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ABSTRACT
The 2+l-dimensional integrable generalization of the
sine-Gordon equation symmetric in the spatial variables is
studied by the inverse spectral transform method. The
solutions with functional parameters, plane solitons (kinks)
and plane breathers are constructed by the dressing method
based pn the mixed nonlocal 8-3-problem. The initial value

problem for this equation with the constant boundaries is

2
solved in both cases ¢ =%l.
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1. INTRODUCTION

The sine-Gordon (SG) equation Bt§= m-sin® is one of the
basic example of the l+l-dimensional nonlinear differen-
tial equations integrable by the inverse scattering trans-

form (IST) method (see e.g. [l - 3]). This equation has been

‘studied in great details. The multidimensional version

o8=m-sin 8 of the sine-Gordon equation seems is not a
subject of the IST method. Different 2+1-dimensional and
multi-dimensional IST integrable generalizations of the SG
equation have been proposed and studied in [4 - 6]. But
these equations either contain the spatial variables x and y
in a very unsymmetric manner [6] or include several depen-

dent variables [4, S5].



A simple and symmetric generalization of the SG

equation has been found recently in [7]. It is of the form
ilp + @) 2 _ilg + ) =
e DR Ol B

(1.1)
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where ¢(x, y, t), 5{::, y, t) are scalar functions and ol=tl,
In the one-dimensional limit (i.e. @Y = ﬁy = 0) the integ-
ration of equations (1.1) give rises to the following

equation for 8 = ¢ + %

g =l e snitge " (1.2)
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which in the .particular case e ey const coin—
cides with the SG equation. Equation (1.1) has a number of
interesting properties. In the paper [7] equation (1.1)
has been derived as the special case of the wide class of
the 2+l-dimensional integrable systems. The applicability of
the IST method to this general class has been discussed in
(8]l

The aim of the present paper is to study by the IST
method the system (1.1) with constant boundary values of

(@ -—E)t and (p - %]t or, equivalently, the equation
X y
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whereﬂ=¢+$,€=x+n‘y,n=x-u‘y{a'2=ill andml, m,
are arbitrary constants. A new auxiliary linear system for
equation (1.3) is found. The derivation of equation (1.3) is
given within the framework of the dressing method based on
the nonlocal mixed 8-8-problem
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Using this 8-8-dressing method we construct a wide class of
exact solutions of the 2DGSG equation (1.3). It includes the
solutions with functional parameters, plane solitons and
plane breathers.

In the present paper we solve the initial value problem
for the 2DGSG equation (1.3) for the class of solutions
which tend to the asymptotic value 2an (n is in.tegerl
rapidly enough and for arbitrary ml and m . The modified
auxiliary linear system is found for the 2DGSG equation with

arbitrary boundaries. The equations of the inverse problem



are generated by the nonlocal Riemann-Hilbert problem at
o’=1 and by the d-equation at ol = -1 respectively.

The paper is organized as follows. In section 2 the
different forms of the 2DGSG equation and auxiliary linear
problems are presented. The 8-8-dressing is considered in
section 3. Exact solutions of the 2DGSG equation are
presented in section 4. The initial value problems in the
cases o~ =l and o® = -1 are considered in sections 5 and 6

respectively.

2. EQUIVALENT FORMS OF THE 2DGSG
EQUATION AND LINEAR PROBLEMS

The original form of the 2+l-dimensional integrable ge-
neralization ‘of the sine-Gordon (2DGSG) equation is the

following [8]:

Elt = 'I)l— lIJz ;
[eia ® J - az{e"% ] =0, (2.1)
RN 1y y
[e_"e $ ] = u‘z[e*wdﬁ ] = 0
2X | X 2¥)y
Introducing the variables ¢ and 5 by Q.= @1,¥t= - @2,

one gets the system (l1.1). The system (l.1) is equivalent to

the compatibility condition for the linear system [7, 8I:

-
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One of the important feature of the 2DGSG equation
(1.1) is that it is invariant under the rotation in (x, y)
plane, namely, under the hyperbolic rotations in the case
o?=1 and under usual rotations at o’ = -l

In the terms of the variables 8 = ¢ + 5, 0 =¢ - 5 and
€ =X +o0oy,m =X - oy the 2DGSG equation looks like

1 ~ 1 ~
e + —0 6., + —6,_- =0,
tgm <o il ot 27 T
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where «(€, 7) is an arbitrary function. Introducing the
variable p = Et, one gets the system

1 1 '
e + —80 - + — 6. =0,
a2 'E .7 By
(2.3)
1
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The system (2.3) has a broad group of wusual Lie
symmetries. In addition to the obvious translational
invariance it is invariant under independent scaling of each
variable €, 7, t

r F

E—>E=?tl§, 1}—}11=?|.2'n, t--}'l:=?i.3t,

i ! -1

B-a0 g, pIpeci p., (2.4)

where ,'&1, 212 and ?L3 are arbitrary parameters. The group of
transformations (2.4) includes  the rotations in (x, y),
(x, t) and (y, t) planes. Note that in the case o2 = - 1 the
variables £, n are complex conjugate to each other and
A= A

The system (2.3) is integrable with the use of the
linear system (2.2) rewritten in the characteristic
variables £ and 7. Combining equations (2.2) and performing

the gauge transformation

( 16 R | )
e e
¥V = . ]
16 16 s
2 2
. -e : e s

one can obtain the simplier and more convenient linear

system for equation (2.3), namely, the system

Sline (2.5a)

t ée ‘9,
L& = " n i =0 . (2.5b)
= ity TRy +l-p
FASE M g« L R

The Dper;ator‘ form of the compatibility condition for
the system (2.5), i.e. the operator form of the system (2.3)

is the following

fogm 2 PE €2 0 MR F T Sl (2.6)
e 11 - Pl
where
i ;
0O, -(6.. +06 )8 + -+0._-08
A=, Bt E S N (2.7)
E(B§+B ]'5t+_5n at, 0
L 5 B |
AZ = - E(Bg + en][ 1 D] . (2.8)

The linear system (2.5) is the basic tool for the study
of the 2DGSG equation (2.3).
Eliminating the variable p from the system (2.3}, one

obtains the following single equation for 6

) + mlfn,t}-ﬁn + mz{ﬁ.t}-e

tEm g ;.
n E
'l I " l . ; ) - o
.3 Bn'J-dn (8g-0,.), + 3 O Jag 0, '+0,), =0  (29)
where
1 3
miy . th== hm= p.,
1 2 g _NE
(2.10)
mz{&', ) == im0 p
17— -o
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Note that in the case o =-1 only constant m, and m_ are
admissible within the class of m (n, t) and m_(€, t) bounded

at the infinity.

