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Abstract. Magnetic regions on the Sun’s surface are observed to absorb lﬁrge fractions of the
p-mode tacoustic) wave power incident upon them. We propose a mechanism to explain the
absorption, based on the idea that sunspots are assembled from many individual flux tubes with
highly variant physical conditions. Strong gradients in the (perturbed) parameters of a wave
propagating through such an inhomogeneous medium result in enhanced absorption of the wave
power. The gradieénts in the wave parameters occur on the scale of the background flux tubes which

is much smaller than the wavelength,

1. Introduction

Solar p-mode ascillations are normally treated as global resonant modes, with lifetimes much
lenger than their periods. While many modes are longlived, all p-modes have finite lifetimes and
thus source and sinks. A series of papers by Braun, Duvall, and LaBonte (1987, 1988, 1989, 1990)
studying the interaction of p-modes with magnetic regions on the Sun showed that sunspot and
plages both are sinks of p-mode wave power. Compared to the nonmagnetic regions of the Sun, the
magnetic regions show enhanced absorption of p-mode (acoustic) waves. The mechanism that
absorbs the p-mode power is unknown.

Many regularities in the observed properties of the p-mode absorption are seen.

1)} The absorbing regions are spatial coincident with sunspots and plage seen on the solar
surface, with some differences in detail.

2) The fraction of the incident p-mode power absorbed is zero at low wavenumbers (k <
0.1 Mm’ I'J. then rises to a high value at high wavenumbers (k > 0.4 Mm']). The fraction absorbed
remains constant at the high value to the observational limit (k ~ | ?'n’[m'l}.

33 The onset of absorption occurs at lower wavenumbers and the absorbed fruction reaches a

higher value in lorger sunspots than in smaller sunspots. Tvpical isolated sunspots absorb 40% of

the high wavenumber ( & > 0.4 Mm™ ') p-mode power incident upon them. Giant spots absorb up to

70%. while small spots absorb only 20%.

1) The absorbed fraction s larger in spots than in plages, but the “acoustic opacity . the
absorption per unit magnetic field appears to be saturiated in spots, relative to plages.

5) There is no observed vartion of the absorbed fraction with temporal frequency. or with

radial order of the p-modes



Any mechanism for the p-mode absorption should explain all these properties.

In this paper we propose a mechanism for the enhanced absorption of p-modes based on the
idea that in sunspots the magnetic field has a fine filamentary structure (for example, Livingston
1991). We consider the sunspot to be a dense conglomerate of closely packed magnetic flux tubes
of typical radius R = 50 km. Physical parameters such as magnetic field strength and plasma
density, vary from one flux tube to another by the order of unity. The spot is then a strongly
inhomogeneous medium. Lites er al. (1991) made direct observations of magnetic fields in spot
umbras to test this idea. They found only small variation in the magnetic field strength at the
surface but argue that the high temperature of the spot umbra indicates that the spot must be highly
inhomogeneous just below the visible surface. Such inhomogeneity should hold in the deeper layers
traversed by the acoustic waves.

The physical mechanism responsible for the enhanced absorption of acoustic waves
propagating in such an inhomogeneous medium is easily understood. The perturbations of all
parameters in a propagating wave will be different inside the different flux tubes. In a dense
conglomerate, flux tubes have common boundaries. Near those boundaries, strong local gradients of
all physical parameters will appear. The equations of motion then contain a large vortex component
of the perturbed qua.nt:_i_iiés. The characteristic scale of the perturbations is naturally the size of the
background inhomogeneities R. The presence of the strong small-scale gradients results in the
enhanced absorption of the wave energy with the properties specified above,

Rosenthal (1990) has also considered the absorption of acoustic waves in an inhomogeneous
sunspot. However, he focused on the trapping of waves in resonant layers in the steep gradients in
the boundaries between the individual fluxtubes. He shows that such an inhomogeneous system
provides a better match to observations than a homcngeneoué sunspot, but still falls short of
explaining the observations in detail.

