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ABSTRACT

on the Neel background. The energy and the wave function is
calculated analytically using variational method. Comparison with
computer simulation justifies suggested approximation at least at t/J <
4 — 5. However it is possible that this approximation is valid for larger
t as well.
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It is widely agreed that two-dimensional t-J model describes the high-
temperature superconducting Cu-O materials. The phase diagram for the
compound Las_;Sr,CuOy is presented in the Ref. [1]. At x=0it is insula-
tor with long range antiferromagnetic ordering (Neel state). At z >
> 0.03 Lay_SrzCu0O4 becomes a metal without long range magnetic order.
The structure at x=0 is well understood in frameworks of the t-J model.
Actually, at a half-filling the t-J model is equivalent to the Heisenberg model.
It is well established that in this case there is Neel ordering in the ground
state (2, 3, 4]. Structure of the metallic state which arises from the doping
of the insulating state remains a puzzle. Still some of the properties of one
hole are by now established. It has been shown analytically [5, 6, 7, 8, 9,
10, 11] and numerically [12, 13, 14, 15, 16, 17, 18, 19] that one hole in the

t-J model has a ground state with a momentum of either E=(+ Sy ior

k = (0,%7), (£7,0). In any case the energy is almost degenerate along the
line cosky, +cosk, = 0. In the papers [19] (numerical diagonalization on small
lattice) and [18] (variational method with numerical diagonalization) melting
of the Neel order at doping has been demonstrated.

_ In the Ref.[11] we considered the dynamics of a hole on the Neel back-
ground. The analytical variational solution for the hole dispersion relation

_and for the wave function was obtained. Only short range correlations were
““included into the wave function. In this approach the Neel state instability

as well as relatively small correction to the hole energy is due to the residual
interaction of a hole with long wave length magnons. To consider these
effects one need the vertex function for the interaction of a hole with long
wave length magnon. In the present work we calculate this vertex.

We consider the t-J model with less than half-filling. It is defined by the



wave function of a hole are derived. Comparison with the results of numerical
calculations is presented. In this approach the Neel state instability as well as
relatively small correction to the hole energy is due to the residual interaction
of a hole with long wave length magnons. This question will be considered
elsewhere [25].

Let us consider the t-J model with less than half-filling. It is defined by
the Hamiltonian (see e.g. [26])

H=H+Hr=t Y (mi-odtdionj_ s +he)+J Y 55, (1)
<ij>o <ij>
where d, creates a hole of spin o at site i of a two-dimensional square lattice,
Ny = d;f,d;, is the number operator. The spin variable is S; = ‘%d;l-ﬂa'“ﬁd{ﬁ.
< ij > are the neighbour sites on the lattice. Sometimes it is convenient
to write down the Hamiltonian of t-J model in more simple form, but with
additional constraint.

H=H+H;=t Y (dhdje+hc)+J D S5;. (2)
<ij>o <tj> ;
The constraint is that d;, acts in the Hilbert space where there is no double
electron occupancy.

Due to the Egs.(1),(2) the holes in an antiferromagnet cannot move freely,
but couple strongly with spin excitations. The idea to write down trial wave
function of a hole as a polynomial in dt,d acting on the background state
|0 > is quiet natural. The state [0 > corresponds to a half-filling. This
representation was used for example in the Refs. [9, 20]. In the work [23] we
have used similar anzats with the combinations d;}'d, expressed in the terms
of spin operator S: :
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Here g,g’ are the unit vectors connecting the nearest-neighbour sites. The
representation (3) can be used for both the Neel background and for the spin-
liquid background. However it can be simplified for the Neel state. There
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are two sublattices. Let A, = 1 for spin up sublattice and A, = —1 for spin
down one. Obviously SZ|0 >= %lﬂm > +quantum fluctuation correction.
The fluctuation correction can be absorbed into the higher terms in (3).
Thus all S in the Eq.(3) one can replace by the A, with corresponding
renormalization of the coefficients. Carring out calculation in the Ref.[23] we
have observed that the hole wave function is very close to rather simple one:

SilE) = {v(fe)ﬁwzsg(mﬁg}w S,
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The A, creates additional spin up hole only on the spin down sites. The
ﬁj- creates additional spin down hole on the spin up sublattice and flips the
spin at the neighbour site. The wave function (4) is quiet natural for t < J.
However our numerical calculation [23] with rather wide anzats (3) shows
that the hole wave function is close to the (4) at large t as well. This is valid
at least at ¢t < (4 — 5) x J, where the calculation [23] is carried out.