So the solution of equation (2.9) with the fixed
functions ml{n, t) and mz(E, t) gives the solution of the
2DGSG equation (2.3) with the boundary values of p given
by (2.10). The properties of the 2DGSG equation essentially
depend on the boundaries m and m,.
(2.9) is the

In this

In the case ml = m2 = {

equation dispersiveless one with the linear

part et = 0. case equation (2.9) possesses the

En
symmetry group (2.4).

In the case M= 0 equation (2.9) has the solution
g = Blié, t) . where Eil is an arbitrary function,while in the
case m = O it has the solution 8 = Bz(n, t) ,where 92 i& an
arbitrary function. This is an obvious consequence of the
general structure of the 2DGSG equation.

An important case corresponds to the constant boundary
values m, and m,. The dispersion law for the corresponding
equation

e + mB + ma@e
N 2

t&n s §

(2.11)
M £

v Bie Los Ty 7

vz en-Jdn (9,°6,.), + O ng @' 0,), = 0 ,

]

i.e. equation (1.3) is

10

m m
u(p p } = .._..1_ B ._.._E'_
| et pl 1:12

(2.12)

Equation (2.11) is just the main subject of our paper.
We will refer to equation (2.11) as the 2DGSG-I equation in
the case o° = 1 and as the 2DGSG-II equation at b sl
(2.11) does not possess

Equation the full symmetry group

(2.4). At m, # 0, m, # O it possesses the scale invariance

’

g = f

AE

2 13)

Il
>
-

L S e 2

'

t ——t=2a 1,
where A is an arbitrary parameter. In the case m = 0, m, # 0

it is invariant under the transformation

!

E_)€=?t1€s

e o ?-.211 ; (2.14)

’

et R ?‘LIlt ,
where Pll and ?Lz are arbitrary parameters. At mli 0, m, = 0
it has the symmetry (2.14) with the exchange & <— 7. The
(2.4) —ELI1S) 12014)
of various types of the similarity solutions for equations
(2.3) and (2.11). '

scale symmetries imply the existence

Emphasize also that in the case o ¥ 0, m e O equation
(2.11) is not invariant under the rotations in (x, y) plane

while in the case m = O or m, = O it possesses such a symmet-

11



ry group which is the subgroup of transformations (2.14)
Wit A A = 1

1.3

The constant boundaries m, and m_ are the 2+l-dimen-
sional analog of the mass m (more preciesly, squared mass)
in the 1+l-dimensional sine-Gordon equatidn.lndeeci, in “‘ithe

1+1-dimensional limit Eig = Ein equation (2.11) looks like

g
Opg *+ (m, + M) 0+ eg-jdg 0 ﬂ-eg a0

=

Assuming that

Btg = F (@) , (2.16)

where F(8) is some function and F(@) = dF/d6, one gets from

(2.15)

F {0+ F(8) = F(8(£=-)) - (m+ m ). (2.17)

The particular solution of (2.17) is
F(8) = [ml - mz}-ms e ,

for which one has the sine-Gordon equation

Btg = - {ml + mz}-sm 2 B (2.18)

with the squared mass term m = -{m1+ mz).

So the system (1.3) for the class of solutions with the
asymptotic behaviour @ —2mnn (n is arbitrary integer) and
p ——}2(m1£§ - mzn} at :’;’2 + nz-va o .is an adequate 2+l-dimen-
sional analog of the sine-Gordon equation.

12

In the general case of the nontrivial boundaries
mI(E, t), mz['r.-, t) equation (2.9) is essentially distin-
guished from the cases discussed above. In particular, one
should modify the second auxiliary linear problem. This will
be done in section 5. The localized solutions of the 2DGSG
equation with the nontrivial boundaries will be constructed
in the part 11 of the paper.

Note also that the 2DGSG equation has different proper-
ties for o = 1 and o° = -1. In the first case & and n are
real variables. For real valued & and p the boundaries m
and m_ are arbitrary real. In the case o’= -1 one has n =€
where bar means the complex conjugation and the reality of 6
and p implies m, = ﬁ'll. In this case the linear system (2.5)

possesses ‘also the involution

u:Llcx =L1’ =l
(2.19)
R e W
: 5 2| : g : :
where « :[_1 0 The existence of this involution is an

important property of the 2DGSG equation with o ==1.

3. 8-3-DRESSING

So in the present paper we will study equation (2.11),
We, firstly, will derive this equation within the framework

of the d-dressing method. This method has been proposed by

13



Zakharov and Manakov [9] and then has been developed by
several authors (see e.g. [1f}-12]]. Simultaneously with the
construction of the integrable systems it allows to find a
wide classes of their exact solutions.

In the usual formulation a starting point of the
d-dressing method is the nonlocal d-problem for the matrix
valued function. In the present paper we will use the other

linear problem, namely, the mixed 8-8-problem

D, 5 AAD=(eRIAD=| [d, X 1, 3) ROLAAN, (3D
X
where d(A, A]def d;’:fl, and R are 2x2 matrix valued
functions and |
s .

