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Abstract

We offer a method to study statistical mechanics of classical systems
described in terms of local states. The local state is representedl b}r a
multicomponent vector in a state space. Equations for the prc:-b_a.blh.tles
of the local states are derived in the mean probability approximation.
This equations are solved for models with discrete set of states, where
new phase transitions occur due to a structure of a state space.
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1.Introduction

In the theory of phase transitions the concept of order parameter allows
to simplify the description of a system. A coarse graining up to some in-
termediate scale makes all freedoms except for few ones irrelevant, those few
being components of the order parameter field. In the simplest case the order
parameter has only one component (a scalar order parameter). Systems with
a scalar local order are the most studied. The probability of a configuration
of the scalar order parameter field ¢ may be written as

H .
w{d} = %exp ——{fﬁ), = fexp[—-g)ﬂqﬁ. (1)

In (1), T'is the temperature, [ ..D¢ denotes the sum over all configurations
of ¢(r), r is the point of the real space occupied by the system, and H(¢) is
the effective Hamiltonian of the field ¢. Near a second order phase transition,
only small deviations of the local value ¢(r) near ¢ = 0 are probable, so for
H () one get the Landan Hamiltonian [1]

H= % f {c(V$)® + 762 + g¢* — h¢}dV- (2)

For that scalar system the space of local states is the real axis co > ¢ > —oo.
Examples of those systems are liquid near the critical point, binary solutions,
uniaxial ferromagnetics in the vicinity of their second order phase transitions.

For a planar or isotropical ferromagnetics, liquid crystals, crystals at mel-
ting point and many other systems the order parameter is a multicomponent




quantity and may be written as a tensor field. An important feature of
those systems is the existence of an intermediate scale, on which the order
1s a physically significant property. The so chosen order parameter describes
the local anisotropy of the system. For systems with weak local order, the
anisotropy is small and fluctuations of the local form around an isotropical
arrangement are important. It results in smallness of order parameter com-
ponents, so one may still expect to have the effective Hamiltonian in the form
of series in order parameter fields. For systems with a hard local order the
degree of the local anisotropy is rather a fixed characteristic. The fluctuating
quantity is the orientation of local anisotropy considered as a field of orien-
tations. Examples of those systems are classical spin ferromagnetics (vector
order parameter), some nematic liquid crystals (order parameter is a tensor
rank 2) [2] and crystals and melts near the melting line (3],[4], [5],(6]. For
those orientation phase transitions, the simple form of the Hamiltonian is not
Justified by general physical arguments, but rather it is chosen for the reason
of mathematical simplicity. For instance consider a system with an order pa-
rameter being a planar vector M(r), as in a classical planar ferromagnetics.
The set of local states here is a circle, it may be parameterized with the aid
of an angle coordinate ¥, —7 < ¥ < 7. The simple form interaction energy
is

Eine ~ (Vy)2. (3)

At the phase transition temperature, vortex points for 2D systems and vortex
lines for 3D systems are important, where gradients of orientation are large
and one have to change the form (3) for a more adequate description of the
vortex energy. At the phase transition, the presence and important role of
topologically nontrivial configurations is a common property of systems with
the orientation local order.

As a result of a strong interaction that fixes the local anisotropy those
arguments leading to the universal Landau form of the effective Hamiltonian
are no more valid. To understand the phases and phase transitions in this
systems one have to consider more general models.

It is worth to mention that & quadratic form of the interaction in the
model

“ Bl 7) ~ S(r)S(7) (4)

makes it easy to get a simple mean field approximation (MFA) B}' replacing
the actual Hamiltonian with the MFA one

Huri = hS, h=1y(S). (5)
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It would be helpful to have such a simple approximation for more general
forms of E,,,;. ' ;

The aim of the present paper is to study ordering systems in connection
with their local state sets. We offer a method to formulate such a model
using a representation of points of the state set as an order parameter. The
study of the generating functional for the local state. field leads to the mean
probability approximation. This approximation is applied to models of

2.Local stat- representation.

