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ABSTRACT

A coherent interaction of an electron beam with a sur-
rounding structure can influence essentially on a beam dyna-
mics. We have studied the resistive instability of the lon-
gitudinal and transverse motion of a multibunch beam in a
storage ring due to the finite conductivity of chamber
walls.

It is known that the positive and negative sign of a
single bunch transverse oscillations growth rate depends on
the fractional portion of ver betatron oscillations tune.

Unfortunately, in the multibunch regime there always exist
oscillations modes with positive growth rates.

As for longitudinal oscillations of a single bunch
their growth rate is determined by a differences of the real
parts of the impedance at the upper and lower side frequen-
cies for the harmonics of the particle revolution frequency
o these differences being of the order Q/wnﬁl(ﬂ - synchro-

tronous frequency) because the resistive chamber impedance
smoothly depends on the frequency (as vw). In the multibunch
case the expression for the growth rate includes these dif-
ferences at the upper and the lower side-frequencies not for
the same, but for different harmonics of the revolution
frequency. The small factor Q/w disappears.

That is why both for longitudinal and for transverse
oscillations of the multibunch beam there arises the problem
to find their maximum possible growth rates and to compare
them with radiation damping.

We have shown that the Ilongitudinal resistive wall
instability of the multibunch beam has negligibly small
growth rate compare to the single bunch one. But the growth
rates of the transverse resistive wall instability can
exceed radiation damping. A possibility to decrease the
transverse instability ‘growth rate in the case of the beam
with some empty buckets has been analyzed. It was shown that
it is not a way to cure this instability.

R R R S R S T T L o L e e e S e S R I R S e, S e

INTRODUCTION

The influence of the coherent interaction of an elect-
ron beam with a rather large intensity with the surrounding
structure on a beam dynamic can be essential. So, it is
interesting to study the ultrarelativistic beam’s interac-
tion with the electromagnetic field induced by this beam in
the vacuum chamber with the walls of finite conductivity
(1], «i21. :

It is known that the sign of the growth rate of a sing-
le bunch transverse oscillations is determined by the frac-
tional portion of the betatron oscillation tune vx. Unlike,

in the multibunch regime there always exist oscillations

modes with positive growth rates. :
As for longitudinal oscillations of a single bunch

their growth rate is determined by a differences of the real
parts of the chamber impedance at the upper and lower
side-frequencies for the harmonics of the particle revo-

lution frequency w_ [3]:
+ - ; -
o = AZ m(R - R ), where R = Re(Z (mw *Q)),
m m m o
Im

Q - synchrotron oscillation frequency.

As the resistive impedance has a smooth dependence on
the frequency (as vw), these differences are of order Q @ «1

(fig. 1a).



In the multibunch, case the expression for the growth
rate includes the differences of the real parts of the
impedance at the upper and lower side-frequencies not for
the same, but for different harmonics of the revolution
frequency: the small factor Q/mo disappears.

That’s why both for longitudinal and for transverse

oscillations of the multibunch beam there arises the problem

to determine their maximum growth rates and to compare them
with radiation damping.

The instabilities has been studied with the method
developed in- [3]: firstly we determine a field induced by a
beam due to its coherent oscillations; secondly we write
the equations of motion of the test particles in this field;
and then identifying the test particles with ones inducing
the field we analyze the stability of the beam motion. We
suppose here for the sake of simplicity azimuthally uniform
focusing and represent each bunch as one macroparticle.

1. The Electromagnetic Field Induced by a Beam in the
Waveguide with the Walls of Finite Conductivity

The Laplace transform of the electromagnetic field
induced by a current in the waveguide must satisfy the Max-
well equations (1) and the Leontowitch boundary conditions

(2):

rotE =-suy H :

Q :
rotH = seGE+j , (1)
Exn = &(Hxn)xn, - (2)

where n is a unit vector normal to the surface; s is a Lap-

lace variable; &=vVsu/oc = Z (& /R}v‘s/zmﬂ the metal surface.
Q o

impedance; ¢ and p — its conductivity and magnetic permeabi-

2
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lity; 6{-. = - a .thickness of the skin at the revoluti-

on frequency; Z = pc=120m Ohm - free space impedance; R is
o

a radius of a storage ring.

