P v (60)

The spin-dependent part of this expression was found previously in Ref.[2].

Again, the spin-independent term to the first order in 1/M refers also to
hydrogen since the diagrams with A? are evidently independent both of the
spin and of the possible anomalous magnetic moment. Indeed, the first term
in the brackets, —1, agrees with the result for hydrogen obtained in Refs.
24, 27].
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4.4 Discussion of results

Thus, our total result for the contribution ~ pc:flog(1/a) to the energy of
the QED two-body bound state, the sum of (46), (55) and (69), equals

3

dE (= A icrga 1+ s MmO \ (61)

Let us note that this energy shift is in fact a relativistic correction. The
relativistic origin of the contributions arising to the second order in the terms
~ v?/c? in the Breit equation and to the first order in the corrections ~ v* /¢,
is self-evident. For other contributions, due to negative-energy states, this
assertion is somewhat more a matter of convention.

As for positronium, one should add to (1) the annihilation contribution
(18],

6Eq4(n,l) = gl ma® log — (3+ _.4,\]51[} (62)

6

- Since the annihilation operator is reduced with the necessary accuracy to the
same form as the contact magnetic spin-spin interaction in the Breit equation
(see [7], §83), the calculation of this correction can be also easily performed
within the approach used in the present paper.

The final result for positronium is

5 T
8E(n,1) = gzma®log —(3+ Jﬁ’)%. (63)

which can be rewritten also in a more compact form:

§E(n,l,s) = %maf ]c-gl & ;i" e

(64)

In other words, this correction in positronium does not vanish only for triplet
S-states.

Our result (64) differs from the recent one [28],

T %ma o (3+5cr )’5*—*;, (65)
obtained via a relativistic two-particle equation for positronium. The absence
of the results for separate contributions in Ref. [28], as well as the difference
in the technique of calculations, hampers the clucidation of reasons of the
disagreement. However, according to the private communication by R. Fell,
our results agree for the pure Coulomb and single-magnetic exchanges.
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Adding (64) to the known contributions of orders lower in «, we obtain
the following theoretical values for transition frequencies in positronium (in

MHz):

E(235,) - E(1°S;) = 1233607211.7, (66)
E(225)) - E(2°P,) = 8627.7, (67)
E(238,)) - E(2’P) = 13013.3, (68)
E(2%S))— E(2°PR) = 18498.5. (69)

Correction (64) contributes —16.7 MHz to the first of these frequencies and
2.4 MHz to all others.
A comparison with the experimental values

E(2°S,) — E(1°S;) = 1233607218.9(10.9)[29], (70)
E(2°S:) - E(2°P.) = 8628.4(2.8)[30], 8619.6(2.7)(0.9)[31], (71)
E(235,) - E(2°P,) = 13001.3(3.9)(0.9)[31], (72)
E(238,) - E(2°Py) = 18504.1(10.0)(1.7)[31], (73)

demonstrates that the calculated correction will be essential for the next
generation of experiments.

In conclusion, let us add some words on the analogous logarithmic correc-
tion to the electron-electron interaction. The corresponding effective operator
1s

5 | o
Vie = ——(3 + @;09) log Eﬁ(rlg). (74)

It corresponds to the energy correction (61) at m = M with the change of the
overall sign. The last prescription beccmes especially obvious in the approach
used in Ref. [6] where all the effective operators leading to formula (61) arise
from the three-photon exchange diagrams. Perturbation (74) is operative in
the triplet states only where the coordinate wave function is. antisymmetric.
It means that the corresponding energy correction vanishes due to 6(712).

Qur interest in the problem considered here was stimulated by the late

Arthur Rich. We are grateful also to R. Conti, G. Drake, V. Fadin, R. Fell,

T. Fulton, D. Gidley and M. Eides for useful discussions.
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