The mathematical construction of a general model considered here is
based on the representation in turms of local states. Namely, our system
comsists of points 1, and in each point r of the system some (local) state is
realized. Possible local states will be referred as points &, ... of the state

set. The interaction energy is supposed to be a sum of 2-point, 3-point etc
energies

Eaint{c;7 | @;7);  Eani(agr | &;7 | &; ?). (6)

In (6), a, &, & are states at points r, 7, 7 correspondingly. We consider on-
ly systems with two point interactions E = E{a,a). Known examples of
systems with continuous state set are planar and 3D classical spin systems
(space set is a circle and a sphere respectively), nematics with hard local
order (state set is a sphere with points on the same diameter equivalent), the
locally crystalline liquids (states is all possible nonequivalent orientations of
a lattice), etc.-Known models with a discrete state space are the Ising model
(two states system), N-states Potts model [7], clock models etc.

The model we consider is a lattice in (real) space with points (sites) 1.
Fach site may be in one of the states & and the energy of a configuration

{a(r)} is
‘ H{a}=- ZIE“E"}*‘B(‘"J(T — 7). | (7)

The summation in (7) goes over all sites r, 7 of the lattice. Let us now write
(7) in an_alternative form. For the sake of simplicity we consider a discrete
state set with N states. We define an N dimensional euclidean space having
an euclidean coordinate frame with unit vectors el u =172 e e -
unit vectors are in one-to-one correspondence with local states: e(#) & .
The local state in a site 1 is represented by a vector ¢ in this state, namely




o(r) = el if the state is u. For the projections o of & one has o — §45.
In a case of continuous state space one has a functional space for ¢ instead
of the euclidean one described above and §-functions instead of Kronecker
symbols.

The energy (7) may be now written as

H{o} = —3 0" () B (r - 7)o" (), Q

where the summation over repeating state set indexes is supposed. The
quantity E*# is a symmetrical tensor of rank 2 in the state space. We will
consider mainly the case

E°P(r — 7) = J(r — 7)E°P (9)

The form (9) is always valid for models with nearest neighbors interaction.

For the 2-states model (9) coincides with the Ising model, for
E°P = ¢6°P and N > 2 it is the Potts model. For this model the struc-
ture of the state space is irrelevant because of the dependence of the energy
only on coincidence or non coincidence of states & and 8. In the more general
model E°F reflects the neighborhood relations in the state space, so topology
of this space become important -see below.

Note that the average value of the state vector < o > represent the
probability of states at a site: if w(a;r) is the probability to have the state
a at a site r then

w(a;r) =< o%(r) >, ZJ“[T‘] =1, (10)

Correlation functions of o(r) are probabilities of simultaneous occupation of
states at corresponding points:

< oalr1)op(ra)..oy(rn) >= wia;r1 | B; 72 hsagon ¥ (11)

Asin (5), the form of the energy (8) allows to formulate the mean probability
approximation (MPA).

3.The Hubbard-Stratanovich transformation. Mean
probability approximation.

The generating functional for the state parameter field o(r) for the system
with Hamiltonian (8) is

H

Z{h} - TT[EJEP(_ é—:ﬂ-} £ Zﬂ'u(?’)ha('ﬁ))]a; w(a’;?"} 14 éInZ

)" (12)

H{c} is defined by (8), and the trace is taken over all states « in each site r.
Let us perform the Hubbard-Stratanovich transformation for Z. We introduce
in each site r an N-component vector ¥(r). Formula (12) may be replaced by

Z{h} = [ Loy DY exp{~55 ¥, - T 7 (r — F)E<TY* ()47 (7)} x
X [1a;r Tr exp[ (BT (r)o” (r)) + R (r)o(r)]. (13)
In (13), the integration Dt goes ¢« all components ¥ of 9(r) in each site
r. The Tr denotes the sum over aii local states ¢® in all sites. The actual

path of integration in the complex planes of 1) is to be chosen as to make
the integral convergent. The condition of convergence of (13) is

>_ T r = AEPY(r)gP () > 0 _

along the integration in complex 1) planes. To get the eigenvalues of the
quadratic form one introduces new variables (7%

J(r) = >, Jr exp(—ikr),
¥r) = Lk a ¥ exp(—ikr)of,  E®0] = lvg. (14)

For the quadratic term one gets now
by X o - . ‘}"
DI = AETYE R (F) = 3 St atoia, (15)
T,F k,r)i J;:

™ A - - - L
For 7~ > 0 the convergence condition is ;5 = P24 » as for real function

¥(r) but for those k, X with % < 0 integration path is as for a pure imaginary
function: 9y 5 = —@b:kﬂ,‘. In the last case we change the Yr,x = 1P a. The
result is that one is able to use function with 1, = ¥* . When changing the

sign of A if ;—k is negative. In (13), it is easy to take the Tr, summing up over
all local states. The resulting formula is '

Z{h} = [ [la;r DY (r) exp{—£},
F =339 Hr —FEH* ()7 (F) -
—T Y, 3, exp{F(E797(r) + A*(r)}]. - (18)
The essential difference in (13) from (16) is that $*(r) is a continuous vari-

able, so one is able to apply to (16) the well known method of analysis -
to find the most probable configuration that minimize the expression in the




exponent, then study fluctuations of () by expanding this expression in the
vicinity of the minima etc. In this paper we restrict ourselves with the first
step, that gives the approximation of mean probabilities. The configuration
of 9(r) that minimizes F' in (16) ( the most probable configuration ) obeys
the condition :

Y I7H(r — F)O(F) = Z5 t exp[E g0 4 ),
Zo= 5, exp[ER0 4 po). (17)
The substitution of the solution ¢ of (17) in F (16) gives the generating

functional Z , namely F(¢) = —T'In Z. The probability w(a;7) = —ﬁ‘{%
coincide with the right side of (17). It gives the expression for w(a;r)

w(a;r) =< o%{(r) >= ZJ‘l{r —7) ><PH(F) > . (18)

The quantity F of the formula (16) has the properties of the nonequilibrium
thermodynamic potential of the Landau theory, and the field $<(r) plays
the role of an order parameter in the theory. F has its minimal value in
equilibrium. Let us define w(ea;r) for nonequilibrium values of ¥ by formula
(18). In terms of this new field one has for F(w)

F =330 I(r = )BT w(e;r)uw(y; ) -

BT _Ji{r=F F _
=T, . In(>", exp( 2o :f.. zdiiy + B%)). (19)
The equilibrium value of w is at minimum of F

oF

W =0 b, (20)

the condition for probability

Zw(cx;'r) =1 Ly (21)
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is automatically fulfilled for solutions of (20). In explicit form one obtain
(A(a;7) = h%(r))

wla;r) = Z5! exp(g%—;ﬂ),
E{ozr) =3 J(r — 7)E*Tw(v;7) + h(a; 7). (22)

An interpretation of (22) is that the energy B(a;7) is the energy of a site
r when the local state is o, and the surrounding sites 7 are occupied with
the mean probability w(y;7). The approximation is an exact solution of the
statistical problem in the limit of infinite range of interaction J (r).For the
homogeneous field h(r) = h(0) one gets for site independent E(a), w(a):

E(a)=Jo ) E¥Mw(a) +h%, Jo=Y J(r—7). (23)

L4

MPA-Equations may have a set oi solutions depending on additional pa-
rameters not specified by the equations- this is a rather known property of
approximations which are neglecting fluctuations. In the vicinity of a first
order phase transition one expect to have at least two solutions correspond-
ing to stable and metastable phases. The stable solution corresponds to the
lowest minimum of F as a functional of w(a;r) with an additional condition
Yoisttdse) =1

In what follows we apply the mean probability approximation (MPA) to
study some models.

4. The Potts model.

The simplest system with a discrete set of local states is the two state
system equivalent o an Ising model. In this case the MPA coincide with
the mean field approximation. For a N - state model let us correspond local
states to points «,(3,... of a N- point figure; the energy E®? of interaction
correspends to the segment connecting « and 8. The resulting graph consists
of N vortexes and ﬁ%'—” segments. A symmetry of the system courses the
symmetry of the graph under permutations of vortexes - the matrix E®P
is invariant under corresponding permutations of rows and columus of the
matrix. It is evident that diagonal elements of the matrix are transformed in
diagonal elements. :