—\ 0 axn/aa : 3;;2 /8A
I}li ¥ =g L o8X “— . 5 B e N

e 0 —_— 8x /6A , '8% /8A

d 21 2

The problem (3.1) is, in fact, equivalent to the standard

2x2 matrix 8-problem. Indeed, redefining the second column

by {2][}1 A)=x |:2}{}%,. A) and correspondingly the matrix R,

one can easily rewrite the system (3.1) as the wusual

d-problem for the matrix [xu EIZ]. We will use the mixed
X1 %22

5-8-problem (3.1) by the two reasons. First, in such a for-
mulation all the equations will be compatible with the invo-

lution (2.19) in the case u-2= -1. Second, we would like to

14

demonstrate that the linear problems different from the
standard 8-problem are also possible. Note also, that for

the off-diagonal matrix R = (g El] the problem (2.19) in the
2

terms of the columns xm and xtz} looks like

2 2l = I dA,2) R (1 X, 3)

dA c

2 3)

22?0, 1) = Jd[l %) R[a A A X
C
For the local r.h.s’s the system (3.3) has an obvious

similiarity with the spatial eiuxiliary linear problem (2.5)

at o*2= e
So we start with the E—B—pmblem (3.1). We assume that
the matrix ¥ has the canonical normalization X = o and
A—s ol 1

equation (3.1) has a unique solution. Let now the func-
tions 2 and R depend parametrically on the variables &, 7
and t. As usually for the dressing method we assume that the
dependence of R on &, m, t is covered by the linear equa-

tions, namely

ad R(l,i;l.iigsﬂnt} T o = J:
8 &

8 R(A,A;2,0:€,m,1)
an

=i'?t-cr+-R - i-l'R-ﬂ‘+, (3.4)

15



e mlf’?t’, 0] mlfh, 0

0,- m /A’ 0,- m /A
2 2

. - o0 1o
bdetilt e T TR

So
RIA s A A3 €., 1) =
_J' r ml mz
=expi[-?x-u~ -§+1-a~-n+[ o > -rr]ft]x
- + 4 - =
A A
(3.5)
! = - e G
X R {(A,A;A,A)exp i[?ﬁ.'ﬂ" £ - A0 -n—[—cr -— ]t]
e | = % et e

Then we introduce the ’’long’’ derivatives I)E, fD_n. iDt by

. ii‘x'a‘_ :

g

D = + Ay, (3.6)
n X X e,

m m

: 1 2
I)tx=xt+tx-[—cr+- u:—cr_] .

A A

According to the general d-dressing approach [9-12] we must

construct the operators £ of the form £ =} u_ (& m, tIX
X i)g-i'}:;-i'}i which obey the condition
= = 0. A
[i}l,l,.‘E]x 0 (3.7)

16

For such operators Elx obey the same problem (3.1) as x and

consequently
£x + PEnr=0. (3.8)

Equations (3.8) are just the linear system we are
interested in. The compatibility condition for the system
(3.8) is nothing but the integrable system.

It is not difficult to show that in our case one can

construct two operators which obey the condition (3.7). They

are
¥ =g D %o D
1 g =
(3.9)
Rl a‘_*fDE + ﬂ*+-ﬂn}'ﬂt + Q i}t .
where
. {0 ql] q.* —xun(h=0]/’x21[l=0] - —xlm{l=0]/xzz[l=,0},
A SRR & Y A e 7
2 q, leg[?t—(])/x“{h*{]] = xzzg(l—[)}/'xlzf?l—[}].
(3.10)
Consequently we have the two linear problems
{a*+-SDE: - cr_-I}n + P, .t =0,
(3.11)
([u*_'I)E = ¢+-i}n}-ﬁt +Q°'D, +Q x=0,

where P and Q are 2x2 matrices. The normalization

10
iy [D 1] guarantees that the diagonal - elements of the
A=—> o

matrices P and Q are equal to zero. Transiting to the matrix

® defined by

17



: : ml 1'1'12
p 9&f x-expi[— Ao £+ Xeo T+ [— o= —_"'_]t]'{a‘lm
: A A

one gets from (3.11) the system
(o -8, + u-_-an +P) & =

g
(3.13)

e <8, + u*+~3n] 31; + Q-ﬁt +Q) ¢ =

g

G UL

The specialization P =[—i/2 Bn’ OS] with the use of the com-

patibility condition for (3.13) give rise to

i 0 o~ 1 e
Q___-Z'"[g On]:Q“’T[ tna].

tg

Thus, we obtain the linear system which is nothing but
the system (2.5). The corresponding compatibility condition
is equivalent to the system (2.3} or (2.11). Note that in

the terms of the function

o

et x'e}{lji{-i'ﬂ‘_'g “*'.?L'”‘_,_'n] ’

the linear system (3.11) looks like

& 0) cofp s h :
[E ].4,_}_[ E]-ap:o, (3.14a)
2
8
n

2 1 i
atn+ 3 T.‘ (BE en]t+ m , —?eﬂat :f. /
i 2 | L
?agat, Bt&_ +—4—3g [95 Bn)t +
(3.14b)
: iml g .=t/2 8 o imz g ,=i/2 6 é:
rs A‘ n n '¢i{r+ i n n -@-E- = O g

-i/2 8 A (=172 65, @

g% e %

The dressing method allows us also to construct’' the

'

exact solutions of the system (2.11). For given matrix R (A,

r

A;: A, A) one should first solve the E—E-problem (3.1 or,

equivalently, the system of the linear integral equations

(1}[;& ?L) [ ]+I dE?L,?L] I d(?,‘” X }R (?L”l"hfi’) {zth.*:i#]’
A=A C

" MR sl

- A
C

where

5 i - m m
R =R (4 5 A, ?«}-e‘xm[a& e [ . 2] t] .
ek

= = = m, m,
B =R [ X h}fexpi[— ME - An - [— t— ]t]
2 20 : A ;l

Then, one can calculate the potential P by the formula

o >~

P =1i/2 lim [

O L]
A—> ®
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|"
where By é _?] , or, equivalently, by the formulae

\

= -t[[aa D[ [dwior (i AxE m 02, B

C C

12

(3.18)

P21=£de[h, h]J-J.d{u,u]Rziu,u; AL A &mt}-xﬂ(u,u) :
- C

where Rland Rz are given by (3.16).

