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ABSTRACT

Investigation of dynamics of a laser beam in a medium,
dielectric permittivity of which depends on the beam power,
represents one of the classical problems of nonlinear
physics. In the present paper this problem 1is solved
analytically in the framework of the two-dimensional
Schroedinger equation with the focusing cubic nonlinearity
and small defocusing nonlinearity of the fifth order. The
model is shown to describe the whole process of staticnary
gelf-focusing, that spreads along the direction of the beam
propagatlen and consists in decreasing oscillations of the
waveguide width. The shape and also the upper and lower
envelopes of these oscillations are studied in detall.
Paramgters of the final state, that is a homogeneous
wavegulde, are determlned.

@ Budker Institute of Nuclear Physics
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INTRODUCTION

Strong flow of electromagnetic radlation propagating trough a
medium ewxerts influence on its parameters. If the dielectric
permittivity of the medium in the central region of the flow ls larger
than at the periphery, then the speed of light decreases to the center
and the wave surfaces are deformed in such a way that the focusing or
waveguide propagation of the flow can occur. This phenomenon was
predicted in 1962 by G. Askar’ yan ! and is named the self-focusing of
radiation.

An existence of the self-focusing was confirmed experimentally.
Depending on the conditions of experiment, a local destruction of the
medium or formation of bright thin threads were observed. Some authors
interpreted the threads as running focuses, others preferred the ldea of
waveguides along which the radiation propagates (see, for Iinstance,

2'3]. Pulsation of the thread's width, observed also, was

reviews
treated as a multifocus structure or transitional process of a
homogeneous wavegulde formatlon, respectively.

Mathematical models for the self-focusing of radiation were
suggested lﬂ papers of 60's (see 47 .nd also reviews ’°). Since then
numerous attempts have been undertaken to solve the self-focusing
equations or, at least, to clear up the most essential properties of
their solutions for interpretation of the experlimental data. However,
investigation of the mathematical models appeared to be a difficult
task. Even the simplest model, in which the nonlinear addition te the
dielectric permittivity of the medium is proportional to the local
energy density of the radiation, has called difficulties. This model has

led to the two-dimensional Schroedinger equation with attracting cuble

nonlinearity.



In order to clarify the problem, it is useful to note that
dynamics of the self-focuslng is determined by competition of the
focusing nonlinearity (which contracts the flow) and transverse
dispersion of the waves (which spreads the flow). At a given power of
the radiation, both of the nonlinearity and dispersion are inversely
proportional to the cross sectlion of the flow, i.e., to the square of
its width. The ratio of the above opposling factors depends on the power
of radiation and does not depend on the width of flow. If the power
exceeds some critical wvalue, then the nonlinearity overbalances the
dispersien, that results in an unlimited transverse compression of the
flow. This process is named the critical collapse. Attempts to study the
dyriamics of the critical collapse were glving contradictory results for
a.long time. An asymptotic law for a decrease of the flow width along
the direction of the beam propagation has been determined carefully only

10-13
last years :

(for more references on the critical collapse problem
see review 1 and paper 12}. However, this asymptotics was hot reached
in the numerical simulations, even when the maximum field amplitude has
increased by many millions times.

As the energy density of radiation Increases infinitely in the
framework of the simplest model, the appllicability conditions of the
model have to be broken. First of all, the quadratic term becomes
essential in the dielectric permittivity expansion in a power serles of
the radiation epergy density. The corresponding term in the nonlinear
Schroedinger equatien is of the flfth order in the electromagnetic field
amplitude. Under conditions when this term also reduces the phase
velocity of the waves, focusling ones, an explosive increase of the field
amplitude, generally speaking, is going on up to the local destruction
of the medium. For such medla, the final stage of the process is hardly
accessible for universal macroscopic description.

In the present paper the case of a “soft’ saturation of
nonlinearity is investigated. This implies that the quadratic term in
the dielectric permittivity expansion is defocusing, in contrast to the
1jnear term. It seems, for the first glance, that for such media an
explosive increase of the field amplitude will continue until all terms
in the dielectric permittivity expansion become values of the same
order. Maybe because ®of this, many models for the saturation of
nonlinearity were suggested and the two-dimensional Schroedinger
equation with the focusing cubic nonlinearity and weak defocusing

nonlinearity of the fifth order was considered only as a one of those

1417y However, this equation can be shown to have

[gsee, for instance,
a more general quantltative sense. The point is that the contracting
action of the maln (focusing) nonlinearity ig almost exactly
counterbalanced by the dispersion, while the surplus power of the
trapped waves has irradiated, basically, at an early stage of the
critical collapse. Because of the ma jor factors balance, even a small
defocusing nonlinearity stops the compression of the flow, and all
higher terms of the dielectric permittivity expansion remain negligible.
This makes possible a universal macroscoplc description for all the

process of statlonary gself-focusing.
2. QUASI-STATIONARY SOLITONS
Statlonary propagation of a coherent quasl-monochromatic llnearly
polarized electromagnetic wave is described in numerous media by

equation of the form (see, for instance, izt

=(-a+v) v . (2.1)

'l‘.'n1€l.i
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Here § is an envelope of the wave, Z is the distance along the direction
of the wave propagatlon, A is the two-dimensional Laplace operator
acting in the transverse plane, -V is the nonlinear addition to the
dielectric permittivity of the medium.

When the spatial dispersions of nonlinearity is negligible, the
addition ¥ is a function of iw|z, Assuming the electromagnetic fleld of
the radiation is small in comparison with internal microscopic fleld in
the medium, one can expand the function F{|¢|a} in the Taylor series and

hold the lowest terms of the expansion:
] R [ | (2.2)

The signs of coefficlents in (2.2) correspond to a medium with a "soft”
saturation of .nonlinearity. The first term describes the focusing
nonlinearity and the second term describes the defocusing nonlinearity.
The modulus of the first coefficient 1s standardized by a proper cholce
3f units for physical values. Remaining freedom in the choice allow one
to make the typical walue of the electromagnetic field j¢] in the
initial state (z = 0) to be of the order of unity. Parameter &, that has
the meaning of the ratie of typical initial fleld of the radiation and



internal micrescopic field in the medium, is assumed below to be a very
small value, & <<< 1. The expansion of the dielectric permittivity (2.2)
is applicable until the field of radiation remains small in comparison

with the internal field,
& !¢| " or o (2.3)

At soft saturation of the nonlinearity, thls condition is satisfied
along the whole axis z, that makes possible a complete macroscopic
description of the stationary self-focuslng of radiation.