In Section 2 we review the properties of wave propagation in an inhomogeneous medium. In
section 3 we derive the response of the sunspot plasma to the wave perturbation (3.1), the dissipation
caused by thermal conduction (3.2) and viscosity (3.3), and the total anomalous dissipation (3.4).. In

Section 4 we compare the results of our model with the observed properties listed above.

2. Wave Propagation in an Inhomogeneous Medium

We consider p-modes with length scale X = 1/k (where k is the wavenumber) much larger

than the size of the magnetic field inhomogeneities, X >> R. To visualize in the simplest way the
_mechanism of the enhanced absorption, we restrict ourselves to the case of an acoustic wave
propagating across the magnetic field. As will be seen from our analysis, the same mechanism acts

for an arbitrary propagation angle and, to order of magnitude, the enhanced dissipation rate should

not depend on angle.

The general idea of our present theoretical approach is very similar to that described in the
paper by Ryutova and Persson (1984) which is devoted to the study of the dispersion properties and
enhanced dissipation of MHD waves in a plasma containing closely packed random inhomogeneities
of plasma density and magnetic field. There are two main results in that paper. First, the procedure
which allows one to find the linear equations of the evolution of plasma parameters in the presence
of small scale random inhomogeneities was described. It was shown that the problem can be
reformulated in terms of equations for averaged quantities (pressure, density, velocity, etc.).
Averaging is being made over an intermediate scale L satisfying the condition R << L << X. Unlike
the propagation of linear MHD waves in a homogeneous plasma, in the problem under consideration
the vortex component of the equations of motion is essential. For harmonic waves, these equations
result in a linear dispersion relation with some renormalized phase velocity, which, generally

speaking, depends on the propagation angle in the xy-plane (magnetic field is directed along the

Z-axis):

=1

sl S gl o

o

Here p = pix,y) and P =P(x,y) are the unperturbed plasma density and gas-kinetic pressure

7
B7(x.v) :
respectively, P = P(x,y) + is the total pressure, and Qaﬂ is a tensor whose symmetry 1s
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determined by the statistical properties of medium, in other words, by the field of background
density and magnetic field variations. Note that this dispersion relation can be directly used for the
diagnostic goals; the measured m{erk}j diagram together with (1) can give the morphological map
of the observed region.

The renormalized phase velocity corresponding to the dispersion relation (1) can be

represented as follows:
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where c% = ?T and v = are the sound speed and Alfvén velocity, respectively,and

dmp
which also change from one tube to other. To order of magnitude, the phase velocity of sound
waves propagating inside the sunspot becomes that of the fast MHD mode (cf., for example, Thomas

1985). Indeed, for a homogenously magnetized region this expression gives simply

3
avk = ug + vy - If we use the values given by Thomas (1988), we get a phase velocity for

the homogeneous case thﬁt 1s significantly different from the 25 km s slope found in the -k
diagram by Abdelatif, Lites, and Thomas (1986). By contrast, the additional term in (2) gives a
better agreement with the observed slope. We should bear in mind, of course, that this is the
component of phase velocity surface (across the magnetic field). If beneath the surface sound waves
are propagating with some angle & with respect to magnetic field then the phase velocity is as

follows:
o
s nh (3)
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In the final section Ryutova and Persson studied the dissipative effects in plasma with
random inhomogeneities, and have found the damping rates corresponding to viscosity, thermal
conductivity and Ohmic losses. Tt was shown that the strong enhancement of the absorption of the

wave energy takes place due to the presence of small scale inhomogeneities and is provided mostly

by the viscosity and thermal conductivity. The Ohmic losses appeared to be of the same order as
those in a homogeneously magnetized region. The dissipative coefficients are derived by Ryutova
and Persson for the case completely ionized and strongly magnetized plasma with 0.7, >> 1, where
T is ion collision time and o, = EB,"mic , the ion gyrofrequency. In that case the transverse
transport coefficients are strongly suppressed by the magnetic field. By contrast, the observational
data show that in the sunspot interior T, < 1, and the magnetic field must have a weak effect on
the transport coefficients. Thus although there is good qualitative agreement of the observed
features of acoustic absorption with the theoretical results of Ryutova and Persson (1984), for a
quantitative analysis of the dissipation rate we need a modified approach that is appropriate to the
case with T < 1, which we present in the next Section.

