MHCTUTYT ANEPHOU ®UBUKU
um. I''I. Bynkepa CO PAH

V.F. Dmitriev

THE NUCLEAR RESPONSE AT
HIGH EXCITATION ENERGY
IN THE (*He, t) REACTION

PREPRINT 92-22

= I

HOBOCHBUPCK




The Nuclear Response at High Excitation Energy
in the (*He, t) Reaction

V.F. Dmitriev

Budker Institute of Nuclear Physics
630090, Novosibirsk 90, Russia

ABSTRACT

The excitation of a A-isobar in a finite nucleus in charge-exchange
(*He, t) reaction is discussed in terms of a nuclear response function.
The medium effects modifying a A- and a pion propagation were
considered for a finite size nucleus. The Glauber approach has been
used for distortion of a *He and a triton in the initial and the final
states. Large spreading width was found for the reaction on *?C at 2
GeV of the *He kinetic energy.
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1 INTRODUCTION

The experimental studies of nuclear response in charge—exchange reactions
were extended in the eighties to high excitation energies where a first nucleon
resonance the A-isobar can be excited [1]. The detailed studies were done
for the (°He,t) charge—exchange reaction at different projectile energies [2]
and different targets [3]. The properties of the A excited in a nucleus were
found different compared to the case of the reaction on a single nucleon.
The difference was both in the peak position and the width of the resonance
excited in a complex nucleus. The review of the observed phenomena can be
found in the recent review paper [4].

The appealing explanation of this phenomenon is related to medium
effects, namely, the excitation of a pionic nuclear mode [5], [6], [7], [8] although
another explanation has been proposed as well [9]. In this picture the A in
nuclear matter does not exist as separate resonance but forms a collective
excitation consisting of pionic, A and nucleon degrees of freedom.

At first sight one should not expect sizeable medium effects for (PHe,t)
reaction since the reaction takes place at the surface of the target [10]. For
inelastic reactions, however, the absorption is smaller and one chould use
absorption factor different from that used for elastic scattering [11] providing
both the medium effects and the magnitude of inelastic cross-section. Another
important point is the account of the finite target size in the response function.
As it will be shown below different A-hole multipoles are peaked at different
energies so, part of the observed width can be attributed to this spreading.

Here we present the results of the absolute cross—section calculations of




the 12C(°He,t) reaction at 0° and at the kinetic energy of the He Ty .=2 GeV.
In the next section we discuss the model for the reaction amplitude that is
a driving force for the nuclear response. In the section 4 the pionic response
function of a finite nucleus is discussed and the cross—section is calculated in
the section 6.

2 REACTION AMPLITUDE

We shall start from the discussion of the models for the elementary charge-
exchange reaction p(p,n)A*t+*. From the early sixties it was shown this
reaction can be described by OPE model [12], at least at low momentum
transfer. This analysis has been extended for wide range of the proton
energies in [13], and has been repeated with some minor modifications in
connection of the analysis of p(*He,t) A*+ reaction in [14]. As it was shown
all existing data in the region of low momentum transfer are well described
by OPE with the soft monopole #NN- and #NA- form factors
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The parameter A = 650 MeV at low proton energy and slightly decreases with
the proton energy reflecting increase of the absorption effects at high energy.
With these soft form factors (1) the main contribution to the A-production
comes from the direct graph shown in Fig.1. The exchange contribution is
small for the p(p,n)A*+ reaction.
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Fig. 1. Direct OPE graph for the A production.

In this model the amplitude is completely longitudinal with respect to
the momentum transfer. In the other model used for the description of

the A-production at 800 MeV proton energy [15] the transverse part of the
amplitude was described by p- exchange and hard form factors with A = 1.2
GeV and .\ = 1.7 GeV were used for TNA- and pNA-vertexes. The magnitude
of the cross—section and the momentum transfer dependence are reproduced
in this model due to cancellation between the direct and the exchange parts
of the amplitude. The cancellation is rather delicate and at higher proton
energy it can be broken resulting in wrong momentum transfer dependence
[14].