An essential role in the posterior analysis belengs to the

well-known integrals of equations (2.1) - (2.2), the "number of quanta",
N = E% sz? lo]? (2.4)
and the Hamiltonianm,
i 2
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The generalized Talanov transfermation, brought inte use under the

investigation of the critical cm]lapse,g iz also relevant. It looks as

: g _ i
Wi, z) = _;_z_} f{-é-%}. qtz'jj Exp{i[i;[z] + j(—;‘ % -E} ; (2.6)
£(z) = arg (0, ), a’lz) = gf (z),

where the primes signify z-derivatives.

Studying a single channel of self-focusing, one can place at 1its
axis the origin of transverse coordinates and treat C: = w as a "bound
energy" of the trapped gquanta in the "potential” (2.2) and a as a width
of the channel.

Talanov transformation leads to the follewing equation for the

function f;

[ia—,—l]f=[—ﬂ+ﬂ]f, (2.7)
g :
o B
8 : 2
U=-lf]* + 5 £ *%ﬁp & (2.8)
a2

*

arg fl0, ) =0, g=-a a

Here, A is already the Laplacian in new variables, 3 &= ?fa. The field f,
real at the axis of the channel, has there the value of the order of
unity. The term -Bp;/d, has no analogous In formula (2.2), can be
interpreted as a potential of inertia forces acting on quanta in the
intrinsle reference frame, contracting or expanding together with the
channel, whose size varies with the acceleration |a’*|. The coefficient

B characterizes also the degree of adiabaticity of the "potential” (2.2)

wvariation. Indeed, the typical scale of the value V variation along the

coordinate z is of the order of (|a"|/h1412 = 3!, while the ratilo

wa = {aﬂla,, |)1r‘2 s |B|1f2

is Just the parameter of adlabaticity.

If the channel arises as a result of the modulation instability of
a powerful radiation flow, rather than 1t is prepared artificially by
some special way, then w and ¥ are originally the wvalues of the same
order. At B ~ 1 the quanta leave the channel easily and predominance of
the focusing nonlinearity over the dispersion decreases quickly. This
implies also decreasing of the parameter 3, which turns inte zero when
the above opposing factors are exactly balanced. An approxXimate balance
of those comes at an early stage of the critical cellapse and improves
later. At B ¢« 1 the losses of trapped quanta are expenentlally small in
terms of the inverse parameter of adiabaticity. In conformity with a

~1/2
»

general adiabatic theory, the regions p < 1 and p > 28
accessible for a classical particle of unit bound energy in the
potential U, are separated at § « 1 by the barrier hardly penetrable for

the guanta.
2
As it was already mentioned, the defocusing term ﬁ; |fi4 in (2.8)
a

remains small along the waveguide. Thus, at B « 1 one has two small
parameters. In the limit of B = & = 0 the equation (2.7) has localized

stationary solution, f = R:

ir2

(L + R -1)R=0, 1im R(p) p ef = 4 =3.52, (2.9)

which was found in the well-known paper ® and is named the Townes



-
soliton . The constant A can be expressed in terms of the Townes

soliton by the formula
Lrel

A= (nf2)'"? Idp p R (p) I.(p).
O
According to (2.6)-(2.8), the localized state of the fleld ¢,
corresponding in new varlables to the Townes solliton, ls not necessarily
a statlonary state; it may be contracting or expanding with a ceonstant
velogity, as a’’ = 0 entails B = 0. Such a solution, found in zhzz, is
referred below as the Talanov soliton. The number of trapped quanta In

the Talanov (and Townes) soliton,
m

HC=J.dppR2E 1.86 ,

4]
i=s "critical" in the sense that under the condition ¥ < Nc the

nonlinearity is overbalanced by the dispersion and the collapse ls
impossible even in the framework of cubic nonlinear Schroedinger

equation. The Hamiltonian of the Townes soliton equals to zero,

-]
2
! dR e S )
Hc = jdp o] [[ dp 7 R‘} 0,
o

that implies exact balance between the nonlinearity and dispersion.

Becausge of the same balance, the Hamiltonian of the Talanov soliton

equals to the "kinetic energy" of the trapped quanta directed motion:
®
H(a') =Ha?, H=%Idp P> R = 0.55.
0
At small (but finite) wvalues of the parameters B and &, eguation
{2.7) has quasi-stationary solutions close to the Talanov seliten in the
range p € |,|3|'”a

guasi-stationary soliton to the number of gquanta and Hamiltonian, HS and

, Where the term Epz is small. The contributions of the

Hs' can be calculated by the perturbation theory using the Talanov

soliton as a zero approximation:

N - N =N= N +2 — (2.10)
s c B “HiE
a

-

Apart from the Townes soliton (decreaslng monotonously in term= of
p} a numerabla aet pf nonmonctone salutions decreasling at o - o] exists
for the equation (2.9) (see s i but those are exponential ly
unstable with respect to small perturbations and are not realizable

under inltial conditions of general kind.

o=

H =M a,z + N - (2.11)
s c

] inu
=] mn

a

Formula (2.10) can be obtained alsoc by differentiation of (2.11) with
respect to z or &, at fixed values of N and Hs, if one uses the value’s
B definition (see (2.8)). For the further, this definition 1s convenient
to replace by a more simple relatlionship (2.10).

Conditions for the self-focusing, N > O and H_ < 0, together with
the formulae (2.10) and (2.11) entall the inequality

8| = W/,

which shows that the adiabaticity parameter is indeed small at N «1. In
the range az B EZH ¥, where the defocusing term is negligible, formula
(2.10) turns into direct relationship between the parameters g and N:

B = N/M.