The most symmetrical model is the Potts model E*? = £6*?. For Potts
model all vortexes are equivalent but disconnected, so the neighborhood rela-
tions are not defined for this model. We consider here the case > 0 with all
points in the same state for T' = 0: o = 0. At high temperatures one expect
all states by occupied with equal probability w = 1 /N. For low temperatures
the state 0 has the probability w(0) > 1/N. We denote the exceeding proba-
bility of the first state as 2 = w(0) — 1/N. All other N-1 states are occupied
with equal probabilities w(1) = w(2) = ... = w{N-1) = lﬂ# The later as-
sumption reduces the problem to a one parameter one, so MPA coincide with




a mean field approximation if one uses x as an order parameter-see [7],[3].
Let us use €Jp as a unit of energy and temperature. The thermodynamic
potential F'(z) is now

F=L(z+ 1) _|_‘51_”";N]'_) Tln Z(z),

:5.__

Zgz) = exp(z + 1)+ (N - 1) ﬂP{W) (24)
Equation (24) gives for the equilibrium value of x

1 1 z N 1
z -+ i = 5(1 -+ ta,nh(zT(N =) — Eln(ﬁ — 1))). (25)

There are three characteristic temperatures for the equation (25). The low
temperature solution exists for temperatures T' < Tj,. The high temperature
solution z = 0 exists for all temperatures but is stable or metastable only
for T > T},. The T, and T}, are the spinodal temperatures of the low and
high temperature phases respectively. F'(z) has two minima for temperatures

Ths < T < Ti, yand for T =Ty, Tay ££ =0

Ths = 33 (26)
Ty, — e ‘ (27)

At the phase transition temperature T,
F(mh{n}!j}) o F(ml(ﬂLﬂL ok i . (28)
where x5 = 0,2;(T") # 0 are the solutions of (25). One gets

N -2

= O T 1IN =1)

(29)

Note that the relative d1fferenr.e A = —L&,i is a small number of the order
102 for N = 4 but A — § for N — oco. There is a high asymmetry in the
ranges of metastability of two phases.

Let us now consider small deviations from the homogeneous solution wy.
Linearizing (19) near wy and treating r as continuous variable one gets for
¢ = w — wp in the high temperature phase

JiLgeid oy 2 -
ST - B g = MTg =0, (30)

Ji is the Fourier transform of J(r),

= Ji—
J(r)= [ d®kJ R edges aathml -
(r) f kexp(ikm), Ji 15 (Rok)? (31)
Ry is the radius of interaction. The correlation radius R, is R, = ki-, where
Det{Mf:T} =="D; (32)
R.& fio (33)

{N=1)In({N-—-1

For N > 2 the phase transition is a jump from a good ordered low tempera-
ture phase to the noncorrelated high temperature one.

5. Beyond Potts symmetry.

Let us consider a general model (8,9) with all vertexes equivalent. This
means by definition that the graph is invariant under special permutations of
vertexes exchanging any two vertexes of the graph. In other words it means
that all rows of E,; are permutations of one row (the some for colnmns).
A graph with such a symmetry realizes the idea of Platon’s figure. One
gets those models in the theory of melting as an orientation phase transition
by substituting the rotation group with its discrete subgroups, the later one
being symmetry groups of regular polyhedrons in 3D case or regular polygons
(Z -clock model) in 2D systems.So, the matrix for the N=4 clock model (the
symmetry of a square) is

oL (34)

o0 o B
o R o
o 0 oo o
=T I T

where b, c energies correspond to the sides and the diagonals of the square.
For a model with the symmetry of a cub (N = 8) the matrix E*? has the
form
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Eup = e d b b-me < bhl? (35)

e’ b b e At e B

¢ bh'..d b ¢ @ b

\ e endd 5 5 g Ty

where b and ¢, d energies correspond to the edges of the cub and to the two
types of the cub’s diagonals.

Let us mention some general properties of discrete models.