As the metal conductivity is large we can expand the
field over the powers of £ and drop the items of order more
then one:

4] -1__- o
F_E+£E“E+Eadd
- gt (3)
: o 1 (o]

H—H+EH-H+Hadd.

The fields E° and H° satisf y the Maxwell equations (1)
and zero boundary conditions. The additional fields Eadd and

H arising due to the finite conductivity satisfy the Max-
a

well equations with the zero right-hand side and boundary
conditions (4) following from (2) and (3):

E xn = £§H° . (4)
add

According to [4] we can write a magnetic field H®° in an
ideal waveguide as a sum over its eigenfunctions:

Hg(x,y',l,s} =

'J l
=.{__1_{1-1[x y,s]e kJ‘ dl JE (x,y,8)j(x%,y 1" ,s)dx"dy’ +

~00 S
+00

: B'k "J 5
+H_k'{x,y,s_le J-e dl JE (x,y,s)j(x’ y 17 ,s)dx’ dy } (5)

e Al

Here Ek, I-lk are the waveguide eigenfunctions for the waves

propagating in the pcisitive (for k>0) or negative (for k<O)
1 - direction; 7, ‘is a propagation number for these modes;

D J[E xH ) ds; S - is the waveguide cross section. The



waveguide eigenfunc- tions can be expressed via the membrane

2 2
functions X, ¥), ¥ (%, y) (Appendix 1). : (m/R)"+s™p € s€_
MR 2o e - H = 2% orady - 22y 1+ —2 1 xgradd_, (8)
Expanding the beam current over the azimuthal harmonics e o m e mo im

according to [3] and integrating in (5) over 1’, we get: ;
g & g : g where & and ‘Fm satisfy the equations:

m
iml /R / I (s+imw ) : ;
120500 106 e E e e ) km L - [(m/R]2+52,u £ ) =0; AV - ((m/R)%+ s’u e )¥ = 0, (9)
¥l k_—‘“—“‘q_nRDk " 'ark+im/R m o o m m G o 1
m, e i
' and the boundary conditions are get by putting (6), (7) and
g i (8] into [4]:
+
o S)I B gy . im/R
i ~im/R : m‘ ~ 2mR e »
Lg% C ((m/R) " +s"u € )
4 Q O
where
(s+imw ) = ZHRJE (x',y',8)j (x',y',s + imw )dx’dy’, (6) a¢kf lkm Iukm | awk 2im/R 4
Km 0 -k m o X : - : - I (10)
dn |y, +im/R ¥y -im/R o 2 kml’
s ¥ "+ (m/R)
e K K k
F 1A%+ Fin B 2 21— -[ i, v, z, s)e'_lmZ/Rdz ; v £/2 im/R
¥ SE R ' - an e SRR e
~TR | C ((m/R) “+s“u e )
o O
= l— ¥t sp=w R :
e 12 [Zafa“b]{ e (s ]
The additional fields E and H _ we search in a form o\ oo J{r+im/R ¥ -Im/R
add add k
) oy i
(v e 4] . k 2im/R % :
- | ., _iml/R iml/R -—Z } l;fr I (11)
. . o
E . mZ_Em{x, y, s)e : .I-EM{1 mz_lc;lm{x, Y Slic (7) . 372 W'E+[mXRJ2 e[ = dxl E +(m/R} km

Using the equations (9) and the boundary conditions

The fields E & and H ddsatisf}ring the homogeneous Max-
5 : (10) and (11) we can find the functions @m and ¥ and thus
. m

well equations can be expressed via the membrane functions

¢ (x, y, s} and v (X, y, s) | & the additional fields arising due to the waveguide walls
, &)k finite conductivity.