3. THE SHAPE OF THE SOLITON OSCILLATIONS

Equation (2.11) enables one to determine a variation law for the
soliton size, a, at given values of N (the surplus number of the trapped
guanta) and Hs {the scliton contribution to the Hamiltonian). In terms

of the variable £ (see (2.6)), the above equation looks as:

2 H
T e 2 4 i 5 2 e -

The extreme sizes of the soliton, introduced here, satisfy the

relationshlps
2
a3 N o
2l £ aa+a=—g— (3.2)
H s s
s
Defining new variable, ¢, according to the formula
172
-H = 5 143 -1/2 a
dip 5 i [ N ] [ E] m
e ARy [PES i S e 1 +4g ’ e (3.3)
df l M ] M M a,
one can rewrlte the equation (3.1) in a simpler form:
2 2
CRIEES (e
dyp aE m
H
9



At slowly varying envelopes a and a,. i.e. for guasi-periodic
i

osclllations of the soliton, equation (3.4) can be solved in terms of

the Jacobi elliptic functlons of modulus g’ = J L= qg » complementary
a
m

to g = ~

a&a dnle, q')}. (3.5)

The real perlods of the function (3.5) over the variables ¢ and £,
computed formally at fixed meanings of g and N, equals to

PR 5 142
Ap = 2K(q’) and AL = 2 [-:7] [1 +q ] Ki(g”) (3.6)
N
respectively, where K 1s a complete elliptic integral of the first kind.
The imaginary half-period over &, computed under the same convention, is

signified below as iA and 1s glven by the formula
M Y172 5 172
A =2 [-:;] [1 t q ] Kig). (3.7)
N

At g « 1, the above formulae can be simplified and, apart from
this, extended to some first soliton oscillations, whlich aren’t quasi-

perlodic ones.. Thus, (3.2) reduces to

2
= d N
aE o - E— , az = - i (3.8]
H H m o
s N
while (3.4) comes into two equations:
2
da P ) 2 2
{a;] = a a. 8% 8., 3 B
and
da)? a® 2 2 2
[EE = [1 o ] a, a »a. (3.10)
a
M
Noteworthy that at 2 « ai the behavior of value a do not depend on H&.

The parameter drops out also of the variable ¢ definltion, as it takes

the form

-

de _ [ N)'
e B o

Hence, only %l global variation of HS in the range 2« ai appear to be

10
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essential. In partlcular, the slowness of Hs variation in that range is
not required for the equation (3.9) applicability.

If both of the conditicons a: a4 « ai are satlisfied, equation
(3.4) takes especially simple form, independent of both values Hs and N:

2
Fﬁq * 8% (3.11)
dy

As seen, in this range the {-dependence of a is exponential one:
a = expl¥Fg), (3.12)
The signs "-" and "“+" in (3.12) correspond to the compression and

expansion of the soliton respectively.
The solutions of equations (3.9) and (3.10) in the vicinities eof

n=th minimum and maximum of the soliton size locok as:
- 3.13
a%a chiyp .rprm'.', ( )

a
o (3.14)

a = éHTE—:—E;;}.
The subscript "man" or "mn" signifles that the value relates to the peint
of n-th mninimum or maximum of the soliton size. The coincldence

conditions for formulae (3.12), (3.13) and (3.14) inside their mutual
applicability regions imply that:

da 4aHn
g = g %ty — ; @ - ¢ @ In - ; (3.15)

da m, n+l Mn
Hn miy - » m,n+1

For large (g « 1) guasi-periodic oscillations, formulae (3.5) and (3.6)

agree with (3.12)-(3.15).
4. THE POVER OF TRAPPED QUANTA LOSSES

Formula (2.11) links together three parameters of the quasl-
stationary soliton: a, N and Hs, Two more relationships between these
values are required to get a complete set and forget about the original
equation in partial derivatives. As the shape of soliton oscillations at
given values of N and-Hs is already known, the powers of the trapped
quanta and Hamiltonian lesses, J and Jﬁ. can be computed principally.

Then, the pair of equations required will be gotten in the form

11




-.-.—=-J‘ .._.S_z—J'_ [4.1]

The values J and Jﬁ are positive, as the back process of guanta trapping
from the free "background" is negligible for a single soliton. At
adlabatic wariation of the scoliton, the value J is exponentially small

in terms of the inverse parameter of adiabaticity:

-in J ~ wfy. (4.2)

The value Jﬁ is linked with J by the estimation

Jy = I e (4.3)
as the soliton spends the "bound energy" w to rid a trapped gquantum.

The quantitative formulae for the values J and JH are convenlient
to derive step by step. First, the range a® s ﬁa:, where the defocusing
nonlinearity do not influence the trapped guanta losing, has to be
studied. "Potential" U for the Schroedinger equatlen (2.7) looks there

as

Us 2] - 7 8%, 5

iz

x| =t

' (4.4)

and varies wlth the same typical "time" as the walue N, i.e., much
slower than a. The trapped quanta losses, caused by such a variation of
U, are negligible in comparison with the losses via a tunneling in this
potential. Therefore, computing the losses, one can treat potential U as

a stationary one. Use of a statiocnary version of the WKB-method gives:
J = 28%xp(-A) = J_(A), (4.5)

vwhere A4 is the same constant as iIn (2.9) and A iIs the same value as in
(3.7) at ﬁqz « 1. Formula (4.5) makes more accurate the estimation (4.2)
conformably to the region az - ha: of the scliton size wvariation. Hote,
that the possibility of reduction of the non-adiabatic guanta losses,
existing in terms of the original Schroedinger equation for the field y,
to the tunnel losses In a quasi-stationary potential is caused by the
additional symmetries arising at 8 = 0.