1. The largest energy A = JyA, X being the maximum eigenvalue of E*P
determines the temperature Ty of the high- temperature phase spinodal. In
high temperature phase all local states have equal probabilities w(a) = %,r
The solution w{a) = 1/N of MPA - equations exists for all temperatures,
but for T < T it is unstable. )

2. The group G of permutation symmetry of the set of states caused by
the symmetry of the graph E*? has some important subgroups. Namely,
E*P is symmeirical under all permutations of G which lives a given state
v unchanged (rotations O (y) around v, L is the number of non coinciding
configurations one gets for a graph with marked points). Another set of sub
symmetries Z3(af3) consists of pairs of permutations interchanging two given
states 5. The external field h can break some of this symmetries.For h = 0
the probability distribution w(a) and other statistical- characteristics may
have some of this symmetries. Namely, the high temperature solution w = }1?
exhibits all of O(a) and Z; symmetries. The low temperature phase has the
symmetry Oy, of rotation around the state & = 0. With the temperature in-
creased the system undergoes a cascade of phase transitions to phase shaving
new symmetries or no symmetries until the most symmetric high tempera-
ture phase is reached at T = T. For T > Ty, the minimal value of the

energy F(w) defined by formula (20) corresponds to w = wy = - In MPA

the expression for F' as a function of a small deviation p = éw = w(a) — wo
may be written as a power series in ¢. Note that the same change of all
energy makes no changes in probabilities due to the condition 3L wle) =4
Let us chose the zero level of energy to get the sum of all elements in a row
of the interaction matrix 3 FE*? = 0. Under this condition

T I
F(p) = F(0) + ﬁE‘”(—}EET” + N&™)p%" + ... (36)
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i ———.

The terms replaced by ... are the cubic, quadratic etc. The written quadratic
term determines a necessity conditions for the stability of a phase. The matrix
E2P has a set of eigenvectors v(™) with corresponding eigenvalues A,. Due to
chosen condition for £*# the value of quadratic form in (36) is invariant under
a shift of all p* — *+¢, and at least one ] is zero corresponding eigenvecior
is vg with all component equal. The physical probability normalization leads
to } . ¢* = 0, hence the projection of ¢ on wg is zero. The eigenvalues p,
of the matrix of quadratic form in (36) are

ANT A
——lp = —(=JgA, + NT). 37

As discussed in part 3 (see (15)), the stability condition is u, > 0 for ‘1‘7‘;1 >0
but u, < 0 for i}:t < 0. In our case Jy > 0 means that all negative ) and

positive A < &L correspond to stable modes but modes ¥, with A > %ﬁl are
unstable. The Targest positive eigenvalue A4, of the matrix E,, g defines the
lower boundary

)‘ma:-: J )
N

of stability or metastability of the high-temperature symmetric phase.

3. The highest possible symmetry of the high temperature phase is spon-
taneously broken in the lower- temperaiure phase. The phase transition is
a second order one in MPA if and only if the > term in (36) vanishes for
Trr-= AT";Q and the o* term is nonnegative. Consider the eigenvector v cor-
responding to the maximal eigenvalue ). The phase transition is in MPA a

second order phase transition if

> (@) =0, %{Z(vﬂ)z)ﬁ -3 (%)t > 0. (39)

For all other cases the phase transition is a first order one in MPA.

4. Let us investigate fluctuations about high-temperature trivial phase
for 3D models. One expand the action (16) in a series in fluctuating fields
e%(r) = ¥*(r) — i,—“ neglecting terms above the second order. The gauss
approximation for connected correlation function of probabilities gives

(BB 0) |
2
K (ri=1ry) = cr?a} >>= j—J—”i‘}i) [hcg

=Y, (55— - L], (40)

Ty = (38)
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where
— 8§ 1 XL J:..EGT
(g = g6 - BT (41)
(L_l)f;PL;g et (42)

Poles of fourier transformed correlation function K%7(q) defining a scale of
fluctuations we obtain from equation

Det[5e? — 2k gy — ¢ (43)

NT ;

with Ji from (31). The solution of the (42) equation with the smallest
| ke |= g defining a behaviour of the correlation function on large distances
connects with the maximal eigenvalue of matrix E (see also reasonings from
the 2 part of this section)

B L . (44]

i ')"'I“J'I,EE

From (31),(38) and (44) the correlation radius at T' > Ty, is

R, (45)

5. The ground state of the system is determined by the location of largest
matrix elements. We study here only systems having all sites in the some local
state at zero temperature: it is the caseif J(r) > 0 and a > 0,a > b,¢, ... -see
formula (9). This state is chosen by an infinitely small external field h — 0.
We will mark the preferred state as & = 0. The lowest energy- excitations
are then sites occupied by local states 8 corresponding to lowest values Ag
of excitation energy A(f)