(m/R) "+sn € The next calculations were made for the waveguide with

E _=-grad® -+ E ~ o 1 +1 xgrad?¥ a rectangular cross-section a x b, normalized eigenfunctions

having a form:



kr g m a - b 2
kr
(12)
l,f;‘k 2 CDS[ k—“-'—‘y = —?_'_] CDS[ FEX = _I‘g ] .
r g m A
kr
where
2 kn )2 i >
g’ = [_] A [_b] | (13)
Solving equations (9) we can write the functions @m and
¥ in a form:
m
£a
i kmy kn] ,
ZSln [ = ) (C’sh(h x) + D'ch(h x}) +
| 2 rux
| E [ AT ]{C” sh(h  y)+D” ch(h 7v)) , (14)
L 2 r mry r mry

Z [k“}' _ k) (M’sh(h__x) + N’ch(h_ x)) +
el

2)

: Zcos[ s rg] (M” sh(h_y) + N” ch(h__y)) , (15)

mry r mry
i
kn .2 I 2. .8 )
hmkx_‘/[ a } +L_R._} i “ogo .
(16)
'R 2., 2 7
gl Sl i i i

The coefficients in (14), (15) can be found from the
boundconditions (10), (11) (Appendix 2).

2. The Motion Equations in the Action - Phase Variables

By studying the stability of the beam oscillations it
is useful to turn to the slowly changing variables phase and
action [3]:

- /213/(1.{1‘2} sin(y ) , z =0 v/ZJZ/{MQ} cos(y ) ;

= \/Zfo[mst} sin{l,bx} : X = Qx/ZJx/[msﬂx} cns{l.&x} -

m
where M =_z—s, 1:1"s and zrs are a mass and relativistic
Y -
5
factor of the equilibrium particle, « is a momentum
compaction factor;  and Qx are the frequencies of the

longitudinal (synchrotron) and transverse (betatron) oscil-
lations. _

Further we will drop the subscript ’add’, all mentioned
field components concern to the additional field.

The equations of motion in the new variables have a
form [3]:

. . Jz — oz
Jz— Z&TZJZ— E—a'lf’z E'.z, l;ﬂ‘ Q+E—6J E ] (17)
L P R ey S 0 ea_”‘(*__“p: VB ) . (18)
x X X ay X v X X 3.]

We take here the longitudinal field Ez on the equilib-
rium orbit and the transverse fields Ex and ]3}‘r in a paraxial

approach.

A line over the r.h.s. of these equations means that
these expressions must be averaged over the time much more
than the period of the fast oscillations [3].

For the case of an symmetrical beam we need only first
equations from (17) and (18) because the phase shifts can be
determined from the symmetry condition.

3. A Longitudinal Instability
By calculating the longitudinal field on the

equilibrium orbit of the waveguide we must take into account
that the transverse components of a beam current is much



less than the Ilongitudinal one, and that a longitudinal
field changes its sign while changing the direction of the
propagation; that is
om0 o - = ~1 ; (19)
krm krm -krm
and the electric field on the axis in the laboratory

reference system has a form:

o o 2y 'Ik (s+imw )

E](D’O'l’s]=_l—-_§ E: EimI/R Z kr ;m : - >
2nRvab L~ 8 i3 +,[51_]

m=-w K-r=1 kr

LE sin l{—“ sin2 o E sin L% sin2 k_n | ¢
= b 2 2 s 2 2 . (20)
[hmkxb] {hmryaJ
ch 5 ch 5

For the further calculations it is convenient to turn
formally to the reference system of the equilibrium particle
(i,e. from the longitudinal variable 1 to z=l-w Rt in the

0

inverse Laplace transform of (20)), and after this substitu-
tion a Laplace transform of the longitudinal electric field
can be written as