In order to cover a broader range a® » a: (including the subrange

2 2 % .
a s ﬂam], a small nonstationary correction to the walue B in the

e

*

potential U is to be taken into account. According to the formulae
(2.10) and (3.8),

i 2&2
Esg[l-—;, (4.6)

a

Then, use of nonstationary WKB-method gives

mra

1/2 5 :
J = Eﬁzexp{-(-g—) {n + 4a: I ds cos's Rea 2(¢ +15}]}. (4.7)
N

Formula (3.12) for alp) enable one to replace (4.7) by a local

expression,

]

18]

ha
Jow-J (K] exp] = ; (4.8)
= 2a

2 2 2 2
his formula reduces to (4.5). In
applicable at a » ham, At a » ham, this form
the range &z = haz the function (4.8) decreases quickly, as the value a
m
decreases, so that at a® « Aa® the quanta losses are practically absent.
7 i

The true losses at 2’ hai aren’t as small as formula (4.8)
predicts, for 1t takes 1into account only tunneling. Apart from the
tunneling, the guanta losses caused by nonadiabatlc transitions in
slowly varying potential U exist. The total value of those, reached

2 2

during the soliton passage through the region, a = ﬂa_ appear to be
about A ‘exp(-A). This value is also small and can be neglected below.

Comparing the flux of quanta with the flux of Hamiltonian slightly

' -1/2 A
right the «classical turning point p = 2B . but inside the

applicability region of WKB-method already, one can get the following

relationship:

B

2
Jo& J [——— ] : (4.9)

While the formula (3.12) valid, this relationship takes exactly the same

form, as the estimation (4.3], namely,
¥ (4.10)
H

As seen from (4.8) and (4.10), the basic contribution to the
2 2
soliton Hamiltonian losses comes from the region a ~ hﬂﬁ' For some first

passages through the region, the gsoliton Hamiltenian relative variatiqnn

13



arer not small. This do not affect the shape of the gscillations, if
condition ai » ha: is satisfied (see the remark on the equation (3.9)
applicability).

As the soliton loses the quanta, the sweep of the oscillations
decreases and the above condition is broken. To secure the unaffected
shape farther, the oscillations with ai o ha: should be nearly periodic
already, i.e. the soliten Hamiltonian relative variations per period
should already be small. Under such a condition, the formula {3.14) for
the shape of the oscillations in the vicinity of n-th maximum remains

valid till a; » a®. Substituting (3.14) to (4.9) and (4.7), one gets:

it Wl i
JH g J a sh™ (¢ wnl. (q.11)
Haa 5
J # J (Mexpl- — sk (.= ¢ . (4.12)
o 242 H
M

where A is given by the formula (3.7) for g = 1. namely,

M v 172 Baz
e “[ i J L% oot (4.13)
N 4aH

These expressiqns are applicable until ﬁq4 £ 1.

In order to overcome the latter limitation and to get a complete
description of stationary self-focusing, a slightly different approach
is to be used. It rests on that for the quasi-periedic oscillations of
the soliton, the true distribution of the losses along a period is not
essential. As any distribution providing the right meaning of the total
losses per period is sultable, one can use the flux of the irradiated
quanta far away from the soliton. This brings some advantages in
comparison with the calculation of the flux inside the so-called close
Zone of radlation, where the fleld structure becomes more complicated at
aH ~ am. R2 a result, 2 simple description of the quasi-periodic
oscillations with arbitrary g is possible to construct.

Analysis, exploiting the quasi-classical theory of multiquantum
transitions (see, for instance, 33}, shows that the basiec channel of the
trapped quanta losses is assoclated with the tunnelling again, while
nonadiabatie transitinns_caused by slow variation of potential U remain
hegligible.

The main contribution to the losses comes from the closest to the

real axis settle points of the classical action in the complex plane .

14

Fesitions of the settle points, responsible for the released quanta

with the wave number k, are determined by the equation
1+ kzaziqs] = 0. (4.15)

For the function a(f) satisfying (3.4) and (3.3), the points §. have

removed from the real axis by the quarter of the Imaginary period at any

meaning of k, while the real part of Qs depends on k:

sn(g(ReC_).q" )

: e g T B e (4.16)
Im cs - nfz, k 8. = cnf¢fﬁe£s e

Here ¢ is the functiom (3.3) of variable Z = Reﬁs and A is given by the

formula (3.7) again.
In the complex plane 2z, the settle points have removed from the

real axis by the distance

M Kig)

[nd] s

: )
Im zZ, = nae [1 . Elg ], (4.17)

where Elg) is a complete elliptic integral of the second kind.
The probability for quantum transition from the soliton bound

state to the state with a wave vector ﬁ is proportional to the exponent
g (4.18)
exp (-megﬁ - RIszk

At g « 1, this agrees with formula (4.12), as expressions (4.17) and

{4.16) are reduced for such g to:

Im z = 1 Aa" (4.19)
] 4 m

= a “sh’(p - (4.20)
kK™ = a, sh™ (¢ ¢H]'

At &% Aa® (1.e. hqg » 1), the "energies" of irradiated quanta are,
m

-2
baslically, much smaller than aH

g <1 =1 -2
~ ~ 1 B
k Imzs (ﬁPmJ #

- SRR 4 2 b
According to (4.16), in this range k =z a, (g wH] , that can be
gotten from (4.20) also. Thus, the the formula (4.20) appear to be

applicable for computation of the guanta losses at all meanings of g.

15




The tﬁtal quanta losses per period are gotten by integration of
the spectral density over all k. Transformation of the integral from the
variable k to the varlable ¢ = RECS- treated conventionally as "the
moment of the quanta irradiation”, leads to the following expression for
the power of quanta losses:

i _ Elgq) Rt

At g €« 1, this formula reduces to (4.12).

The effective power of the soliton Hamiltonian losses, JH, is
linked with J by the relationship J = J k. In view of the formula
(4.20) validity, this relationship takes the form (4.11).

