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ABSTRACT

We consider two-dimensional t-J model with a hole on the Neel
background. The vertex function for the interaction of a hole with
long wave length magnons is calculated.
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The investigation of two-dimensional t-J model is very popular now due
to connection with high-T. superconductors [1]. At a half filling the t-J model
is equivalent to the Heisenberg model. It is well established that in this case
there is Neel ordering in the ground state [2, 3, 4]. The problem is behaviour
of a system under doping by the holes. To study the dynamics of the holes in
doped antiferromagnet numerous approximations have been proposed, and
some of the properties of a hole have been established. Calculations based
on the moment method of Brincman and Rice [5] are carried out in the limit
t/J — oo [6, 7, 8]. The analytical spin-wave and variational methods were
used in Refs. [9, 10, 11, 12, 13, 14]. Calculation of Trugman is an exact
numerical diagonalization of Hamiltonian withing a retained portion of the
Hilbert space [15, 16]. Approach of Refs. [17, 18, 19, 20] is based on numerical
diagonalization of Hamiltonian on small lattices (see also the review paper
[21]. It has been shown that one hole in the i-J model has a ground state
with a momentum of either £ = (£Z,£%) or k = (0,+7),(£7,0). In any
case the energy is almost degenerate along the line cosk; + cosky = 0.

One of the problems connected with the t-J -model is melting of the long
range Neel ordering which is observed in high -T¢ superconductors. (Magnetic
phase diagram for the compound La;_;Sr;CuOy is presented in the Ref.
[22].) In the paper [23] we have demonstrated the quantum melting of Neel
ordering at doping using variational method and numerical diagonalization.
In the Ref. [23] we have used the anzats for trial wave-function convenient for
both the Neel state and for the spin liquid state. This anzats was suggested
in the work [24]. |

In the present work we use variational method as well. We suggest very
simple anzats for the trial wave function of a hole which can be used only
for the Neel background. Analytical expressions for the energy and for the
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Hamiltonian

H:Ht+H_;=tZ(d;:,dj,-f-h.c)—f-.fz.s_';g}. (1)
<ij>ao <if>

where df is the creation operator of a hole with spin o at site i of a two-
dimensional square lattice. The operator df acts in the Hilbert space where
there is no double electron occupancy. The spin variable is S; — %dﬁlaqﬁdig.
< %j > are the neighbour sites on the lattice. In further calculations we will
set S =1, :

Let us denote by |0 > the background Neel state corresponding to half-
filling. All our results are expressed in terms of spin correlators over this
state.

oc=|<0|Si]o> |, p=<0[|S;S5%0 >,
2¢ =< 0[S} S [0 >, pP=p+2¢=<0|S5,5,[0>. (2)

P1, g1 and p; correspond to the neighbour sites n,m; and p,, g2, p2 correspond
to the next neighbour sites. For the Neel state the next neighbour correlators
are practically independent on a path between the sites n and m. Numerical
values of correlators for the Neel state are as follow

cd=03, p=-0.17, p,= +0.1, ¢; = —0.08, ¢, = 0.05. (3)

Due to the work [11] the energy of a hole with respect to the background
level is equal to

BW) = cote(t)  e(k)=2—s() (4)

S(k) = /A%/a+482(1 4 y)— 2(z + y)(cosk, + cosk, )2.

The parameters here are as follow

2 ~ 1.2
€0 1/2 40 :
A = 1‘lﬁ'+‘1§1cr+%Pz—'%P1(5+9”)*2m(2+35)——f ~ 1.33

= l/dta— p Dy

(9 +6(q1 + 92)/9)?

e ~ 0.557 ;

< 1+ 6¢g, : i
Lo 2
e (9 — 2(q1 + 92)/9) —120.138,
1—2q,

(1/4+ 0 — 1)

g (1/2+0)

Let us set A, = +1 for spin up sites of the Neel state and ),, = —1 for spi.n-
down sites. The hole wave function derived in the Ref.[11] is of the form