It should be noted that the theory for collisionless plasmas ( . T » 1) applies in higher layers
of the solar atmosphere and we expect analogous phenomena to the acoustic absorption that is
observed in the photosphere. Any inhomogeneous region should behave as a sink for MHD wave
energy, and linear damping rates from the Ryutova and Persson (1984) can be used directly.

Recently Ryutova, Kaisig, and Tajima (1991) studied the propagation of nonlinear
magneto-acoustic waves in the solar atmosphere, with random inhﬂmagcneities. in density and
magnetic field. They found that in the nonlinear regime the energy transfer from acoustic waves to
the randomly magnetized region can occur through different scenarios depending on the statistical
properties of the region. If the process of enhanced absorption of the incident wave does not stay in
the linear regime, it goes either through the formation of shocks or through the storage of energy in
a system of solitons that is later damped away. The results of the nonlinear studies are valid for
arbitrary values of @, 7., except those processes where the usual dissipative effects (thermal
conductivity, viscosity, and Ohmic losses) play the direct role. The possible observational
munifestation of nonlinear dynamics and a corresponding gualitative analysis will be presented

elsewhere.



3. Absorption Coefficient in Sunspots

3.1 Spatial scale of the perturbations

In the present paper we use the results of Ryutova and Persson for the averaged quantities
and denrive the procedure for the description of the absorption of sound waves for the case of
@1 < 1. We are considering p-mode oscillations incident on a sunspot so the perturbation of the
sunspot is the pressure variation over the spatial scale of the wavelength. We consider modes with
wavelengths that are much larger than the spatial scale of the sunspot inhomogeneities. We will
assume that there is also a temporal scale difference, with the individual flux tubes responding in
such a way as to preserve the pressure perturbation set up by the wave. Given the small spatial scale

of the flux tubes, the perturbation of the total pressure
ar = ﬁpm + OP (4)

then remains effectively constant over the cross-section of the individual flux tube (Figure 1).
The plasma conductivity in sunspots is high enough that the magnetic field may be
considered as frozen into plasma and the magnetic pressure perturbation EPm is related to the

density perturbation 8p by the equation

5P op
= =2 (5)
P p
The gas-kinetic pressure perturbation for an adiabat is
&P &p
Mt Y (6)
P P
From equations (4)-(6) we find the density response to the total pressure perturbation &P;
op op
e : ¥
p FRea

Rearranging the definition of the total pressure

P=P-P_ (8)
we find that
op ap 1
= 3 (N
P P
5 T+ @2-p =
P

As the magnetic pressure P_ is varying on the small scale R << X, so does the density perturbation.
Again using an adiabatic relation, the temperature perturbation is directly related to the density

perturbation

oT dp ap (y-1)
U L = . = (10)
T
! re-p -

Thus, when the p-modes propagate in a region with a small scale structure in the magnetic field,
there are always small scale temperature perturbations with a scale R which is much less than X
(Figure 1). The enhanced dissipation is caused by these steep temperature gradients.

3.2 Dissipation by thermal -t

The dissipation caused by thermal conductivity is described by the expression

e vT)2) (1)
Tl

where I is the dissipation rate, % is the thermal conductivity, and the average is taken over a

length which is much larger than R. For 8T given by Eq. (10}, we obtain
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where we have assumed a sinusoidal dependence of oF on x

A = AP sin (kx - ax) (13)

and have taken into account that k << 1/R, The first term in the square brackets corresponds to the
usual dissipation ot a p-modes in a homogeneous medium while the second term describes the
additional damping.