At very high energy the situation is different. The w-exchange
contribution decreases as s~2, where s is the center—of -mass energy squared,
while for the p-exchange the decrease is slower. Its contribution falls down
like s=2+*(%) for small momentum transfer where a(t) is the corresponding
Regge-trajectory. Thus, in the asymptotic region at high energy one should
expect the dominance of the p-exchange at forward angles. Below 20 GeV
the cross—section for forward scattering follows the 1/s% law [16] so, the
contribution of p-exchange at intermediate energies is believed to be small.

For the p(°He,t)A*™ reaction the situation is similar to the (p,n) case.
The m-exchange with the soft form factors (1) gives reasonable description of
the absolute cross-section and the tritium spectrum at forward angle for all
existing data [14]. Nevertheless, at the kinetic energy of He 2 GeV, which
is close in kinematics to 800 MeV (p,n) one can get good description using
7 + p- exchanges as well [17]. It would be very desirable to extend the last
analysis to higher *He energies.

3 NUCLEAR MATTER RESPONSE TO
THE PIONIC PROBE

3.1 (He,t) Cross—SectioninPlane Wave Approximation

It is convenient to start with the plane waves for both projectile and ejectile
in order to obtain an expression for the cross—section that can be easily
generalized to the distorted waves. In PWIA the cross— section is proportional
to the matrix element, shown in Fig.1, squared and summed over final nuclear
and A-states.
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For plane waves I' ~ 'Y it gives for the cross— section
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The expression under the sum is just imaginary part of the pionic self-energy
in nuclear medium,

El‘mII&(w,q, q) =TE§(M—E&&)!F,NQIEH;‘. (4)

Using the pionic self-energy (4) we obtain the final expression for the cross-—
section suitable for inclusion of medium effects.
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3(9) : Eﬂﬂﬂ(“i q, ‘1) : Gﬂ(q)- (5)

3.2 Medium Effects in Nuclear Matter

The main effect of nuclear medium is the renormalization of the pion propaga-
tor by intermediate A-hole loops giving the major contribution to the pionic
self-energy (4) near the A-resonance. To take it into account one must change
in (5) the bare pion propagator Go(g) for the dressed one G(w, q), where
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Making this change we are going out of the scope of the impulse approximation.

The imaginary part of the bare pion propagator is equal to zero for

negative ¢%. Using it we obtain G*(w, q)-Smlla (v, q)-G(w, q) = —SmG(w, q).

With these changes the cross—section (5) becomes

It is clear from (6) the pion propagator G(w, q) in nuclear medium is just
the response function to a virtual pion probe. The excitation created by a
virtual pion is no more pure A-hole but a superposition of the A-hole and
pionic degrees of freedom, which is usually called the pionic mode.

The unquenched A-hole self-energy (4) produces too much of attraction
giving unreasonably low excitation energy for the pionic mode. In order
to make the description more accurate several effects should be taken into
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account. First of all, more correct wN- scattering amplitude reproducing s:
and P1 partial waves should be used since we are interested in the energleii
lower than the A in vacuum. For this purpose one should add the Born
diagrams with a nucleon intermediate state, u-channel A diagram and a o-
term arising from the o-commutator [18]. Second, the short— range
NA- correlations must be taken into account.
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In nuclear matter the effect of short-range correlations can be accounted in
the following way. Let us define the A-hole response function by
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Similar effect should be taken into account for the nucleon-hole response
function as well. But, in the region of interest in excitation energy its
contribution is negligible and will be omitted below. In contrast, the backward
A-hole loops and the o-term must be retained since they have their own
dependence on the virtual pion mass — ¢> that influences the position of the
pionic branch in nuclear matter.