For small P (in a suitable sence) ¥ ~ 1 and one has

m m
P =—iIJd(h,i)JJd(p.ﬂ)R (i, A, ) - expi [igmm[ B _2] t] :
12 10 T =
A
C C
(3.19)
= = L o Ty
p21=ijjd[h,h_)fjd(p,u)ﬁzﬂiu,u;?L,?t] -expi [-pﬁ—hn— [ K B ] t] :
E C H

The formulae (3.19) are in obvius agreement with the dis-

persion law (2.12)

Necessary conditions for the reduction

P e 429, ., P = 38 (3.20)
12 £ 21 M
also can obtained from the formulae (3.19). In the case
u-z e 1 this condition‘is of the form

R (4, i A, A) = iAR(u, g3 A, A),
' (3.21)
RZU{“’E; }Hi] o i&'ﬁ(—l.*i; -“r";‘l] '

20

where ﬁ(u, g; A, A) is some function. The reality condition

e né,— in particular, implies Im ml = Im mz = 0 and

ﬁ{,u,,t];?i,i] = R(=t,=p; -A,-2) . (3.22)

Pt - L
In the case o = -1,9 = £€ = z and the necessary condition

for the reduction (3.20) is

R-m{,u,;i; AA) = iACR(up AA)

(3.23)
Rzn[u,,ﬁ; AA) = D -R=A 2k =p,~u),
while for the real valued 8 one has m2 = rﬁl = m and
R, m;A,0) = R(=A,-A; =p,~p) . (3.24)

In all these formulae nothing is assumed about the
asymptotic behaviour of 6 at the infinity £€°+ 7° — . The
necessary condition for the boundness of © can be also
extracted from (3.19). It is equivalent to the condition of
the pure oscillating character of the exponents in (3.19).
So at r::r-2 = 1'one has |

R (K 15 2, A)

8(Im A)-&(Im p)ﬁlm,'a) ;
(3.25)

Il

Rzﬂ{u, i; A, A) = 8(Im A)+&(Im u]-ﬁz(u, A) L

Z1



For such R and R the d-and 8-problems (3.1) are reduced
to the nonlocal Rieman-Hilbert problems with the jump across

the real axis.

In rthe another case ¢ = -1 the condition of boundness
is
R (1, i A, &) = 800 - p)-R(A, X, .
(3.26)

RED[“’ gr A; A} = S(A - u]'RE{PL. A) s

In this case the problem (3.1) is reduced to the local mixed

d-ad-problem.

In conclusion of this section we note that in the case
2 ; :
¢ =-1 all the formulae presented above are obviously admit

the involution (2.19). In the terms of x it is of the form

=

Lo A el =R (3.27)

o x(A, Ao
So in this case the 2x2 matrix x is of the form
X %y

r il SRR R i (3.28)

xZI, xl.l

Similar representation is valid for the matrix 9.

4. EXACT SOLUTIONS
1. Solutions with functional parameters. A wide class
of the exact solutions corresponds, typically for the

dressing method, to the general degenerated Kkernels R1 and

22

R2 of the 8-8-problem. So, having in mind the conditions

(3.21) and (3.23), we put

N
Rm[u, i; A, A) = r,}\;l);lfn{u, u)-gn[ﬁl, g B

(4.1)
Rm{u, M; A, A) = L?v)jlfn[—l. —h}*gn(—p, -u) .
n:
The condition of the reality of @ gives at o’ =1
N - - N i %
):f‘n{.u, u]'gn(?t, A) = ):f‘n(—p, —u]-gn{—}\, -A) . (4.2)
n=l1 n=1
The condition (4.2) means that
f‘n(.u, p) = fn(-.u. i 2
b N (4.3)
g A, A) =g (-}, -2, (n=1.., N
for arbitrary N, or N = 2M and
f (p, p) =f  (-u -p),
(4.4)

g A X) =g (A A n=1.., M, (mod M) .
n n+M

For the 2DGSG-II equation (:‘rz=-l) the coundition (3.23) of
the reality @ gives

2



N N ’
Lf Guu)g AA) = Tf (-4,-2)-g (-u,-p) .

n=1 =1

The condition (4.5) means that

g (A, A) = f(h SR R L )

for arbitrary N, or N = 2M and

g (A, A) = f (A, -A) ,n=1,..., M (mod M).

n+

So the kernels le} and Rzu are of the fcrr‘m.

N
R (1, M A A) =iAYNF (u, w-f (-a, -X),
n=1 e =
- — N —_
RZD{H’ M; A, A) = QA ;lfn[— » =A)ef (u, p)
for an arbitrary N, or
N = _2M
Rm{,u, M; A, A) =AY fn(,u, i) meE*?t. -A],
n=1
Rm(u, B A, A) = QA Y} fn(-?l, -PL}'f‘mM(u, T s
n=1
where f ot
n+2M n

To calculate ©, using the formula (3.18) or,

lently, thé formula

24

(4.5)

(4.6)

4.7)

(4.8)

equiva-

* z”dm, i]”d(u. m exps[ig + um + [ ]:1 + ? ]t] X

b C (4.10)
N

X A Df (, w-g (A, A)-x (1, p)

n=1

one should find x“(p.. ). From the system (3.15) one has

x (A, X) =1+ ” 4, 3) ”d{:-: %) Rz[l:. X8 Rw

l - A
(4.11)
R " R N _n
” d(““}ﬁdiu ul RGe, psp ) x,n,pmd.
po- A _
m .
Multiplying equation (4.11) by expi[hn + Tt]'fm(?" A,
integrating over A and taking into account (4.1), we obtain
the system
N :
Fm = Ym - ;(A-B)mk}'—k e Lo oo, (4.12)
where
def o o - -
F {g n,t)°= J- d[h,h)expi(hmTt}-fk{l.?t)'xufl.liﬁ,mt}.
(4.13)
m

Y (n t)dEfI d(x,1) expi(An + l—‘tl-fkm,i}, (m=l,...,N),

and the matrix elements of the matrices A and B are
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A (n,t) agf J-J-d[}t, i]ffd{p. 1) < ARG
C C Sl
l'f["l1 Im 2
X exp i(An - un + Tt - vﬁlt}*fm[h, l}-fn(-u, -u)
(4.14)
B (£, °¢f Ifd(h, i)”dm, patt
e C a
X exp i(-A€ + p€ - —2t + —Zt)g (-A,-X)-2 (u, j)
: A M 2ot

Solving the algebraic system (4.12) and substituting

the results into (4.10), one gets

N
6 = 2:L X (€ t):(1-AB) Y (n, 1) , (4.15)
n,m=1
where
def = = o =
Xn{&',t] = jjd{h,?t} exp i(A€E + —~:E t)-g (A, A). (4.16)
Pl,_ n

From (4.13), (4.14) and (4.16) it is not difficult to
see that the matrices Amn and B can be expressed in the
mn

terms of the quantities Xn[ﬁ, t) and Y (n, t) by the compact
In

formulae
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mn
A = ifdn"f(n',tl-v (0’ ,1)
nm n mT)
(4.17)
£

B - inf;‘ XHE X e,

Integration in these expressions is performed over suitable
contour,

Note that the functions X and Yn are arbitrary
n

solutions of the linear Klein-Gordon equations

Xep *+mX =0, (4.18a)

and

Y st : A T : (4.18b)
7t 1

Similar formulae can be obtained also for Bn.