+ [0 + 00

imz/R 2? Ik (s)
E(ODzs} }E mzz ;m 10X
ERRON o K, r=1 Wkr+{§]
re sml(Esian E s i —TEsinz-l:{E
e i 2 e s 2 o
[h . bJ [hmr a] ¢
mkx ¥ {
ch > h 5
where
Ikmgs) = 2aR J E_kr{x .y ,S-lmﬁJO]Jm[X s g e -
S

and a replacement s — s-imw was made in all variables
0 s

depending on s (&, L hmkx, b 3

mry

10

' Z(—lmw FiQ)=—7p—=- HR& Z

ﬁ

A beam consisting of n equal bunches symmetrically
placed along the stc-rage ring has n symmetmcal modes of

longitudinal Dscﬂlatmns a current of a mode with a number
k being
. . Tk
j = eN va(x) 3(y) Z X
Zz 1 4

n=1

x & {z— %E (n=1) 'R - z sin [Qt+ %E [n—l][k—l)]} - ~(22]

We can calculaj:e Ikrm for this current distribution and

afterinserting the result into the expression for the elect-
ric field and averaging over the time the r.h.s. of (18) [3]
we get in the linear in J approach:

z
E Ll o

J } £ +0

k z s}
ST 27 e 200 ), (pn_#KR’

A p=-00

- [m R'-m R~ ] , (23)
pn +k qV 1 ami 2 in
o p=0 1 2
where g is a harmonic number; V is the accelerating voltage;
= pn + k ; m_= pn + 'nﬂ— k; I.:b is the full current of a be-
t} -

am, I =eN vh = eNv, R = Re [Z(—imw iim:’,
v O

o 1 (o]

E sin e k_n: sin E
Li= - },[24}

g R e e

R ch 5

k,r=1 kr

- where the argument of the functions depending on s must be

-imw FiQ. In the quazistatic approach
Q

= Jx e ;. 2 sim¥e: 2 { kn 2 rrrz_
hmkxN —E;:"hmryw"_b' ¥ +[EJwgkr_[ a]+[_b] :

RE[E( imw "'19)]“’6 W }{E {I_ m} e - =30

11




In the case of a single bunch with a current I a
L
difference (R;—Rr;] has an order of v <<1 (fig.la) and a
z

single bunch growth rate can be written as

o) b o0
P 2Nl " T [—] zv’r_ﬁ , (25)
ZO qV m z zla e 4
where
Fz(t] T | f + 21/‘( (see fig. 2a) . |
k-odd ch (knt) ch™(kn/t)

We must take into account a nonzero length of a bunch
in order to get a convergent sum instead of (25). For a
gaussian bunch with a r.m.s. length Az the m-th current

harmonic must be multiplied on e:{p{—mzﬂzzz"ZRz}, and after
calculating the average field which acts on such "long"
macroparticle this factor appears ones more, and we get

I:::Zo 9 b) © B U
&+ 21 v S 98 [EJ z‘fﬁi exp(-m Az /R") =
vab m=1

a

(26)

B2

ol

Iozo 6::: [b] 2 e
- ) — Im g M
qV Eﬁ; z z

3 o
For the numerical calculations we take the proposed
parameters of VEPP-5:

z

R=100 m, w =310° s,
: o]
A =1 cm, =00/ =0.017, v =l 70 =26 ,
= Z 03 M X 4]
— cm, T =13+10 ,
3
b=3 cm, v=6:10° V , *
A__=60 cm, g=2000 =1 A ,
RF o -
n0=150, p=1/c=1.72+10 Ohm+m (for cooper), o
=400 s, 8§ =10 m,
synch o0
b . -1
F (—)=0.1, Le T, =008 5,
e ZOo
12