Yo (k) = h{_|0 >, where

h:.'T = u(k)zim i 5 ng(k}fiﬁ: h;';-j, = v(k)A4oy + Z:‘Sf(k)ﬁfﬂl
i 6
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A—T = v/.z—-_ﬁ ;(1 o -}iu—)dﬂlsﬂ+g‘e 1
o 1 . e B 6
Ay, = —=) (1-2,)d} .5~ ™, (6)
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Here 6 is the unit vector connecting the nearest-neighbour sites. The expansion
coefficients are as follow e

i 1 A+ 2S
e - g 1/2+0)S’
i
=(k = X
) V(1/4+ 0 — p1)S(A +25)
i 1
3 ((1 +v)eith E{u + v)(cosk, + casky)) g (7)
where
e 1_§+6(q1+§'2]/9 ~ 0.416 .
1+ 6ga
a0 Aailialihie - ®)
1-—2q,

Besides the hole wave function we need the wave function of a magnon.
Let a be the spin flip operator at the site n

1+/\u e 1_}"11 +
it 9
5 St e (9)
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sites n,m. For the Neel state the next and the next next neighbour correlators
are practically independent on a path between the sites n and m. Numerical
values of correlators for the Ising background (background w1thﬂut quantum
fluctuations: SZ = :t1/2) and for the Neel one are as follow

I:oc = 1/2, p1=-1/4, po=+1/4, p3=-1/4, ¢ =0.
N:oc = 03, pp =-017, p» = +40.1, p3 = —0.09 , (8)
g1 = -—0.08, gz =0.05, g3 =—0.04 .

Note that due to the Eqs.(6) the basis set (5) is orthonormalized for the Ising
background.

Next is calculation of the Hamiltonian matrix. Let us consider at first the
Hj;. One should use the commutation relations

1
bl + + ot al — ¢ BT
[Hj,dﬂ.[]— zg(dﬂ:[s:_l_j-‘i' dﬂ'lSﬂ-}-E)' [HJ,S“]HEZEHﬁTSﬂSﬂ+E
[i]

(9)

For example

L
ZA[Hr > = EE(IHA,;)-*:: uid,;f([H:,diTHdiTH:)lﬂ >

= (0=2p)+Ey<i1>. - (10)

Here Ej is the energy of background: Hj|0 >= Ep|0 >. Full H; matrix is as
follow (we onut the terms Ej < i|j >):

< 1H;[15 =" (o =2p5),: <UHpli>=0,  #,7=2,3,4,5
g R e 1
LalHale > = E+?J+Ep3~§p1(5+9a)—2q1(2+3a), (11)
<i|H;|lj> = q(o—1/2—4q;)+ 2q2(20 — py + 3p2) + B(o — 2py)
it

Here B = 3q3 if i+j is even and B = q; + 2¢3 if i+j is odd. In calculation we

have used the ground state factorization. For example:

<058 oST . o |0>x

n45+4’
~< 0|2, S 10 ><0|S7 +§+6,|0 >—2q70'; (12)
= U[SZSIHSJH*S:;H'H”|U <f |
A< 0|55 S) 510 >< 0[S~ E +b,+&”|0 >=2¢:1p1 -
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This is rather crude estimation, but In any case uncertainty in the estimation
is very small numerically.
The energy of a hole at t=0 is equal to

o< HHs 1> bt e e for I-state 13
= <111:> =5 1/2+0 | 1.2 for N-state ° ( )

Relaxation of the background is neglected in this equation. Let us estimate
this effect. It is due to the admixture of the states with more complicated
structure fo the wave function |1 > (Egs. (4),(5)). The most important that
are double spin-flip excitations

1
[b>= ﬁz(

n

)d+ 5.5 j. s )0 > . (14)

Calculations similar to that described above give the matrix elements:

1 1 1 1 1
<bp> = (§+J)(Z*P1)+—U—§P1+§m;

2
< 1jb > 2¢1(1/2+ ) , (15)
<bH;b> =~ 23, < 1|H;|b >= q1(-1/4+ 0 - 3p1) .
There are 12 states |b > corresponding to the different orientations of §,6’ in
Eq.(14), and therefore total correction to the hole energy is equal to

(< BlH|1 > —€0 < b|1 >)?

beg = 12 %
0 <1[H;1>< bjb> — < b|H b >< 11 >

~—0.05. (16)

We have used here the parameters of Neel state from Eq.(8). (We remind the
reader that we set J=1) Other contribution to the background relaxation is
due to the state

le>= — AL S+ Se“?f"m gt (17)

Y-
There is no such a state for the Ising background (|c >= 0), but for the Neel
one due to the quantum fluctuations it is a real state. Simple calculations
show that the hole energy correction connected with the states |¢ > is equal
to Sep &~ —5 x 1073, Thus the background relaxation is due mainly to double
spin-flip excitations (16), but the effect is very small and can be neglected.