So for arbitrary functions f_n and g we have the solu-
tions (4.15) which depend on the several functional

parameters.
The reality conditions (4.3), (4.4) and (4.6), (4.7)
: 2
imply at ¢ = 1:
Xi&E e XA t), Y.nth=Y (9 %)y (4.19)
n n n n
and at u‘z =-1:
Yiz; 68 =X {1z, &),
n n

where z = x + iy, z = X - iy
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The simplest solution (N=1) of this type for the
2DGSG~-I equation is of the form:

X(g,t)Y(n,t)

8 = 4 arctg 5 ; (4.20)

where X(£, t) = X(£, t) and Y(n, t) = Y(n, t). In particu-

lar, choosing

m_
2
a

m
1

t—&u],Y=sin[bn+ bt—nﬂ],

X = cos [a& +

where a and b are arbitrary constants, one gets the periodic

solution

1 mz mI
6 = 4-arctg[2—cus[a§ 4 _E"t —Eu]-sin[bn + —bt - nn]] .

The simplest solution (N=1) with functional parameters for
the 2DGSG~-II equation (%= -1) is of the form:

1X(z,1)12

— (4.21)

8 = 4-arctg

where z = X + Ly.

2. Plane solitons (plane kinks). Plane solitons of the
2DGSG equation are the very special case of the solutions
with functional parameters considered above. They correspond
to the choice of the functions fn and g as the Dirac delta

functions

f AR = C -3(a =),
n n n

s (4.22)
gniu,m = Cn-ﬁiu = unl ;
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2

with the constraints (4.3) [0‘2=1} and (4.6) (o‘z=-1].

E . . z &
Let us consider first the case ¢ =1. The constraint

(4.3) means

L]

& =), € =C .
n n n n
5= (4.23)
=-p ,E =C,0=1.N,
et hn = ipn, B Im p = Im q = 0 and
m, m,
Xn = Cn-exp[pn&i T 1:], Yn = Cn-exp[qnn g : 1:}. (4.24)

n

The general N-plane soliton solution of the 2DGSG-I

equation is of the form

: -1
e&: = 2} xngig, t)-(1 AB]nm Ym(n, % g (4.25)
n,m
where
iq
A = +m Y '[T.': t]'Ym{“t t]' ¥
nm qn qm n
(4.26)
ipm :
D D K AS A KD
n m
The simplest plane soliton looks like
(&, m, t) = 4-arctg izy—- =
(4.27)

L d

= 4+arct C-C -exp pg + q-n e E...‘t = -m_zt]]
o o q p 7
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Note that 8 —— 2 w at p§ + qn —— ® and 6 — 0 at pg +

+ qn —— - . At N=2 one has the two-soliton solution
XY +XY
34 <3
(g, qz}(pl— P,
B rrE R R s
_ 1 S 2

e(g,n,t) = 4-arctg

2

The general solution (4.25) describes an elastic scattering

of N plane.solitons (4.27).

In the case o> =-1 the reality condition (4.6) gives

u =_?tn'

n

n n
and
X (z,t) = Y (z,t) = C -expi(-Az - 1) .
n n n n in

(4.28)

(4.29)

(4.30)

The simplest plane soliton (N=1) of the 2DGSG-II equat'ion is

= 2
S{Z, E, t] = 4'al‘ctg !X(Ei t}F =

2

I

@

I-expi[hz—iﬁ-b Tt—» &

= 4 arctg

> 131

2

The general N-plane soliton solution has the form

- = =1 ———
6; = 2-F X -(z, (1 + D-DB) _ X {z;1]

n,m
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(4.31)

(4.32)

where
X X
D n n

nm A+ A
n m

m

At N=2 we have the solution

(|x1|2+ |x2131/ 2
8 = 4-arctg 5 = (4.33)
A= 1 X%
1 2 :

1 -

B

I,'»\L1+?12
where Xn are given by the formula (4.30).

3. Breathers. The solutions of the 2DGSG equation which
are the 2+l-dimensional analogs of the well-known breathers
of the I+l-dimensional sine-Gordon equation correspond to
the delta-functional fn and g which obey the conditions
(4.4) (¢ = 1) and (4.7) (¢2=-1).

Namely, for o’ = 1

M
Rm(u,u;h,h}l = ll*Z{Cnﬁfufunlail—ln] +

n=1
+ cna[p. + un}a{a + Pln}] ,

(4.34)

M
Rm[u,u; AA) = ALY [Cna{h+un16(u+hn} +.

n=1
+ Cna[a—unla(u—hn}J
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and for u*z =-1:

M
Rm(p,p; AA) = ih-zl[cnﬁ{p ~ un]-:‘i[h + ?Ln] +
n=

-

+Ca(p-2)3+p)),

(4.35)

M
Rzu{“’“; ALA) = m-}j{cn-a (A + pn)'ﬁtp - }\n} +

n=1
+ C8A + A )-8p-p)).
n n n
The simplest breather of the 2DGS5-1 equation looks like

(N=1)
f
|ICl+e +cos ¢

e(&,m,t) = 4-arctg A (4.36)
2 2f
IC|"A_u_e
I R' R
4lIuI
where
v e
m A m
I
f{f;',n,t}=?t1~‘;'—u1n- 2;t+ 12':,
| A | i
m_A m g
PEMY =AE+pn+t ——t+ ——t+35,
| A| el

lflR+LhI.u=pR+LpI.
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The simplest breather of the 2DGSG-II equation is (N = 1):

lCI-e-f-cos )

8(z,z,t) = 4-arctg I?t—-uIZICIze_Zf ; (4.37)
1 +
4|a+p]?
where
A
f‘=lm[}\z-EE . m?‘zt- B t) ,
| A | | p

5. INITIAL VALUE PROBLEM FOR THE 2DGSG-1 EQUATION

1. Now we will study the initial value problem for the
2DGSG equatfon (2.11) for the class of solutions which tend
rapidly enough to the asymptotic value 2nn.