The expression for o
Z0

In the case of a multibunch beam a factor g, disap-

includes two small factors, BQKR

and v .
z

pears because the sum (23) contains the terms of opposite

sign not with equal, but with different numbers m (fig. 1b).
Estimating a tail of the sum (23) up from the item with

a number [po+l] as an integral we can get the next approach

for the growth rates of the multibunch beam longitudinal
motion:

. 1 5 3/2

=g [—+S(f]—~[ﬂn/l{} /v],

z zo| N z 3 1D z

where
el 19 =20310 Bt (27)
Q o]
A 3/2 3/2 3/2
Sp (f) = Z {[p+f) -(p+1-f) } + [l—2f]-{p0+1] ;

0 p=0

Note that for any P, S(0)=S(0.5)=S(1)=0. Even the zero

approach {pﬂ= 0) gives a rather precise result. Function S

2v2
9

o

has extrema in the points f = i oS ife) R %0 0.03
o e

e £
(fig. 3a).
A maximum growth rate appears to be much less than the

growth rate of the single bunch with the same current In:

p =0.0050 =4-10 5"
=

Z Inax O
Thus, in spite of absence of the small factor v the
=

effect of dropping the main part of items in the sum over m
prevails and the growth rate is still negligibly small.

4. The Transverse Instability

The transverse Lorentz force E -vB can be expressed

X y
via the membrane functions as

13



,(28)
x=0
yv=0

x=0

y=0

f_ “Wh F e -, 8%
(E -vB ) =-—[1+ ot S ] s
S | 8y

y m i'_In/R 5?{

-l 1+ —

' When turmng to the equilibrium particle system of re-
ference the argument of all functions dependmg on s [except
the currents Ik and I" ) must be replaced on s-imw . That

, krm krm 5 o
gives for the ultrarelatlwstm pa.rtu:ie
5 ad s av
(E -vB ) = - = = i s g {20
X ym MW Jdx |x=0 S-1mw 38y |x=0
: Q- - y=0 (o] y=0
The transverse currents can be neglected in comparison
with the longitudinal ones. Terms with I’ disappear as
rm
they are calculated for the modes with the zero longitudinal
field, and when calculating I we must use. the paraxial
rm
approach: _
‘ 2
E g ke b +X et ' (30)
krd” - ¥ kr ax -
. kr ®=0 x=0
}r:ﬂ =0 v=0
The first item can be dropped when calculating o 38
: : rm

it becomes zero after averaging over the time in the
equation (18). As a result the field excited at the point
with the coordinates (0,0,z) by a macroparticle with a cur-
‘rent I and coordinates (xo,O,zﬂ] can be written as

o

4w RID £ afyes -lmz /R
o © o imz
[Ex_VBy}m >3 ab y S—imw S ﬁ{xne ] *
: Z : - o
m
s, 3 2 cos IR cos kR
oY 1 kmirnl sinz E’E éﬂsz rn e 2 (31)
2 _al-h . - 4 Sh[knb] ke (EE] :
Ky =l gl{r . Za 2b

. To get the possibility to sum up (31) over k,r we must
take into account the transverse dimension of a bunch:

14

l ﬂx~>(}]3 '

-(x-x }2/252

5 o x
j =1 - élylé(z-z ) , x A¢b.
z o 5 ﬂx o o x

Then the r-th item in (31) must be multiplied on

{rﬁﬂszxz

e , and after summing over r the sum over k,r in
(31) transforms into the next expression (in the limit

e knb 2
Zd 1 F[b}ulz Sn[kﬂ] 2a
R SR g ¥ knrb
K, r 1 Vab k=0 h[_zii
o0 kﬂ >
" _I_Z cos[kn] 2b
a 2 kma
K=o Sh[ﬂT

A function F (t) is shown on a fig. 2b.
X

The equation of the transverse oscillations has a form
(18). In the first approach we can neglect synchrotron
oscillations (z = const) and a shift of a transverse oscil-