Thus, the formulae (4.11) and (4.21) appear to be applicable at
all gq. The only condition required for such a universality consists in
overlapping of the rangé ai » na: with the range of quasi-periodic
oscillations. If the oscillations aren’t quasi-periodic yet.at ai = ha:.
then the soliton Hamiltonian varlatlon perturbs the shape of
oscillations at a ~ a, and the description is broken there. However, at
sufficiently small &, the above ranges are indeed well overlap one
another,

The fprmulae (4.1), (4.11) and (4.21), together with (3.3) and

(3.4), constitute a complete set.
5. THE FIRST CYCLE OF THE SOLITON COMPRESSION

The first cycle of the soliton compression requires special
consideration. Starting with a more or less arbltrary initial
condition, It results in the establishment of a universal dynamic state,
that provides the universality of the farther picture of stationary
self-focusing. The consideration is given below in the framework of
adiabatic approximation. This implies that the surplus number of trapped

quanta,
N=pneqgMaz, (5.1)

varies much slowly than the phase of the soliton, £, oscillates, i.e.

d¢

L*E?

b [5.2)

i

dlnN
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At the soliton sizes satisfying the conditions
a» a®» AaZ, (5.3)
K m

where a: and a: are defined by the formulae (3.8), the flux J is given
by the formula (4.5) and requirement (5.2) loocks as

2

Sy & exp A » 1. (5.4)

24"
Taking into account formula (3.12), one can show that the value N varies

much slowly than the soliton size also under the conditien

=1

o
=%, (5.5)

slightly more restrictive than (5.4). While (5.5) is satisfied, the
soliton Hamiltonian, Hﬁ’ can be computed easily by the formula (4.10):
2

o AA
—Hs = Jﬁﬂdc = .2 exp(-A). (5.6)

o

Then, the first of inequalities (5.3), equivalent to —Hsaz & N
reduces to (5.5) exactly. The second one 1s satisfied till the final
stage of the c¢ycle, when the defocusing nonlinearity stops the
compression.

Substituting the expressions for J and N in terms of A to the

equation (4.1) for E, one can easily get the formula

A 2
gug +B Jﬁ; 1exp 1, B = -E—g- = 0,438. (5.7)
A
A

0
This formula, together with the expression (5.1) for N and the
relationships followlng from (3.3) and (3.12),

a, : 8 b
In —=¢-¢ 2n8 Jdl 1 "exp 1, (5.8)
. :
LR ¢

determines {-dependence of the relevant values in the parametric form.
All these formulae were derived for the adiabatie regime of the
soliton compression. If the initial state were close to the Townes
soliton, the evolution would be adiabatic from the very beginning. Under
initial conditions of general kind, first the formation of the scliton

goes on, that is non-adlabatic process. The idea of quanta trapping gets
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some sense at CH > 1, L.e., A > 5. Taking into account that "initial®
size and phase of the soliton were not defined quantitatively yet, one
can choose the constants of integration in formulae (5.7) and (5.8) more

or less arbitrarily. In particular, the fellowing choice is suitable:
A =5, E =9 =0, a. =1: (5.9

As the value of A growth, the accuracy of the adiabatic approximation
improves quickly, so that the meaning CH = 10 is reached at A = 8, At
large A, formulae (5.7) and (5.8) may be replaced by simpler ones:

B exp A Ly X0 expA

ol J—— i In =
AY(A - 4)

: (5.10)
AZ(A - 3)

A relative accuracy of such an approximation is about 0.1 at A = 8 and
better at larger A. Noteworthy that the value of a, corresponding to the
meaning A = B, is not very small, a = 0.2. This implies that the
adiabatic approximation and approximation (5.10) become wvalid at an
early stage of the compresslon, after the soliton size has decreased
about five times.

In order to restore the dependence on =z, cne must use the

definition of the soliton size [(see (2.6)). This results in:
A 22 142
g = [ dC a? - 5 i + const a = [Zn I z}f A : e i |

Here 2z  is the point where singularity of the fleld ¢ would arise if the
defocusling nonlinearity were absent (i.e., if & were equal to zero).
Tending, formally, a to zero, one can get from [(5.10) and (5.11)

the well-known asymptotic law for the critical collapse:

(5.12)

This asymptotics was not reached in numerical simulation even when the
sollton size has decreased by many millions times. More precise formulae

for the factor A 3 = in (5.11),

T DA SR e (5.13)

e

clearly shows why that has happen. As the item 4in\ (which was neglected

in (5.12)) 1ls larger than the item Inini{i/a) (which was taken into
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account there) until In(1/a) & 105, the asymptotics (5.12) is
practically unaccessible. At any realistic values of a ¢« 1, more precise
formulae (5.7) and (5.8) (or, at least, (5.10)) must be used for

comparisen with results of physical or numerical experiments.
6. LARGE OSCILLATIONS OF THE SOLITON

At a sufficiently small &, the sweep of some first oscillations of
the solliton is large, so that the condition ai » ﬁaz is satisfied. If a3
2 . . o~
» ham alse, then the simplest formulae (4.5) and (5.1) for J and N are
valid, that leads to the parametric representation similar teo (5.7),

(5.8). In the vicinity of rn-th maximum of the soliton size it looks as:

A A
Eatd -3 3
£ o= CHn + B I dll “expl, P o= TR B f dll 4exp1. (6.1)
ﬁl‘[n an

The soliton size, a, is given there by the formula (3.14).
The wvariation of the soliten contribution to Hamiltonian, # in
5.l

2 2
the range a~ » Aam can be neglected,

-H_ = § - °
a » ﬂam. (6.2)

= Hn

The wvalue Hs varies, basically, at 5 = Aa®. At a® g naz. both of the
m m

values N and HS, are practically invariable (see, (4.8) and (4.10)),

. = . S ¢
g G el 8 s T o !
i
" - 2 2
HS g Hmn, a ¢ ham. (6.4)
As above, the subscript "sn" or "mn" signifles the meaning of the

relevant value reached at the n-th maximum or minimum of the soliton

cize,

The relationships (6.3) are, in fact, applicable in the region aa
2 o :
ham also, as N varies there by the value exponentially small in terms

of A. Integration of equations (4.1), (4.8) and (4.10) through this

4 leads to the following

mn ,

region at given value of the exponent, A

farmulae:

mx Hmn g Jﬂiﬂmn} s {ﬂmr: oo el {'ﬁmn} a{P{han]’ (6.5)
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(6.6)

Here

(6.7)

M

A=

1/2
N ]

Splh) = % [In[Zﬁ] + r]. am[nl = 3

¥ & D.577 ls the constant of Euler - Mascheroni and the range az # ha:.
but |[A - A | « 1, is meant for the formula (6.5). To get rid of the
mn
latter limitation, (6.5) can be replaced by the formula
A
-4