Our task is essentially simplified due to the existence
of the solution of the similar problem for the Davey-Ste-
wartson (DS) equation [13 - 16]. Indeed the first auxiliary

linear problem

L
B it
ler-E[? - §]¢=0 (5.1)
il U
2 N n
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L3

is nothing but the reduction q = -%Bg, r = -—é-ﬁn
well studied spectral problem for the DS equation [13 = 16].

of the

The only difference is that here we will consider the

solutions of the system (5.1) of the form

(2]

el?m S8
—iAE 2

d = x(A, A)-
g e

where y ——> 1 at A —— . The presence of A in (5.2)
will be reflected in the substitution A —— A in all
formulae derived in [13-15] in the quantities which act on
the second column.

We start with the 2DGSG-I equation (° 1). In the

terms of the first column x[” and second column xle of x

the linear problem (5.1) looks like

ad 0 ; 0 e
& xm N i?q.*{'.!‘_“;lj“} % _g £ I{U:O : (5.3)
£ Bl 2] Q
N Ui
and
a O 0O e
2) = i S
g x{ - m'ﬂ‘_'_'x{z} il S x{m = 0 (5.4)
SRR e O
n n

The Green function G'!’ for equation (5.3) which is
bounded and analytic except the real axis has been found in
[13~15]. Similarly ‘one can construct the bounded and

(2)

anti-analytic except the real axis Green function G for

equation (5.4).
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These Green f unctions allow us to construct, in a
manner completely similar to that of Refs. [13 - 15], the
solutions of the problems (5.3) and (5.4) which are
analytic (for (5.3)) and anti-analytic (for (5.4)) and

have the jumps across the real axis given by

-ilE-iA 2)+
£-tan ¢

N £ B Idl TO\1) e (1,

R

(5.5]
x{ZH(A] 5 x{z}—m = Jdl Sm,l]-e“mmg-x{”'(ll :
R
where x't[l) def x(A % i0) and
§o TR L J'dg gt 8 by e
4 4n S b :
2
5 (5.6)
Eil’l}+il£ '

def 1 ok 1% i
T(a,1) %2 W”ds dn(= 50 )+xt ()
RZ :

So we have the nonlocal Riemann-Hilbert problems. Their

solutions are given by the well-known formulae [13-15]. For

instance

+
Ay o [ é ] +Udl T(, 1}-e“"1’5"?‘"-x‘2’*(1l] :
R

(5.7)

y ” +
x(z)im] - [ ?] s [J.dl S(A, 1}_Elh§+tln_x(1]~{”] ’
R
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where

1 da f(A )
oW ke, i)
The corresponding reconstruction formulae are of the

form [13-14]

e < (5.8)

i inHAE -
R z ”da dl S(L1)-e X, (),
Rz
(5.9)
gy iy
6, = = deh dl T\, 1) e A
2

R

Note that the nonlocal Riemann-Hilbert problem are in comp-
lete agreement with the corresponding problem in the case

(3.25).

’ i i '

The red M == = impli i
eduction q > BE' r 5 81’1 implies certain
constraint in the inverse problem data S and T. Considering

the small 6, one gets from (5.9) that

S(A, ) = A-S(A, 1),

(5.10)
Tix, 1) = X8 =x) .
and
o= -%Hda ai 80,0+ MRy (5.11)
R? |

The condition of the reality of © also implies
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S(A,1) = S(-a, -1) . (5.12)
Equations (5.7) to ~*»~r with the reconstruction formula
{5..111) are the invers. problem equations for the Ilinear
problem (5.1).

2. To solve the initial value problem for the 2DGSG-I
equation one have to find the time evolution of the inverse
problem data. To do this, typical for the IST method step,
one should use the second apxiliar‘y equation Lzm = 0. In our
case this step 1is not trivial since, first, we need to
consider the nonzero boundaries (2.10) and, second, the
operator representation of the compatibility condition is
the quartet operator equation (2.6).

In the presence of the nontrivial boundaries one should
modify the second auxiliary equation similar to the DS and
Ishimori equations cases [17 - 19]. Indeed, the solution
& (5.2) .of + the problem ~{(5.1) /with the - asymptotic
Ei}’m ’ 9
RlEY s e-i.h?;' :
the linear equation thb = 0 with L2 given by (2.5.b).

- S, : i :
@—H[ ] at & +n —w obviously is not a solution of

Let the modified second auxiliary linear problem is of

the form

L ¢=(L_+ A =20, (5.13)
2M 2

where the operator A should be found. From operator equati-

on (2.6) it follows that
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(L - A)A@=0, (5.14)
l.e.
i
P b
‘E il R (5.15)
D ar g
£ n

So A-® obeys the linear system of the same type as &
but with the different potential. Using the ' idea of the
Darboux or gauge transformation (see e.g. [20, 21]), one can

show that the solution of the system

i
B aap
& e “] V=0, (5.16)

can be expressed via the solution & of the system (5.1) as

i

s 0
V = [ag Ko sl enl[ it ]] ¢ . (5.17)

Then wusing (5.13) and taking into account the asymptotic
behaviour of*$ at Ez +

behaviour of A-&:

A ——

| —ml(n,t] -eihn g A3 :
£ s o | O e e

; Hmz(E,t}*e

Comparing now the integral equations for & and A-® which

correspond to the systems (5.1) and (5.15), we obtain
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—— o, one finds the asymptotic

"

2 i 01
A-®(A) = [BE + 3_,? s -E—[IEJE * B'ﬂ)[ 1 0 ]] X

(5.19)
m [h It m {i—T,t} 5
[ dl (2-0 )(1) + J-dl — [!Ii-t;r_}(l)] ,
1
where
& e [ (A-1)
m e Tt %;[_Jdn di (o thee )
R
-EQ-1) (5.20)

S P S L L e o jgm[g t)-e
2
E

Thus the 2DGSG equation with the nontrivial boundaries

is e.quivalent to the compatibility condition for the system

of equation (5.1) and equation

et i
—3 (8.6), , - =8 -8
i atm+mliw,ft]+_f_1 n{&'nt i e
s i 5 p2 [gt)+_~1u 16,6 )
S e G g W @ £t
i 1
(A-1,1) m_(A-1,1)

-[qs-.r_)m].