O

lations frequency (y&x = wx' t).
A beam with a full current I consisting of n similar
o O
macroparticles symmetrically placed along the orbit has n
)

symmetrical modes of transverse oscillations with the

phase shifts between neighbour macroparticles th[k-l]/nﬂ

k:l,...,nﬂ.
After summing up the currents of all bunches and
averaging over the time the r.h.s. of eq. (18) we get the

growth rate of the k-th mode of the transverse oscillations:

a




w I ¢ Re(Z (i(pn +k)w +iQ )

T W (pn_+K)+v A e
g X. p=-0 o X
R* b nR°s b
Z (s)=21tR+ ————— «F [ - ]-g(s)=—° F [ = ]z “V2s/w ,
x 372 x| a P s " e | o o
(ab) (ab)
V =m cz,/e ;
] s
For one bunch with a current I
8]
w 2 +00
- i \fZRisz [E]Z{ £l ES
et s x (ab) p- Vo m=1 vm+r©  Vm-v’
x

X x

where v; is the fractional portion of v , 0 = v’'< 1.
i X
It is easy to show that the single bunch growth rate is

positive when v’> 0.5 and negative when v’< 0.5.
X X

In the multibunch regime the growth rate of the k-th
mode can be written as

w I 2 S
k V2R"S b
of - =" C-F (DZ - — (34)
g % L&D} " o) vn
(8]
where
FARAEE 1y 1 i
Sk=——~+z = ,szn". (35)
V'f_k p=1 Vp+fk 'v’p—fk o
Sk has the same form as a series in the curly brackets
PJ"
in (33), bt fk changes for different modes from f up to

1-v* )
X

1- Thus the multibunch beam has always the oscilla-

o
tions modes both with positive (at f‘k>0.5) and with negative

(at fk<{}.5] growth rates (fig. 3b).

16

},(33} P

Note that when increasing f from O up to 1 SI(f)
decreases from +o down to -e: S(0.5)=0; S(f)=-S(1-f). The
growth rate is maximum at the maximum value of f:

1-v’ 1-v’ n
n n g
0 0

Thus the maximum growth rate in the multibunch regime

|
1-v’

X

of v must be possibly less. When u;f:s: 1 the maximum growth
X

is proportional to , that is the fractional portion

rate can be estimated as

w I 2
PR . B F[E]Zmlso 5786, 11-436)
x Vv < A o
5 X {B_b]

Radiation damping of the transverse oscillations E:-: is

4 times less than that of longitudinal oscillations, Exﬁ 100

-1 A - W :
- So the transverse resistive instability is not

compensated by this damping, and there arises a problem of
supporting the transverse stability of the beam by some
other means.

5. The Transverse Instability of a Beam with a Gap

Let’'s consider the symmetrical beam consisting of n_
equal bunches with a current of each bunch I1 and a full

current Izll-n . If we take away one or some bunches from
o O

this beam the maximum growth rate of its oscillations will
decrease. If when decreasing the number of bunches n the
maximum growth rate decreases faster than the full current
of a beam ]=Il-r1, then this gap in a beam can be some way

to suppress the instability. In other words the condition
given above can be formulated as decreasing the maximum

17




growth rate when decreasing the number of bunches in a beam
by maintaining the full current of a beam.

To determine the maximum growth rate of the nonsymmet-
rical beam we will now develop the method used above, be-
cause of absence of the symmetry we have to solve the both
equations (18) for all bunches simultaneously. When calcula-
ting a Lorentz force (31) we must sum up it over all bunches
taking into account: )

a) a longitudinal position of each bunch, zk=2'n:/n «(k-1),
Q

k=1,...,n=n ;
O

b) unknown phases of the bunches, wk=ﬂxt+lﬁk, k=l,...,n=n ;
Q

c) different amplitudes of the bunches yk=v’Jk.
Iit:p is convenient to turn to the complex amplitudes
k
t=y.e . Then the system of equations (18) can be easy

transformed to the matrix equation:

st
ASNt=aT, (37)
where
3
- 2R F (b/a)
A=ow = vZ p/R ;
o 3/2 rV o
(Elb] X s
ix Iiam' i=L,...,n; A =0+i4Q;
+00
/—i {m—uxJ
S = 1 of 1=
A Z exp(i m ZTt/no (j=k)) AT (38)
X
m=-0o

"Note that here ‘/ —i[m—uxJ =

that corresponds to the positive sign of the impedance real
part for all m.