Finally, the virtual pion can be absorbed in nuclear medium via two-—
nucleon mechanism without the A-production. To take it into account we
use the Ericson—-Ericson optical potential from pionic atoms [19]

- Van = —4mImC - n*(r) - ¢4,
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where Im C = 0.08 - (;:lr) , and n(r) is the nuclear matter density. With

these corrections the pion self-energy in nuclear matter is
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where fr is the pion decay comstant f, = 133 MeV and o(0) is the o-
commutator for forward pion scattering, ¢(0) = 66 MeV. I, (w, q) includes
both forward and backward A-hole loops corrected for short-range correla-
tions.




4 RESPONSE FUNCTION OF A FINITE
NUCLEUS |

For a finite nucleus it is convenient to work in the configuration space where
the self-energy (9) and the pion propagator become the functions of two
distinct variables instead of functions of the distance between coordinate
points in nuclear matter.

I(w,r —r') — I(w,r,r');

Voy = 4mImC(V - n(r) - V)é(xr — 1').

The #NA - vertex in the configuration space is

fa A% — p® exp(—k|r — r'|)
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where k%2 = A? — w2,

4.1 Multipole Expansion
For a spherical nucleus the self-energy (9) has simple multipole expansion

M(as, ') = E H_;(r, )Y s (0) Yy ar (0').
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The similar expansion exists for the # N A-vertex

Leva(r—1r') = Z I‘?TL("'! r’}Y}M(n)T_?M(n’}, (11)
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where the tensor operator
Tim(n') =S - Y]y (n) = [SA Yim(n)]sa, (12)
and the radial vertex I'}, (r,7') is
I5:(r ) =

)f& 2k(A2 —p?) [T+ L +1 { i (ker)kr(er’) if r < 7/,

Fddad T 202 +1) | —is(&r)kp(rr) if r > 7,

(13)

here iy (z) and kr(z) are the spherical Bessel functions with an imaginary
argument.

The A-hole response function x can be expanded using the set of tensor
operators (12)

XELr(T,T'r) =
1. . Ly » ; T :
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where n;,;, are the nucleon occupation numbers, R;, i, (r) the radial wave
function of bounded nucleon and the ¢;,,, is its energy. g;,1, (w;r, ') is the
Green function of the radial Schrédinger equation for the A moving in the
mean nuclear potential. It was calculated using two independent solutions of
the radial Schrodinger equation.

The A-hole contribution to the pion self-energy can be calculated using
the following expression

A (w;r, ') = Zf p*dpe' dp' TSy (r, P)XLs: (0, P T30y 7);  (15)
LL'

where I';;, related to I"f'r  Vvia linear integral equation accounting the short—
range correlations (7)

Lro(r,p) =T95(rp) + ¢ ( ) Z/ p”?dp' Ty (r, ' )xLi (P P) (16)

5 THE EFFECTS OF DISTORTION

For numerical calculations it is convenient to come back from expression (6)
to more complex one similar to (5)

d’c M. 0
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The product sign means integration over all coordinates in the configuration
space and the overline is the averaging and summing over spins of a *He and
a triton.

In the plane wave approximation the m ®He t vertex is

Tysa(r) = va(o - §)F(¢?) 1) ‘q ) xp(ear), (18)




where the effective momentum transfer @ in lab. system is
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here F is the toial energy of *He and M is its mass. At first order in B
it can be rewritten as

w

!
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The effective momentum transfer squared coincides with the four-momentum
transfer squared. F(q?) is the (°He,t) transition form factor.
The multipole expansion of the vertex looks as follows

Toma(t)= 3 T4 (r)tha (n), (19)
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where 2, (n) are the tensor operators analogous to the (12)

tiu(n) = (0 Yy (n)) = [0 AYiul, - (20)

For plane waves the radial vertex is

r 2
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The distortion of the incoming and outgoing waves has been taken into
account via inelastic distortion factor [11]. With this factor the ~’Het vertex
is