Udl (¢ o, 1) + fdl :

Substituting now the formulae (5.5) into (5.21), we ob-
(2) _(2) ~iA
tain from the equation for the second column ¥ "=y -e §

at £ — - « the following

39



(8% '4'm (n, ©)(lim ¥_(a, 1) +

in £ 1 m
(5.22)
q-Lm (A - 1,t)-8 (llm \F {l,t]] =0
1 {j—u} - m
Since [18]
lim ¥_(€,mA,t) = J‘dl e LB ) (5.23)

§— - ! R

one obtains from (5.22)

the following equation for the

inverse problem data

a
WS()‘ I, t) =

J.dp m [,u, t)-S(A, 1-p, t) +
v |

J‘du Exztu, t)«S=, I, 1) .

R :
In the terms of the Fourier transform S(£, n, t):

- (5.24)
vnm A

s, v v 2" [[ar a1 80, 1, 1RSI

RZ

of the data S(A, 1, t) equation (5.24) looks like

S + mlin, t)-Sn

t€n tm L, s -0 . (5.25)

Note that equation (5.25) is nothing but the linear part of
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e

the 2DGSG equation with nontrivial boundaries. For small

potential this coincidence is the trivial consequence of the

formula (5.11).

Equation (5.25) for given boundaries mlin, t) and

mz[f;', t) can be solved by separation of variables. Using the

corresponding solutions one can construct the localized

solutions of the 2DGSG-I equation with nontrivial bounda-

.-ries. This problem will be considered in the part II of the

paper.
For the constant boundaries mland mzone has
r?llm-n = imax - 1),
(5.26)
m (A-1) = -i-m 8 - 1) .

So for the 2DGSG-lI equation (2.11) the second modified

auxiliary linear problem is

2 | e L
i TRt s
o = atﬂ+m1+4an[eéen]t’ 27?t]¢+
et IR i 2 1.-1
v 0.0, 0 f8n U 20 0 5

Hn fA O

ol
D,—imz/}.

and the time evolution of S(A, 1, t) is defined by the

=0, (5.27)

equation
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m m

Dok It i,{l—l + —i)-ﬁm, L t)=0.

Thus for the constant boundaries rn1 and m2 one has

-ilm /1 + m /A)t
1 2 3

L]

S, 1, t) = S, 1, 0)-e (5.29)

The time evolution law (5.29) of the inverse problem
data the formula (5.6) and the inverse problem equations
(5.7) and (5.11) allow us to solve the initial value problem
for the 2DGSG-I equation by the standard IST scheme

8(&, m, 0)—S(a, 1, 0)—S(A, 1, t)}—8(E, M, t). (5.30)

These formulae allow us also to construct the exact
solutions of the 2DGSG-I equation with functional parameters
which correspond to the degenerated data S(A, 1, t). These
solutions are the particular cases of those with funétinnai
parameters constructed in section 4 .
linear

Note one Comparing ~ the

problems (3.14b) and (5.27) it is not difficult

interesting fact.
auxiliary
to show that they can be transformed to each other wi;;h the
use of the first problem (5.1). So the linear
(3.14) at ¢° =1

method is equivalent. to the modified linear system (5.1),

auxiliary

system constructed by the 8-8 - dressing

(5.27) for the 2DGSG-I equation with the constant bounda-

ries.
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]

=X

instead - -of  (5.2) the

Note also that considering

solutions of (5.1) defined in the usual manner [13, 14]

oux(® 2]
0 E-—mg

one will obtain the same results as above.

6. INITIAL VALUE PROBLEM FOR THE 2DGSG-II EQUATION

The 2DGSG-I1 equation with the constant boundaries has

the form
B 5 e el e e B
Ted x Z " ek Al S A A
(6.1)
1
=5 B
$ ol 52 {Bzez]t
where z= x+ iy , z= x - iy and
- fie z%)
(3 f def‘ ‘[J 1 f( ;
z
(6.2)
% e F ‘rf f(z* ‘Ex
(3=1£)(2.2) def “‘ dizt 2" 1 ¥z ) +
% C ol o
Note that equation (6.1) does not possesses the scale

invariance of the typé (2.13) and (2.14).

The auxiliary linear system for equation (6.1) is
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-, - —6-)
L& = zi =0, (6.2a)
il ol U L
af +ma %a:’{e =), O
R Z Z Z £ d +
o 2 = 1 =3
o ati - m+TB (BzBE]t
(6.2b)
im/A , O
+[az+65——%{92+95][?é]]-¢- b=
0 ,-im/A

The linear system (6.2) for real @ possesses the involution

e g

o b0 L= ot 12)

The linear system (6.2a) is the special reduction of
the wellstudied spectral problem for the DS-II equation
[13-16]. In contrast to [13-16] we will consider the
solutions of (6.2) of the type

¢ = - (6.4)

0, e—thz

where y—>1 at A—— w. The function y obeys the equation
[35’ 0] s %[32][0-3,951- ..2';[0 BE] x =0 ,(6.5)
0., az Bz 0

and possesses the involution
44

-1 ity £ S

(L i 4 =

B =y
i 21] : (8:6)

x
-
o
>
I
,l—l—lll-l-b‘
=
=

21 11

The derivation of the part of the inverse problem
equations for (6.5) is similar to those for the DS-II
equation. By this reason we will omit the most part of
intermediate calculations. The bounded Green function for

equation (6.5) is

=1
G = E?x D El : (6.7)
where i
pl def [aé {:‘11] |
0.4
-
and operator E}i acts as follows
R o T
(E, *B)(z) S = : (6.8)
ARG By )
21 22
The Green function (6.7) is neither analytic = nor

anti-analytic in the whole complex plane. So the solutions

y of the integral equation
wz.ZzAA) = 1 = (G(+, A, A)PC)xl+, A, Az, 2), (6.9)

which corresponds to equation (6.5) are nonanalytic and
non-anti-analytic in the whole complex plane. In addition
the homogeneous equation (6.9) may have nontrivial solu-

tions. So a solution y of equation (6.5) is of the form
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~ ©1%