In the present work we will calculate analytically the energy and the wave
function of a hole basing on the anzats (4). In the further calculations we
will set J = 1. There are five basis states in the trial function (4)

s = Aps, =4 P3= A7, - (5)
U = A 0> [Fr=400>.

They are not orthonormalized. Calculation of the normalization maftrix is
streightforward.

<11> = (1/249), <1i>=0, 14,j=234,5,
> = (1/4+ﬂ'—p1)§¢‘j+2q;(1f2+ﬂ')(1-5ij} : (6)
Here o = | < 0/S%|0 > |. Parameters p;,¢; are the following correlators

p=<0|S:5%|0>, 2¢=<0|SfS,|0>, p=p+2¢=< 0|5, S5m0 > .
(7)

p1, g1 and p; correspond to the neighbour sites n,m; ps, g3, P2 correspond to
the next neighbour sites; and p3, g3, #3 correspond to the next next neighbour
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In the spin-wave theory for the Heisenberg model (see Ref.[20] for a review)
one magnon state is ¢} |0 >, where ¢} is a magnon creation operator

1 -
s + s + 37

e =abl —Bb_,, by = R e 10
q 47°q | S q ;N; ( )

g and (3, are the parameters of Bogolinbov transformation. The frequency
of a magnon and the transformation parameters are as follow

Wy = 2\/1 — (cosgy + cosgy)? /4 — cAlg et g€l (11)
1 1 C08qy + COSQ; 1 1

aq — '_'l"_,. ﬁq=-- qx ‘I!.I' —ae
g 2 |cosqy + cosqy| \| wg 2

In a simple perturbation theory the hole-magnon vertex is the matrix

element of the Hamiltonian (1): < U|hk+quh:Tc;|E} >. In the present case
the situation is slightly more complicated because the states hy +qi1n > and

h:TcﬁU > are not orthogonal. Actually, the wave function (6) corresponds to
the hole dressed by the cloud of magnons. Short wave length magnons give
the main contribution to the cloud. However there is a long wave length tail as
well. This tail has no physical sense, but due to it the states we mention above
are not orthogonal. It is obvious that one should subtract these unphysical
components from the wave function (6). Therefore the hole-magnon vertex
is equal to

To =< 0lheyq  Hhch 10 > — < Olhyyg hifeg |0 >< Olcohrr Hhfrch [0 ::E : )
12
This is well known subtraction procedure which is usually used in many-body
theory for nonorthogonal states. However we would like to stress once more
that in our case it is justified only for ¢ < 1.
First of all let us calculate the overlapping < Olhgyq) h;‘chIU- S In
calculation we will use the ground state factorization. For example

2 ot + e
< 011“5n5ﬂ+5.cq |0 >=

N< 0|Aa 8510 >< 0IST cfl0>=0 < 0|ST, 70>, (13)
<0|AaS5S 55:+5+5: 10 >=
< 0|2, 520 >< o]s;ﬁs:#w]n >=2gi0 .
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The estimations show that the factorization procedure hase a good accuracy
for the correlators which we need. Using the Eq.(6) one can easily get

< Olhyqihfict|0 >=
= (1/2+ ) X g (& + t50) + vl + ) -
YT (w(k + q)5(k) — v(k)E3(k + q})} : (14)
where

ite —$qF A iR
X:F{U[Ee =gttty Y:E{{HZE ) Sietlo>.
mn n

| (15)
Due to the Egs. (9), (10), (11)
Yo Lianih s wrel
s gy g e,
1 1 1 1
= i ] i -
Y zﬁ(ag Bq) JEXZU‘* X 72 at ¢ < 1 (16)