FIH d(r) —
fn(2®) !
7

= V2[—1(o - ?)—§E+M( (p+p))))——

exp(1qr) exp(— 5 Xin(r1, q)).
(22)
The distortion factor exp(—3xin(rL, q)) has been found in [11]

1
exp(— EXin(l'.Lr q)) =
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X ‘I’(Sl,Sg, 53)5(51 + 82 + 53), (23)
where T'(r, ) is the thickness function
Tix )= f p(ry, z)dz,
and p(ry,z) is the target density. The

2n
A = —1 0
1 plu.bf( )

is related to the elastic nucleon—nucleon scattering amplitude at given energy
per nucleon and ¥(s;,ss,s3) is the wave function of the ®He or the triton
depending on the internal coordinates s. The value of 7 used in calculations
is 7 = (2.1 —10.26) fm? [21].

Two features of the distortion factor (23) should be mentioned. First, the
SHet form factor can not be separated from the effects of distortion. Second,
since the vertex (22) has a gradient coupling and the distortion factor {23)
depends on the transversal coordinates, some transversal components arise
in the reaction amplitude even if it was before pure longitudinal amplitude.

The multipole expansion of the distorted vertex (22) can be obtained
directly by multiplying it on f,t am(n), taking trace over spin matrices, and
integrating over angles of the umt radius vector n.

Py (] = %TT f dn (155, (2) - Trrer(r)) . (24)

The separate multipoles contribute independently into cross—section (17),
which becomes

d’c  ME,
dE'dQ 473 p
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For numerical calculation it is convenient to define the function

wrram(T) :f rﬂdr;Gﬂ(T‘:T")I‘f.rM(""):
0
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which is the pion field at the reaction point generated by the source I'Y,, ().
The function wg jpr(r) satisfies the integro— differential equation

./ r'%dr! GEI{"‘"' TI)WLJM (T") == Pfﬂu(’"): (26)
0

which was solved numerically using the condition for Feynman propagator
Gr(r,r) = GEI-}(T',T") at positive energy. Since G(Lﬂ(r, ') has an outgoing
wave at infinity it fixes the solution of the equation (26). The cross—section
expressed in terms of wy, rpr(7) is

déa . v MEun!
dE'dQ 4:;& D Z Wi yne - SIly, - wryae (27)
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In the expression (27) the integration over coordinates goes effectively in a
finite range, inside the target nucleus.

6 THE TRITON SPECTRA FOR “C(°He, t)
REACTION AT 2 GeV

6.1 Parameters of the single—particle potentials.

The nucleon single-particle potential used for the wave functions of the bound
nucleons has been taken in the standard Woods—Saxon form.

Az df(r)
r dr

U(r) = Vo £(r) + Vis (o-1) + Vo(r),

where f(r) = 1+exp{1]:-—th1)’ Ar is the pion Compton wavelength, and Vi(7)
is the Coulomb potential for protons that was taken as the potential of a
uniformly charged sphere. The parameters of the potential are listed in the
Table 1. The response function (14) were found not very senmsitive to the
parameters of the nucleon potential.

The optical A- nucleus potential has been taken in similar Woods—Saxon
form.

F(r)
dr

Ua(r) = (Va +Wa) - £(r) + (Vazs + Wazs) 2 L0 (as 1) 4 Vi (o),

where sp are the spin 3/2 matrices. The parameters of the optical potential
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are listed in Table 2. They were taken mainly from [7], and [20] with some
important changes. For the first calculations the spin-orbit potential has

Table 1. Parameters of the Single—Particle Nucleon Potential

%(MEV) VLs(MEV} R(fm) RLs(fm} G(f]ﬂ} ﬂ.j:,,s(fm}
P 50 7 1.25.A4'° < 1354177 053 0.53
n 50 7 1.25- A3 1.95. A7 - 0.53 0.53

Table 2. Parameters of the A—Nucleus Optical Potential.
(The radius and diffuseness are the same as for the nucleons)