¢ G I g Eﬁ ‘s (6.10)
i i

where it is assumed that the solution y of (6.5) have only

simple poles and cl are some constants which are connected

with normalization of X,

Using the symmetry property of the Green function

(G(+; 2, i]f{*}zl{'}][z, z) =
(6.11)
= (G(-; A, M)z, E}-E?L{z, 3
where |

S i Ei?&z + IAZ

L, = : (6.12)
h - !__
-iAZ -iAZ
£ =4

one can show that the nonsingular part E obeys the following

3-8 - equafion

R
T e as/6a , 0
I)?L i'x{z,z;h,h} " S
j 0 ,8/8A
(6.13)
. O: }\-F(l,i]-emz + Az
e iAZ - iAz ’

AF(A,A) e -0

-, -iAz -iAZ " .
e BZIZ.Z,tJ xzztz,z,h.t).

(6.14)
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Note that the é-a-prublem obviously possesses the involution
(6.6). To find the structure of the singular part x{S} of x
one should take into account the fact each column xts} may
have its own set of poles, involution (6.6) and the symmetry

(6.11). The involution (6.6) implies that

(S) (S)

(s) xlli : lei
o (S) (s)

211 xlli

. (6.15)

: : : (S)
while the symmetry (6.11) implies that together with %,

the matrix a-x:S}{z,E]-Zh where a is an arbitrary constant,

.is the solution of the homogeneous integral equation (6.9)

too .
= (
It is not difficult to show that the nontrivial xg}
which obeys the involution (6.15) correspond to the choice
a = 0. So we have
N o) .8 g O omily
I{S}=}: ;\1 Pl o 7o U w ¥ _1“ g 21| (6.16)
' = =1 A - A £y

Note that for the DS-II equation such a structure of the

pole terms has been proposed in [16].

So the full 3-8 - problem for the problem (6.5) is of

the form

0, A-F(A,A)e

-{AZ - iAZ

iXZ + iAZ
+
A-F(A,A)-€ 0

(6.17)
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& X 9
+ }:ciné[l - ?Li)- e +
i=1 211 i

Elnata = X3 =

: 8 X1

™~ =

Emphasize that the matrix problem ( 6.17) consists from the

usual 5—prub1em for the first column {in] and from the
21

8-problem for the second column [xlz] which is complex
2z’
conjugation of the first 3-problem. So one can restricted by

the consideration only of the equation for the first column
() X ;

o g 5 Sl L
5 [x }

21
(1) - N
8 _.(l,h) - T a0 ?‘i}'xiu i
dA i=1
(6.18)
A FAR) e M T 200000
iA
; (1) (1) Fookl o ;
where we normalize ¥  as —\—[ ], i.e.c= iA.
i i 5 1 i
1z| o
The generalized Cauchy formula gives
x(l,l}—[o]i-z +
1=1 * S li
(6.19)
+J d{P:,?L ) x *FOLA }_e—l}\.z - iA zm_,.;t:4[1}{}‘“;;t i

= A - A

Equation (6.19) is the part of the inverse problem

equations. To derive the rest of such equations one should
48

proceed in equation (6.19) to the limit A — }lk to obtain

the system of equations for x:n.

To do this we must calcu-
late the limit

(1)

LA X
lim [x"” - A, ] : (6.20)
A2 A -

Completely similar to the DS equation case [14] one can show

that the quantity

iA ¥
lim [xm - —-—1#—] - hiz-xm ; (6.21)
h-—-—}?«i A - PLI

also is the solution of the homogeneous equation (6.9)
provided the certain constraints on 6 and xi”. Therefore
the expression (5.21) is the linear superposition of the
two independent solutions of the homogeneous equation (5.9),
e, :
2=t (1)

: e )

lim s - ?Liz-x =
A—> A A - ?'i

(6.22)

(1) (1)
=TA R Rty
i | i i

where v, and Hoare some constants. Note that the
observation that the lLh.s. of the relation of the type
(6.22) should be the superposition of the two independent
solutions has been made for the first time in [16] for the

DS-II equation.
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Now, proceeding to the limit A — hk in equation (6.19)

and taking into account the identity (6.22), we obtain

(1) (1) ~IX 2 ~iX 2
AZ + ' + "y . =
( K a'k} g TR AL oS .

(6.23)

. (1)
N o tNX g : v

1 - d(u, ~ iz -
=[D]+E J J +JJ_M“.F[“,“].E LUz mz-oc*;g“}[p,p],
j*k lj - ?Lk

b b SN

At ’last, the reconstruction formula for the potential 8 is

given by
82 = 2Hm }l-xm] =
A ——> 0
(6.24)
i — - —ipz-ipz =
= zlglhkxm = J.J‘d(u,mu-i’(u,ul-e X, (mp)

C
The formulae (6.19), (6.23) and (6.24) form the comple-
te set of the inverse prnb}em equations for the linear prob-
lem (6.5). The quantities {F(A, A), Ap ¥p M, (i=L...,N))
are the inverse problem data.
Now one should find the time evolution of the inverse
problem data. Substituting (6.18) and (6.22) into (6.2b) and

considering the limit |z|— ®, one obtains

-—51% = - i(m/A + m/A) ,
dhi dgl
dt =0 - T =0 s {6.25]
S0

= il m/A + r?l/ii) i fhim- . o NY L

So
PSR R e VA mAAR

*a'i(t} = ?ri{D} : ' (6.26)

_r e o t ..
u(t) = 1 (0)-e Hmas +m/at oy Ny
1 .
The inverse problem equations (6.19), (6.23), (6.24) and ti-
me evolution (6.26) reduce the solution of the initial value

problem for the 2DGSG-II equation to the standard set (5.30)

of the linear problems.

As usual, for the pure discrete data (F(A, A) = 0) the
inverse problem equations are reduced to the system of the
linear algebraic equations and can be solved explicitly. The
corresponding solutions with the real valued € are not

found.
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