Thus we can set =0 in the coefficient before X, and we should keep linear in
q terms in the coefficient before Y. After this transformation the overlapping
(14) is of the form

t
< ﬁ1hk+qlh:Tc'q"10 s Eg{zxm — u)(cosky + cosky) +
+ Y(1+u+2v){gesink; + qysinky]} B kg

The bottom of the band (4) lies at the line cosk, +cosk, = 0. To simplify the
formulae we will consider the holes only near the band bottom. Therefore we
set cosk, + cosk, =0, and

¢ | . .
< ﬂ|hk+qlh;:r¢¢;|0 = §—5(1+u+2u)z, Z = Y (qgsinks +qysinky) . (18)

Thus the overlapping is proportional to ~ ,/g.
Calculation of the < 0|cqhkTHhrTc;']ﬂ > in long wave limit (¢ — 0) is
very simple.
< Olcghit Hhtrel |0 >= E(k) + Eo . (19)
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Using the Egs. (6), (11) one can verify that after subtraction the off-diagonal
matrix elements < i|H;|j > become very small and can be neglected. Non-
vanishing matrix elements are

i=12,34,5: <ilH;li>=<i|lH;li>—€¢ < ili>= A < ili >,
1.5 for I-state
i { 1.33 for N-state ' (19)

Calculation of the H, matrix is even more simple. Non-vanishing matrix
elements are as follow

< 1Hli >= —t{(1/4+a—px)e"ﬁ‘+2(q1+qz)(1/2+a) 3 e-“?f'}. (20)
5 #5; .

Here &; is the unit vector corresponding to the state |t >. For example
for i=2 it is é;. Diagonalization of the Hamiltonian matrix H = Hy+ Hj
(Eqs.(19),(20)) with normalization conditions (6) gives the hole energy

A

k) = 5 =5(k), (21)
Sk} = \/ﬁszi—i— 4t2(1 + y) — t2(z + y)(cosk, + cosky)? .
Here
2
oy etsatalir e
1+ 642
(¢ — 2(q1 + 92)/9)*
o= — .138
y o 1~ 0.138, (22)
(1/4 + o pl)
— 0.95
Y (1/2+ o)

For the Ising state z = y = 0, ¢ = 1. Expansion coefficients in the wave
function (4) are as follow

1 A4 2S5
e = 5\/;/2+cr)5’

&(k) = :

(23)

J/ito-p)SAT25)
X ((1 -+ tr)e‘H - %(u + v)(cosk, + cnakg)) .
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where

6 -2
g+6(a1+9)/9 o416 y=12 (@1+92)/9 _ 4 0.124. (24)

u=1-
1+SQ3 1-*-2{{2

The Brillouin zone for the wave function (4) is the square cosk, + cosk, = 0.
Number of states is N/2 because one can create spin up hole only on the spin
down sites. Due to Eq. (21) the hole energy is minimal at the edge of Brillouin
zone. The values of minimal energy for different t are presented at the Table
1. At the same Table we present the results of numerical calculations [20, 23].
We see that present calculation at 1 < ¢ < 4 has the accuracy about 15— 19%.
Thus the correction is relatively small. It is due to the interaction of a
hole with long wave length magnons because short wave length magnons are
included into the trial function (4). The Neel state instability is due to the
interaction with long wave length magnons as well. This question will be
considered elsewhere [25].

Table 1. Minimal energy of a hole for different values of t

X a b c d
0.2 -0.125 -0.096

0.5 -0.592 -0.580

0.667 -0.905 -0.923

1 -1.57 -1.69 -1.85 0.85
= -3.65 -4.32 -4.40 0.83
3 -5.7T7 -7.06 -7.02 0.82
4 -7.89 -9.94 -9.70 0.81

a) Analytical calculation of the present work.

b) Numerical calculation [20]. Results of the Ref.[20] are recalculated to
s J=1 and zero energy level excepted in the present work.

¢) Numerical calculation [23].

d) The ratio of analytical result to numerical one of Ref. [23].
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