The spatial damping rate Im k. caused by thermal dissipation (see, for example, Landau and

Lifshitz, Fluid Dynamics) is

q
Im kT = Sl S (14)
F 4 -
5
p &’
where € = ———— is the energy density of the initial acoustic wave. Using the general MHD
2

equations we can express the velocity perturbations in terms of the total pressure perturbations (see

Ryutova and Persson 1984, equation 14):

&P
AR s (15)

p "'r[}h

where Voh is determined by (1). For simplicity let us choose an isotropic distribution of

inhomogeneities in the sunspot. In this case Q aB™ (} and, approximately,

10
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vph=£w+{?-1jpm]. (16)

Using equations (12) - (16) we can write for the damping rate

2 2 2
- D" (P )
= K (g1 1ok [k2+ 4 m ] (7N

Im k 5 j . .
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From eq. (10)

T(}Ll% o
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ot (18)
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Relating the temperature and gas pressure with an adiabatic relation and using the equation of state

for a perfect gas we can write

(19)

[t is more convenient to use the specific heat at constant volume ¢y, rather than the number density

n, SO using Cy =N [ (1),

S s S (20)
oP oP Y Cy
Combining equations (17), (18) and (20) the spatial damping rate is
2 2 2
. (= - 1" (VP_)
[ka=E%;L—yl{k2+ Vi - L z } 21)
[P + (T" -1) Pm]
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where y = %/ Cy Is the thermal diffusivity,
Note that in denominator of the second term in eq. (21) the last term is numerically small
compared to the first term; for y= 5/3 it is only 0.2 of the first term even when P,/P=1. This

allows us to use the expansion

1

1 o
P + (% s.e g - F

and write

2 2 e
G - D* @) ]

p2

For tubes with known internal structure we can easily take the average of c:[T*Fm}Z}. As an
example, suppose the magnetic field decreases from the axis according to, say, a Gaussian law,
2
e e :
Bmzlx AP ) (23)
R
Assuming that the characteristic distance between flux tube centers 1s / and defining the flux be

areal filling factor to be

2
R
@ = _}j— {24)
then
2 2
(‘J'Pm} S Pm,max
)R 2

The spatial damping rate caused by thermal losses has the final form:

:;,max . 6)

X § S
Im.ﬂ:.rz [ ]

2-::S Y

For a gaussian magnetic field profile internal to a flux tube, the average magnetic pressure of

/ 2. Even in the case of close packed fluxtubes, with ¢ = 1, the

the flux tube is B Pm,max

average magnetic pressure will be reduced below its maximum value, which should be taken into
account in constructing equilibrium sunspot models.
3 issipation by vi i

A very similar mechanism leads to enhancement of the viscous dissipation. The plasma
densities inside and outside the individual flux tube dre, generally speaking, different and the total
pressure perturbation AP gives rise to a relative motion of the flux tube and the external medium
(see, Ryutova and Persson 1984), The characteristic scale of these motions is of the order of R (and

much smaller than X). The viscous dissipation (Landau and Lifshitz, Fluid Dynamics)

1 ov. ka 2
2 ox X . 3

2
8, div v } + Ldiv ¥y (27)

can greatly exceed its "homogeneous” value. Here 1 and ( are the viscous coefficients entering in

the Navier-Stokes equations. Calculations similar to the ones by Ryutova and Persson show that

g, .

1 4 ", S n fol
I——H+C]¢§[ ] {k2+———— (Y- 72 H1. e
& P s <p>
4
Assuming that the temperature of the gas in the unperturbed state (without the wave) is more or less

uniform, we can write that

¥ - : (29)

13



This allows us to obtain the expression for Im kv , the spatial damping rate caused by viscous

dissipation

(30)

.
Nk = e
ey

Cq F

where we assumed that = 1, and have introduced a kinematic viscosity v =1/ p.

"-\
1.4 Total dissivati
The total spatial damping rate which includes both thermal and viscous losses is simply the
sum of expressions (26) and (30). Both these expressions contain two parts: the usual absorption of e
sound waves in medium with finite viscosity and thermal conductivity, and the absorption caused by
the presence of small scale inhomogeneities. Let us denote the spatial damping rate corresponding
to the usual losses as Im kl and the damping rate caused by the strong local gradients by Im kl :
Then the total damping rate can be written as follows
Ink = Im kl +Im ﬁrz (31
where
TP 1
Imk1 = [~—v+(1———}x} (32)
P 3 2 4
kot
and
l.f:'
o 2
m,max 1 B :
Imk1= - > 3 V+{1'-—,F—}{1'“".?*-}X (33)
c R P '

For pure molecular transport the kinematic viscosity v and the thermal diffusivity y are of the same

order of magnitude. In this case, because of the small numerical factor in the second term in Eq.