I dli "expl
A

M Ny
The coincidence condition of the formulae (6.8) and (6.1) ins'de

= : (6.8)
|¢;| tpml - Etp[ﬂnn] + mhk

their mutual applicability regions implies the following recurrent

relationships:
';I:Hrl. 2 wmn - am[ﬁl‘ln} i G[hmnp h!h]*
(6.9)
lpm,rﬂl i ‘Ph'n i 6m[hm,n+1] o GEth‘ m, n+1
y
Glx, y) = nB I dil texpl . (6.10)
X

Taking into account (3.15) and (3.13), cne can present (6.9) in the form

2a Zau
Hn n X
- GLA . A } =2 In (6.11)
G[nﬁn' hﬁn} . a ‘ ( Hn m, 1 ab‘n+1
where a is the meaning of the soliton size at |¢ - ¢ | = Sp(A ):
bn mn mn
1 1/2
2 5 -4 ; 6.12)
a ah(hhnl. ab{h] am{h}[ 5 A exp r] [

Note, that just the same result would be obtained 1f the soliton
weren’t losing the quanta at all in the region |¢ - w;n| < Ew{hhn} and
were losing the quanta, according to the simplest formula J = Ja{h}

]

everywhere in the region |¢ - wmn| > ﬂw{hhll. Thus, the power of the
trapped quanta lesses (4.8) can be replaced by the stepped function

20

1., x>0
J = Jﬁ(ﬁ} gla - ah[h]]. 8(x) = : (6.13)
a, X <0

The ratios ahﬁfébiﬂ] for the right hand sides of equations (6.11)

can be expressed in terms of A, hﬁn, A ; (j = n) by the formulae (3.8)
m L)

(6.6), (6.7) and (6.12). The result reads as

a:fhj zﬁinng i e %
= e A -A .
a’ nB E: ) exp[ ‘J] ok
Mn =1

Equations (6.11), (6.12) and (6.14) determine successively. the
values ﬂ_n and ﬂ“n as the functions of a single value A . The latter is
ml

determined by the equation

a
G(A, A ) = In di (6.15)
bl

which secures the coincidence of the formulae (6.8) and (5.8) inside
thelr mutual applicability region. At known values A and A, all
other parameters of the soliton oscillations are easi&t? cnmputzgle by
the above formulae,

The recurrent relationships (6.11) can be unified by the following

way. Let nj be the meaning of parameter A at j-th extremum of the

soliton size, so that

ﬂ_ =f , " e (6.16)

Then, (6.11) can be written as

1 2
GlA , A -~ = e -
A, A )e=5 [m > ‘.r],. (6.17)
where
A a2 A a?
p £ mn mn o m,n+1 m,m+i
2n-1 o i i - (6.18)
da da
Mn Mn

The latter definitiens can alse be unified:

p = (aB) ' AZ A2

.|'.|I. J
J i+1 o 2ljs21+1 SJ 4 (6.19)
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— _2 -
Sj = E: A expl-A_ ). (6.20)

21=j+1

These formulae are valid until p ~ nqa ¢« 1. A =lmple extension to

the range p =2 1 1s possible, if at p ~ 1 the oscillations are nearly
pericdic already. For such osclillations the true distributicn of losses
along a period is not essential, while the global losses per perlod are
described by the formulae (4.11) and (4.12) right at ¢ « 1. In order to
get universal description of the large oscillatiens, (4.12) can be
replaced by a stepped function loocking like (6.13). The boundary meaning
of =oliton =ize, ah{ﬁ, p), for this function 1s determined to get the
right value of the global quanta losses between each neighboring extrema
of the oscillations. The soliton Hamiltonian losses can be thought as
ones locallzed at the boundary polnts a = ab[ﬁ, pl. As a result, the
formula (6.19) does not change, while the recurrent relationship (6.17)

and formula (6.20) turn to:

Glﬁj. AJ+1] = Fh{pjl. (6.21)

-2
SJ = E:‘ ﬂzbd exp[-hzbd] [Fi[Pahi} + Ft{PELJ]]‘ (6.22)
215j+1

Here Fa (e = 0; 1) signify integrals, expressible in terms of the
mnodified Bessel functions of the second kind:
= 7 i
= 2 1
Fb[p] = Idw exp[*zp sh w] i

L8]

K (p) €, (6.23)

dFD(p]
F(p)=-p =P [K {p) - K {p}] ef. (6.24)
1 d 2 1 4]
pel g
At p « 1, when
2 s |
K (p) = In ol K (p) = B

the formulae (6.21) and (6.22) come back to (6.17) and (6.20).

The wvalues ﬁj and P, found by the formulae (6.19), (6.21)-(6.24),
for the first sixteen oscillations at several meanings of the parameter
& are given in the tables 1 and 2 respectively. At & = 0.01, parameter
pj is not very small even for the first oscillation, that indicates the

accuracy of the above approximation is not very good. At smaller &, the

L2

approaches of large and quasi-periodic oscillations have well overlapped
applicabllity ranges.

At 8 » 0, that is ﬂl - o, the values ﬁj and a [h}] o ﬂj] remain
m
practically invariable during an exponentially large, in terms of A ,
1

number of the =soliton éscillaticns, n=2j, while the sum 5 and value
-2 -1 _-2 ]
R 4pjﬁj 2 pj
such a behavior are seen in the tables 1 and 2, though the accuracy of