A(B) = Jo(E® — E®),B#0;Jo =) J(r). (46)

We will refer those states 8 as next neighbor states to the state & = 0. For

every state a there are next neighboring states # with minimal values of E*P,

we will denote those states as § = nn(a). At low temperatures T' < Ag the
system has almost all sites in & = 0 as a background for a low density gas
excitations - sites in states v # 0, with concentrations c(y),

c(y) = ﬂp(—&—gl)- (47)
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All states symmetric under permutations not changing the state 0 have equal
densities (probabilities) at T' < Ay, particularly the nn(0) states have the
highest but small equal densities ¢ = exp(——%‘l). It is important to stretch
that the symmetry of ¢(y) is unbroken at low temperatures T' < T;. The
MPA is not valid for this temperature range because the number of excitations
inside the interaction volume is a small number proportional to the density
c. One can check the statement by applying to the expression (12) for Z a
low density approximation using the c¢(v) as a small parameter.

6. In the intermediate temperature interval Ty > T > Ag the symmetry
of phases depends on details of interaction , e.g on J(r) and EP,

Some general approach may be applied to the low temperature investi-
gation of a model with an arbitrary discrete space set interaction. For low
temperatures only the ground state and the any states nearest by energies
to one are significant. The all other states are negligible. This idea allows to
simplify an arbitrary discrete model to

6. Model with nearest state interaction.

Consider a system in which the interaction between next neighboring
states is added to the Potts interaction energy:

Bob = e6°P 4+ g(1 — p)smn(@) (48)

e > 0,y > 0,y € 1,T < e. Let us chose the energy scale by setting
eJo = 1. For very low temperatures T' < v almost all sites are occupied by
the same state witch we will denote as & = 0 : 1 — w(0) <« 1. Probability
(concentration) of all other states is low. For 8 = nn(0) it is w(B) = exp(— %)
while for ¥ # nn(0) it is w(y) = exp(—7) and we can neglect this probability
for T < 1 and reduce the set of local states to those of ground state 0 and L
states nn(0). For the reduced system, the initial symmetry of E<7 is broken
- the state o = 0 plays the role of a vacuum for the system.

1. At the lowest temperatures T' < v the system has a O, symmetry
under(discrete) rotations around the o = 0 state, the concentration of states
B = nn(0) is the same

v
w(f) =w= e:n;p(w?). (49)
On increasing temperature, Or symmetry of equilibrium configuration is bro-
ken via a phase transition. It is possible to consider this one for two limit

15




cases: a) radius of interaction is finite, the product of J, and & -the diagonal
element of the matrix E is infinite; b) radius of interaction is infinite, the
product of Jy and ¢ is finite.

la. At lowest temperatures a probability p for two nn(0) states which are

not nn between each other to be at distance of the interaction radius Ry is
R
p(T) ~ ()%’ < 1, (50)

where 1 is the elementary lattice site, d = 2 or d = 3 is the number of
dimensions of the system. At higher temperatures the repulse of excitations
with different 3 is essential - every nn exclude all others nn from the volume
Rg. For all nn having the some density it results in a lost of the entropy and
hence to increase of the free energy. A phase with a symmetry of rotation-
surround « = 0 broken has a lower value of the free energy. In the new phase
the smaller set of states all being nn of each other is preferred. The system
undergoes a phase transition to this phase at the temperature of the order 7'

v

T ~ NENE (51)

We got the latter formula from the crude estimation p(T) ~ 1.

1b. Tu this limit case homogeneous MPA equations (22) with E from
(48) are exact. We are going to look for a solution of this equations for
probabilities w(a),a = 0,1...L depending on two variables only

w0)=1-(L-r—w, wl)=w, w(2)=..= w(L) = . (52)

This kind of solution of equations (22) realizes an idea of a separation of
one of nn(0) states (1 state for example). From (22) and (52) we obtain the
equations for equilibrium values of 7 and w

1
14(L~1) exp( LG ) b exp (3 (-+(L~1)(1-20)m (1 20)w))

A 1
g 1+(L—1)exp( m }-]-exp(ii.?—{u-— (L—-1)(1-2v)r— 2rw)) 3 (53)

There exist some temperature T

ey Lo (54
'ln(_:—;)’ )
and the trivial solution of the equations (53) at this temperature
U S
W=7~ }*D—, (55)
16
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such that at T'= T+ A, A < v some nontrivial solution (NS) going to trivial
W at A — 0 exists. The expressions (54,55) are obtained in the leading order
in ¥ < 1. The value x = =% plays the role of order parameter, which non
equal to 0 for NS only. There is the great difference between circle-like I = 2
and other L > 2 cases.