Let us come back to the case of nonzero t. It is convenient to shift the
energy level in such a way that the hole energy to be zero at t=0. To do it
we should subtract

< alH;|8 >—< a|H;|B >=< a|H;|8 > —€ <alf>. (18)
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Here E(k) is the hole energy (4), and Ej is the energy of the Neel background.
It is obvious that the contribution proportional to Ey in the second term
of Eq.(12) exactly cancels that in the first term. Therefore furf;her we set
Ey = 0.

: In the off-diagonal matrix element < ﬂthquh,ch;fﬂ > let us consider
at first the contribution of H;. The H; does not change position of a hole.
Therefore this contribution is proportional to v x £ (see Eq.(6)). Using the
commutation relations

| 1 + oz o
{H-f& d;I;T] = E Z (du‘[ ni4é g dﬂlsﬂ+§) 1 (20)
b
1 z h
[dn._l: HI] = E Z (—dﬂ-l"g“_l_g + d“TSﬂ_f_li")
]

we find

< Olhrtq Hyhfrck|0 >=

= Y ae Tra UF{ (14 2n)v" (k + )65 (k) [duy, Hildt ST - +

H(L = An)v (k)€ (k + q)dur ST ([H;, di]+ d:qu)} ~ o (21)

¢ 1/4—o43p1

ki 5 1 2v)7 .
22 \/(1f2+¢](114+ﬂ—-m}( e

[

Let us remind once more that the terms proportional to cosk, + cosk, are
neglected. .

Calculation of the H; contribution is not complicated as well. The H ¢
changes the position of a hole. Therefore there are two parts in this contribution:
The first part is proportional to ~ v x v, and the second one ~ £ x ¢ (see
Egs. (6)). Calculation of the v x v contribution is trivial

A+2S8
< Olhyyg  Hebyref 10> —t——=7 .

= (22)

v X V.

Calculation of the £ x¢ contribution is also straightforward, but more cumbersome

3
S(A +25)

(6+34v+8u(1+v))Z . (23)

§x&: < Olhpyq Hihirek|0 >— —

Summing the contributions. (21), (22), (23), (18), (19) we get the hole
magnon vertex

T'o = f(t)Z, where . (24)
A+ 28 1
2
e =lf 4 34 -
+ S‘(&+2SJ( o+ v+8u(1+v]})
Function f(t) ~ —3.4¢ at t < A/4 and F(#) ~ —0.87t at t > A /4.
The vertex function (24) corresponds to the normalization (10): one

magnon in the volume. More convenient normalization is 2wy, magnons in
the volume. At this normalization a magnon Green function is 1/(w? — w,),

and the vertex is T' = , /25T, From the Egs.(24), (18), (11) we get

1 . . :

Plh,q) = ﬂﬁ(gzsmkm + gysinky ) f(1) (25)
Thus in the present paper we have calculated the hole-magnon vertex
function for long wave magnons (¢ < 1) near the bottom of the hole band
(cosk$+co,sky < 1). First of all this interaction gives self-energy correction to

the hole energy (4). The vertex (25) vanishes at the points & — (0,£7), (£, 0),
and it is maximal at k = (£7:2%). Just due to this reason the bottom of

the band is at k£ = (£%,£%). Surely the long wave limit is not enough
to calculate the energy correction. However for estimation one can cut
the integral over q at ¢ ~ 1. This procedure gives the value of correction
which agrees with that obtained from numerical calculations (see Table in
Ref.[11]). Much more important to our view is calculation of the magnon
polarization operator and of the magnon dispersion relation. This question
will be considered elsewhere. :
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