o Sj increases proportionally to n. The features of

the asymptotic approximation at realistic meanings of & 1s not very

good. Therefore, the use of more precise formulae ~iven above is

advisable.
\ 8 o Y 107 107° 5 1077
| :
1 g.311 O, 559 10.3 10.82 11.22 11.53
2 9.197 10. 16 10.76 11.19 11.53 11.8
3 9.71 10.57 11.% 11.48 11.78 12.03
4 10.086 10. 86 11.55 1.7 11.97 12.2
5 1I0.33 G 0 9 | 11.56 11.88 12.14 12.35
& 10.55 11.29 8 | 12.04 12.28 12.49
T 10.73 11. 46 11.88 12,18 12.41 12.6
;] 10.89 11.86 12.01 12.3 12.53 12.71
o 11.03 15 T 0| 12.13 12.41 i2.63 12.81
10 11.15 11.85 12.24 12.51 12.72 12.9
11 11.27 11.95 12.34 12.6 12.81 12.98
12 11.37 12.05 12.43 12.69 12.89 13.05
13 11.47 12.14 12.51 1207 12.96 13.13
14 11.55 12.. 2% 12.59 12.84 13.04 13.19
A 15 11.63 ke 12.66 12.91 0 5t 13.26
§ 16 11 .71 12.37 1273 12.98 13.16 13.32
17 11.78 12.44 12.8 13.04 1322 13.37
18 11.85 1Z2.5 12.86 131 13.28 13.43
19 11.91 1257 12.92 13.15 13.33 13.48
20 11.97 12.82 12.97 13.21 13.38 13.53
21 12.03 12.68 13.03 13.26 13.43 3. 57
22 12.08 12.73 13.08 13.31 13.48 13.62
23 12.14 12.78 13.12 13.35 13.52 13.66
24 12.19 12.83 13.17 13.4 13.57 13T
25 12.23 12.88 13.22 13.44 13.61 13.74
26 12.28 12.92 13.26 13.48 13.65 13.78
27 232 12.96 13.3 13.52 13.69 13.82
28 12.37 13 13.34 13.56 13.73 13.86
29 12.41 13.04 13.38 13.6 13.7T6 13.89
30 12.45 13.08 13.42 13.63 13.8 13.93
7 12.49 13.12 13.45 13.687 13.83 13.96
3z 12.52 13.15 13.49 13.7T 13.86 13.99
Table 1. The meanings of the value hj at the first thirty: two

extrema of the soliton size oscillations for several meanings of the
parameter & according to the formulae (6.19), (6.21) - (6.24),
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-2 -3 -4 -5 -6 -7

\\E 10 10 10 10 10 10
J
1 0.1025 0.0448 0.02662 0.01836 0.01379 0.01093
2 0.1702 0.06077 0.03307 0.02172 0.01582 0.01228
3 0.2539 0.09316 0.05229 0.03526 0.02623 0.02072
1 0.3026 0.1067 0.05842 0.03873 0.02846 0.02227
5 0.3635 0.1311 0.07333 0.04949 0.0369 0.02922
6 0.4035 0.1429 0.07897 0.05282 0.03911 0.0308
T 0.4526 0.1629 0.09133 0.06186 0.04628 0.03676
8 0.4871 0.1734 0.09653 0.06501 0.04842 0.03833
g 0.5289 0.1905 0.1072 0.07287 0.0547 0.04359
10 0.5595 0.2001 0.112 0.07585 0.05676 0.04511
11 0.5962 0.2151 0.1215 0.08284 0.06238 0.049B84
12 0.624° 0.223% 0.126 0.08567 0.0643¢6 0.05131
13 0.6569 0.2373 0.1345 0.09199 0.06%46 0.05562
13 0.6823 0.2455 0.1387 0.09468 0.07135 0.05705
15 0.7123 0.2578 0.1464 0.1005 0.07604 0.06102
PJ 16 0.7358 0.2655 0.1505 0.103 0.07786 0.06241
17 0.7635 0.276T7 0.1576 0.1084 0.0822 0.06609
18 " 0.7855 0.284 0.1614 0.1108 0.08395 0.06743
19 0.8111 0.2944 0.1681 0.1158 0.088 0.07088
20 0:8318 0.3013 0.1717 0.1182 0.0897 0.07218
21 08558 0.311 0.1779 0.1228 0.0935 0.07542
22 D.8754 0.3175 0.1814 0.1251 0.09514 0.07668
23 0.898 0.3267 0.1872 0.1295 0.09872 0.07974
24 D.9166 0.3329 0.1905 0.1317 0.1003 0.08097
25 0.938 0.3416 0.1981 0.1358 0.1037 0.08387
26 0.9557 0.3476 0.1993 0.1379 0.1052 0.0E5306
27 0.976 0.3558 0.2045 0.1419 0.1085 0.08783
0.993 0.3615 0.2076 0.1439 0.11 0.08899
29 1.012 0.3634 0.2126 0.1477 0.113 0.09163
30 1.029 0.3748 0.2156 0.1497 0.1145 0.09276
31 1.047 0.3823 0.2204 0.1533 0.1174 0.09528
3z 1.063 0.3876 0.2232 0.1552 0.1188 0.09638
Table 2. The meanings of the wvalue pj for the flrst sixteen

cscillations of the sollten slze at several meanings of the parameter &

according to the formulae (6.19), (6.21) - (6.24).
T. QUASI-PERIODIC OSCILLATIONS OF THE SOLUTION

At |ﬂj+1 - hJI ¢ 1 (that does not exclude the above formulae
applicability) the relative variation of the soliton parameters during a
period of the oscillations is small and contlnuous description for the
envelopes is possible. In particular, the recurrent relationshlips (6.21)
and (6.22) can be replaced by the differential equations:

dh

u' -1 ,4 ¥
v 2(mB) ~ A exp(-A) FD[p]. {T.1)

24

{%%’ x 2072 exp(-A) FI{p]. S = nB A p. (7.2)

Here n =2j is the number of the soliton oscillatioen. The {-dependence

is restored, if necessary, by the equation (3.6), which leads at g « 1
Lto:

d A 4 A
AL = -E%- &2 In 3 ¥ — In %ﬂ . (7.3)

The ratio of egquations (7.1) and (7.2) do not contain n and can be
presented in the form

F (p)
dlnS -1 = 1
ok P F(p), Flp) = '?;TﬁT . (7.4)
The solution of this equations,
P -1
A= AA(p), Alp)l = exp I dp'[ﬁp‘ + F(p‘}] . (7.5)
Q

is a universal function. Only the constant of Iintegration, A , depends
on the parameter &. The meaning of A, is determined to secure the
agreement of the formula (3.5) with results of the previous section

inside the mutual applicability reglon. For several &, the meanings of
A, are presented in the table 3:

-2

5 10 1P BB T SRR ok SRR | G ol

A, 6.792 8.532 9,551 10.23 10.73 11.12
A, 16.08 21.38 24.62 26.83 28.48 29.78
al/8 3.976 4.994 5.591 5.988 6.281 6.509
a/8 9.412 42,52 14.481 15.71 - 16867 . 17.43

Table 3. The basic parameters of quasi-periodic oscillations.