If j=k a series (38) can be summed up as shown above
for the symmetrical beam. If j#k this series can be exp-

e

e /Tm=v | for (m-v ) 2 0,
vz . x '

ressed via integrals given in Appendix 3. So, all the ele-
ments of the matrix S can be easy calculated.

A computation of the eigenvalues of the system (37)
leads to the next results.

1. Fig.4a represents a maximum growth rate of the tran-
sverse oscillations ¢ in the dependence of the relative
length of the beam n/nﬂ for different deviations of the in-

teger resonances v‘. Here we mean the current of one bunch
X z

to be constant, that is the full current to be proportional
to the length of the beam. Fig. 4b represents the dependence

of the symmetrical beam maximum growth rate ¢ on the devia-
Lo}

tion from the integer resonance In these calculations
n =140.
o

2. Fig. S5a represents the results given on the fig. 4a
normalized on the equal full current for each case, it is
c/o

the dependence of ¢ = nfnﬂ on the n/n. In the logarithmic
n O

O
scale (fig. Sb; the abscisse is —ln{l-o‘nJ, the ordinate is

-In(I-n/n }) these dependences are practically straight li-
O

nes parallel one another with a slope approximately equal 2.
The slopes of the lines and the shifts between them are
given in the fig. 6a,b. Thus the dependence of the maximum

growth rate for the small gaps can be approximated as

L 2"
u*=s:rﬂ-n/n [l—ﬁ-(l-n/nn]&], where oo = 2, A= 2 e x
4]

(For n £ 140 the coefficient A will be changed, see fig.

9 0.
3. Fig. 7a,b represents a dependence of the normalized
maximal growth rate on the relative beam length for v;=0.1

and different n in linear(a) and logarithmic(b) scale ana-

logously to the fig.5a,b. The slopes of the logarithmic
lines and the shifts between them are given in the fig. 8a,b
analogously to the fig. 6a,b.
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Conclusion At the normalization giIr,bi ds=1 , g;2J¢JE dS=1 ,

We have shown that the longitudinal resistive instabi- - .

lity of the multibunch beam is negligibly small in compari-
son with a single bunch regime. But the growth rates of the
transverse resistive instability appear to exceed a synchro-

E H
W ave = / =y’ :
e h Dk SE /%, » Dk 'ark/sp.:ir

tronous damping. A possibility to decrease the transverse The propagation number is determined as
instability by wusing a nonsymmetrical beam with a gap has
been analyzed, and it was shown that it is not a way to sup- 32 = g2+52/c2 ;
press sufficiently the resistive instability. po > e :
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then the coefficients in (13), (14) can be written as
The Eigenfunctions of the Waveguide
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e [_b ¥ a "k ]
b= I; - Z e —L (1+(-1)") ,
{Sh}ll mkx] : gk V{ﬁ -

ch 2
C;J Am [_lig Jkrm_ Eg J;{rm] k
D.r.r o h a X {li{_l) )-'
e sh mry K gk \/E;.E
ch 2 4 :

Appendix 3
A Transformation of the Series (38) to the Integrals

The series (38) can be easy turn to the next series
which can be transformed to the integrals ([5], formula
5.4.3(1))

o
e : R o e
sin(kx)| _ i A
(k+q)" cos(kx)| =t i
e +q)" '(s) J] 1-2e cos(x)+e
0

0 -t | sin(kx)
¥ Hl} e {cns[kXJHdt ;

where s=0.5, q=v;{.
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