In the circle-like case the phase transition of O; symmetry breach via the
separation of 1 state is the second order one. The dependence y on T for NS
near T- the temperature of phase transition- points to the strong dumping
of the 2 state at temperatures above 7™

d2F 2J
Wlx-+ﬂ=“y_ﬂ"'*m for v—0. (56)

The same phase transition becomes the first order one for the I > 2 case.
It is possible to define three characteristic temperatures in this case: the first
one T from (54) is the temperature of low-temperature phase spinodal; the
second one 7 — 8T, where

T2(E ~ 2)(L2 1. 2L —6)
Jo 2L -1 :

is the temperature of high-temperature phase spinodal; the third one is the
temperature of the equilibrium phase transition been in between the first and
second one. As for L = 2 case the strong dumping of the all nn{0) states
besides the 1 one for temperatures above the temperature of phase transition
takes place too. -

2. A strong interaction of nn states for temperatures above 7' leads to
the separation one of nn states (1 state) and the strong dumping of other
states. So, except some small vicinity of T, an influence of 2,..., L states on
the Ising-like 0-1 states picture is weak. To clarify this issue it is convenient
to study the generating functional (16) with the state matrix E (48) and
without lose of generality for L = 2. It is our waiting to obtain

§T ~ (57)

Cdieae s S a > : (58)

or in accordance with (18) < ¥? >«< ¥° >, < ¢ >. Again, we work in

-

such temperature region T' < T' ~ ”'TJ” where an additional small parameter
exp(—-'i’%:—:i) exists. So, let us expand the action in a power series in %2 and
exp(—-%i) neglecting terms above the first and the second order over 32 and

exp(—%l-) accordingly
o Z{h} = [TL,, DYO(r) D¥* (i) Dy (rs) exp{~ Y, (59)
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F= ﬁ} + ﬁz o ﬁe:};h (60)
= {! v 0 40 ‘.r")
Fr=gpJ 7 (ri =) (4°() 9%(rs) ) ( 0 v ) ( ¢1E‘-'"j) ) h

— X, Infexp(LGY) 4 exp(ilravy) (61)
Fy=350-Y(r; - r3 )2 ()2 (rs v + L3 () (T (s — ri)t(r;) —
exp( 9 (r:)) 5 exp(— ¥o{r)i=v),
_-cxpl:ﬁ_wg;ijﬁ]"‘ﬂxp{ﬂ-{ﬂ;ik_]‘) T e T, Ei ¢2(ri)exp{iz.'ﬁ]+exp{*—l-%’ (52)
b Lirsd(1—w)
B sl S ) (63)

) Uip Tir jee, ®
™ exp( i ) pexp(L-Gidv )

Fr is the action of the Ising model for which a mean-field investigation gives
a correct description of a second order phase transition at the temperature

T = %. About the phase transition, contribution in the action from F.,,
is exponentially .mall ~ exp[ul%}. One is equivalent to an action on the
Ising system of an unsymmetrical under a permutation of the 0 and 1 states
external field. Yet, about the Ising phase tramsition < 0% >~< ¢! > and
we must take into account an influence of states nearest neighbor as to 0
state as to 1 state. This makes an external field at the phase transition
point symmetrical under permutation of 0- and 1-state and doesn’t change
the order of phase transition. The expression for o2

exp(__"“—gl'rnél_yj)

exp( ek ) 4 exp(LLor)’

a e — (64)

obtained after the gauss integration in (59) over 92 fields with a substitution
in (62) most probable Ising-like mean-field configurations of ° 41 fields
confirms near the phase transition, where < ¢° >~ ol >~ %, the start
approach (58). So, the nearest state interaction model (48) at an increasing

temperature above T turns out to be invariant under Z5(0,1) subgroup of
group G of permutation symmetry of the set of states.
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A.3. Hamawunexud, M.B. Yepmrxos
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