14

(33), the enhanced dissipation is dominated by viscosity. The same conclusion holds in the case of a

turbulent viscosity and thermal conductivity, when

v~y~vl (34)

with ¥ being a characteristic velocity of turbulent elements and T their characteristic scale. Thermal

dissipation may become more important in the case of a large radiative heat transfer where y >> v.
4, Comparison with Observations

For comparison with the observed properties of the p-rﬁode absorption, we adopt the
following typical values: flux wbe radius R = 50 km; p-mode wave temporal frequency @=2mrx3
mHz; p-mode wavenumber & = (.5 Mm'l; sunspot radius L = 25 Mm; sound speed c, = 10 km 5'1.
We can then address each of the observational findings listed in the Introduction.

1) Acoustic absorption is cospatial with magnetic fields. In the situation where viscous

processes are dominant, we conclude that Im & in a nonuniform medium increases with respect to the

uniform medium by the enhancement factor

2
3@ TR
f = m,max ; (35}
7 k% R p2

For a quantitative estimate, we use the observed quantities for & and R, take the filling factor ¢ = 1
2

as appropriate to a sunspot, and assume that D / [F'2 = 1/2, a value consistent with the models

of Maltby et al.(1986) for a sunspot with a photospheric magnetic field of 2 kG. This gives an

enhancement factor of )
a8, (36)

Thus, the enhancement of absorption is quite large. The absorbing regions should be distinct from
the background. The lower filling factor ¢ in plage compared to sunspots explains the reduced

absorption seen in the observations, despite the larger size of the plage.

5



; : A oy : Beckers's observed limit on turbulent scales..
2) The absorbed fraction of the acoustic power rises with increasing wavenumber at low

: 3 4) The absorption per unit magnetic fieid (acoustic opacity) appears to saturate in sunspots
wavenumbers but then levels off at a constant value at high wavenumbers. From equations 32 and

compared with plages. The dependence of the enhancement factor (equation 35) on the magnetic
33 we see that Im k does not depend on the wave number k. However, at low wavenumbers,

field strength is f~ B4 for weak magnetic fields; at large values of B, when Pr%],max becomes of
Vv the order of [F'2 the enhancement factor saturates.
k e (37)
R™c, 5) There is no observed variation of the absorption with temporal frequency. Taking the

form of k determined from equations (33) and (39), we find that the enhanced damping begins to
the viscous forces inhibit the relative motions of the fluxtubes and the ambient gas ("sloshing"

£ quench at frequencies

mode), thus reducing Im k. For our typical values, this corresponds to a wavenumber of kc =0.2
Mm-l, in good agreement with observation. % ¥ [F'E Cg (a0)

3) The absorption level increases with sunspot size and reaches tens of percents. We find the r | o P Pr?],max L
local damping rate has no dependence on the sunspot size; the total absorption of a spot then scales
simply with the path length through the spot, that is, the sunspot dimension L. For our standard values, @, < 10_3 5_1. This corresponds to a frequency of 0.2 mHz, below the

If & is the total absorption of the wave propagating through the sunspot, the spatial damping lowest frequency p-modes observed by Braun et al.. Therefore no variation is expected in the
rate can be evaluated as observations to date. .

Imk = ;; In (— ; ) (38) DR
- a
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Figure Caption

1) Sketch of the spatial variation of the plasma conditions in the presence of the p-mode wave, The
initial state of the sunspot has large amplitude density and magnetic field strength variation on the
scale of the flux tubes, R. The incident wave sets up a pressure perturbation 8P on the much larger
scale A. The temperature and velocity respond to the wave with amplitudes 8T and v that depend

on the small scale structure, and thus have many small regions of hich eradient,
o =1 -
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