Va(MeV) Wa(MeV) Visa(MeV) Wisa(MeV)
25 0 0 0
2
ofElop

020 3 ——— mb/sr/Mev

E dwd(} iy
0.15
0.10
0.05

.
0.00 — B [ N ] b 1

18 420 460

w MeV

Fig. 2. The contribution of separate multipolarities to the triton spectrum. The curves

correspond to the short-range correlation parameter gj, = 0.6.
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Fig. 3. The consecutive sum of different multipoles to the triton spectrum for g, = 0.6.

been taken equal to zero, its influence is the subject of further studies.
Second, the imaginary part of the central potential has been omitted as well.
Its inclusion will lead to double counting in the absorption since it arises
from nuclear absorption of virtual pion emitted by the A and this effect has
already been taken into account in the imaginary part of the pion self-energy.
The radius R and the diffuseness a were taken the same as for the nucleons.

6.2 Contribution of separate multipoles

The contribution of separate multipoles to the triton spectrum is shown in

the Fig. 2. The contribution of the low multipoles I = 0 and L = 1 is
almost negligible due to strong absorption of the incoming and the outgoing
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nuclei. The main contribution comes from the multipoles from L = 2 to
L = 6 although higher multipoles, at least up to L = 8, have to be cosidered.

Another feature clearly seen in the Fig.2 is rather wide spreading of the
different multipole contributions. The L = 2 contribution appears to be
most sensitive to the medium effects shifting down the transition strength.
It has the largest downward shift in the peak position. The absorption
of the ®He and t is smaller for I = 2 resulting in sizeable contribution to
the cross—section. Higher multipoles have smaller medium effects and their
peak positions are at more and more high excitation energies. This produce
large spreading width of summed triton spectrum. The sum of consecutive
multipole contributions up to L = 8 is shown in Fig.3. Every next multipole
shifts the high energy wing of the peak increasing its width.

2
d o
1.00

mb/sr/Mev

dewd()

0.80

0.60

0.40

0.20

(TSI 10 N 0 T O 0 1 0 0 O 1 I T 1 B

{].GO T ! T | FEE ! | EFT L e L | e FEna R | I RS | | FR | | [T Rt o [ T PR s e Tam el

280 330
- w MeV

Fig. 4. The triton spectra for two values of the ,g"n. Upper curve corresponds to gL =0,

—
co
o
3
(W]
o

for lower curve gL = 0.86.

15




The curves shown in Fig.2 and Fig.3 were obtained for the short-range
correlation constant g), = 0.6. The influence of the short-range correlations
is demonstrated in Fig.4 where the summed triton spectrum for g/, = 0 and
gh = 0.6 is shown. It does not influence much the peak position but changes
its height.

The influence of the medium effects leading to renormalization of the pion
propagator is shown on Fig.5. The considerable shift of the peak position is
visible clearly producing in addition larger cross—section compared to the
quasifree case.

2
d o
0.80 7 mb /sr/Mev
. dwd()
0.60 -
]
1
0.40
0.20
UuGD ] I i 1 | ¥ L] L) ] i Ll T T T T T I T T T T T T T T T .I T I T 1
18040 i9ap i oea Y B0 ¢ T340 380 420 460

w MeV

Fig. 5. The triton spectra for quasifree A- production (dashed line) and with accounting
the medium effects (solid line).
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7 CONCLUSIONS

For (°He,t) reaction in the A-region strong deviations from impulse approxima-
tions were demonstrated. The deviations come from the medium effects
of renormalization of the pion propagator in the OPE mechanism of the
elementary charge—exchange reaction. The medium effects change both the
peak position and its height.

The finite size of a target nucleus produces tngether with the medium
effects large spreading of the observed peak. The absorption in initial and
final states strongly suppresses the lowest multipolarities of the angular mo-
mentum transfer. The Glauber approach to the distortion in initial and final
states gives correct description both the size of the medium effects and the
absolute value of the cross—section.
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