At given A , the formulae (7.5) and

25 = _1
nJ = h'lipj}. pJ E EEP i (7.6)
restore the table 1 by the table 2 with absclute error less than 0.1 for
o -4 : '
all j, if 6 s 10 ', for j= 2 at 8 = 0.001 and for j =5 at § = 0.01.
The extreme sizes of the soliton are also universal functions of p:

1/2

oy

a %a, Aalp), 4. 88 — |— : (7.7)
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The dependence on n is restored by the Integration of (7.1):

[ =

-1

ne=-mnd Idp'[%p'ih[p’] + FI{p‘}] ﬁ{p’}_aaxp [ﬁlp’]]. (7.8)
0

At p » 1, when

172

FD[P] - ZFI[P} = [E ' F(p) = 5 kT %)
the formula (7.5) is reduced to
Alp) = ¢ (10 p + D', (7.10)
where
-1 1!
C = exp I dp {[Sp * F{p}] = [5p + E] } = 1.131. (7.11)

o

The relative error of such a reduction appear to be less than 3% at p =
0.1 and quickly decreases at larger p, reaching the meanings 0.5% at p =
0.5 and 0.1% at p = 1. The accuracy slightly worsen when the unity in
the right hand side of (7.10) is neglected. Then the formula {7.10)

turns to

FROLEN. (7.12)
As p = Ag°/4, the relationship (7.12) can be rewritten in the form

5 =8 174
AzA g nfz[icn_] : (7.13)

Substitution of (7.13) to (7.7) gives:

172 hf Hﬂ‘ i
a %a qlfz. a, =23 .49 . g " 5 — —;;— : (7.14)
s

The expression (7.8) for n is also simplified:

A

1/2

ne [%] snf‘[d_:. ", 8 (7.15)
: A

L ]

The relationship (7.12) implies that the value S (see {(7.1)) and
the soliton Hamiltonlan, Hs. (which differs from $§ by a constant factor

26

ur

only) are invariable at p » 1. The conclusion on the soliton Hamiltonian
invariance remains valid even when the condition qz ¢« 1, meant above, is
broken. In fact, general formulae (4.21) and (4.11) give the following

values for the quanta and Hamiltonian losses by the soliton per period:

% dH A _(AF_(p)
- % = AJ_(A)F_(p)fK(q), - — 22—, (7.16)
dn Z2-Klg) p a
e - Elgl
p_zﬁ[l S4CIh ] (7. 37)

The ratio of equations (7.16) can be presented in the form

2
(1 + g )F(p) : (7.18)
& p

din|H_|
= S'E

dinN

At p» 1 the right hand side of (7.18) is much smaller than unity. This
implies that HS varies much slower than E and can be treated as

invariable wvalue. At qz € 1 equations (7.16) and (7.18) are reduced to

R CLiEyand (74

Ags the soliton contributien to the Hamiltonian remains at p » 1

invarlable and equal to its final value wHF.

-H =z H = 3 2 (7.19]
i £ 4

all other parameters of the secllton osclllations can be expressed in
terms of cone eof them, say g. The relevant expressicns for extreme
soliton sizes are glven by the the formulae (7V.14) agaln, while formula
(7.13) for A is replaced by

172

B .
= Kig) g A (7.20)

A

I

The expression for the value ﬁ locks as:

o s o 4 & Hc nN
N = H{[q *q ]- hr = > = et [T.21]
a N
£ i

The n-dependence is restored by the integration of the first equation

(7.16), that results in:

21" B i 1/2 -1/2
n.e [ = ] - qul [ql“ ,1] P[?iﬁ‘ : q, gxp{ﬁfql}]_ {(7.22)

At g « 1 this formula is reduced to (7.15).

a7




At g € 1, l.e., for nearly homogeneous waveguide of mean width a..
another simplification of the above formulae 1s possible:

A

A

/2

1 e £ 4 a6dn™ "R 1,2 2

p& = ANe — In— , n ———-[dh A exp[h[i - —11. (T7.23)
2 n q h4 hr

£

8. CONCLUDING REMARKS

The picture of stationary self-focusing of radlation in the medium
with soft saturation of nonlinearity can be summarized by the following
way. .

In the vicinity of the medium boundary strong flow breaks up into
a number of channels. Each of the channels traps the power some higher
the critical one. After compression about five times in linear size a
channel becomes axisymmetric and nearly the same in shape as the Townes
soliton. Its behavior becomes adlabatic. An excess of the trapped power
over the critical one is irradiated basically. Thus a universal dynamic
state is established. All farther behavior of a channel 1s described
quantitatively by the above theory. Conformably to the first cycle of
the compression, this descriptlon improves the asymptotic theory of the

eritical collapse developed earlier, which is neot applicable

quantitatively even after the channel compression by many millions times.

Since the defocusing nonlinearity has stopped the compression, the
width of the waveguide oscillates. Initially, a sweep of the
oscillations is large. It decreases as far as the channel loses trapped
power. Because of the adiabaticity of the oscillatlons, the losses and
decrease are exponentlally small in terms of the trapped power excess.
First, the ratlo of extreme wldths of the channel behaves, roughly
speaking, as the square root of the number of the oscillation. Then, the
law is changed for the logarithmic one. Finally, the homogeneous
waveguide ls established.

The above description meant implicitly that the Townes soliten has
no excited bound states, existence of which could drastically change the
dynamics of power losses. This property of the soliton was proved in
the paper =

Stability of the given solution in the framework the
two-dimensional nonlinear Schroedinger equation follows from the

10,24 25

analytical results of papers and numerical results of paper

More exactly, one should speak here about stability of the whole set of

28

the above soélutlons,

slnce even homogeneous waveguides may differ in

width and move In transverse directions with arbitrary constant

velocities. The problem of structural: stability for stationary
self-focusing of radiation is studied in 25.
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