UHCTUTYT SIEPHOM ®U3UKH CO AH CCCP

Giulio Casati, Italo Guarneri, Felix Izrailev,
Shmuel Fishman, Luca Molinari

SCALING OF INFORMATION LENGTH
IN 1D TIGHT BINDING MODELS

PREPRINT 91-100

==

HOBOCHUBHUPCK




Scaling of Information Length
in 1D Tight Binding models

Giulio Casati® ¢, Italo Guarneri® ¥, Feliz Izvailev™ ® °,

Shmuel Fishman® and Luca Molinari®®

@ Dipartimento di Fisica dell’ Universita’ di Milano, 20133 Milano, Italy.

® Dipartimento di Fisica Nucleare e Teorica dell’Universita’ di Pavia, 27100 Pavia,
: Italy.

¢ Institute of Nuclear Physics, 630090 Novosibirsk, USSR.
¢ Department of Physics, Technion—_l_sra,el Inst. of Technology, Haifa 32000, Israel.
¢ Istituto Nazionale &i Fisica Nucleare, Sezione di Milano.

! Istituto Nazionale di Fisica Nucleare, Sezione di Pavia.

Institute of Nuclear Physics
630090, Novosibirsk 90, USSR

ABSTRACT

The localization of eigenfunctions in finite samples of the 1d
Anderson and Lloyd models is quantitatively described by the
information length. This quantity is numerically investigated for both
hmd-_-als and it is found to scale with the size of the sample and the
disorder according to a simple law.

" © Hucmumym gdeproii gusuxy CO AH CCCP

§1 Introduction.

The dynamical phenomenon of localization, common to many models of
quantum chaos, has often been compared with that of Anderson localization,
occurring in disordered crystals [1]. The diffusive absorption of energy that
follows the appearance of chaos in periodically perturbed nonlinear classical
systems is strongly limited and may even be suppressed by quantization.
The “kicked rotator” has been a prototype for this phenomenon and in that -
case a formal connection with models of the Anderson type has been found
[2]. In both cases one has to deal with eigenfunctions — of the hamiltonian
in the Anderson case, of a Floquet operator in the dynamical case — that
are to some extent localized inside a finite “sample” of a fixed size. These
eigenfunctions have a random aspect and their statistical properties may
be described in the language of multifractals [3]. How do various statistics
related to such eigenfunctions scale with the size of the sample and with the
disorder is also a common problem in the two cases. In the dynamical case
this issue has been investigated by analyzing the behaviour of the so called
“entropic localization length” of eigenfunctions [4, 5], which was indeed found
to obey a scaling law. The band structure of the relevant Floquet matrix and
the high degree of randomness of the matrix elements then suggested that
such a scaling could be more generally a property of band random matrices,
which indeed showed true [6].

In the case of the Anderson model the scaling properties are not usually
referred to the entropic length but to the inverse Lyapunov exponent, which
can be efficiently computed by means of the transfer matrix method and
which is moreover directly related to the residual conductance via the




Landauer formula [7]. Therefore, a direct comparison of these different scaling
laws is not possible. On the other hand, the entropic length (and, possibly,
other generalized lengths, like the inverse participation ratio) appear to be
much more convenient when a very large number of sites are coupled by
_the interaction. This is typical in the semiclassical regime of models that

are endowed with a well-defined classical limit and in such cases a transfer

matrix approach is impossible. In order to compare the scaling properties of
dynamical localization and of band random matrices to those of Anderson
localization, one has therefore to reformulate the latier-in terms of entropic
or related lengths. '

In this paper we mvestlgate the scaling properties of the entropic length
for the Anderson and for the Lloyd model. Our numerical results yield
evidence that these models exhibit a similar scaling law. Though it is not
clear how this scaling law may be possibly related with the scaling theory
of conductance, it has the important property of taking the same form in
both cases, as soon as a proper choice of variables is made. This raises the
interesting question, whether the same scaling law can be found in different
models of localization.

_§.2 The tight binding Hamiltonian

The tight binding models we investigate are characterized by Hamiltonians
with a tridiagonal s:,rmmetnc structure and random dlaganal entries. The

eigenvalue equation is
[Hﬂ)n = Unp1+ Vatn + Un-1 = Fug (1)

S
The boundary condition are up = uy4+1 = 0 and the potential {V.} is a set
of N independent random variables, with the same probability distribution
P(V).
We shall consider the two important cases of the Anderson and Lloyd
models, with probabilities given respectively by:

v 1/W for —W/2<V <W/2 9
PW(V) 7 { 0 elsewhere 2)
1 W - '
Pw(V)=—s5—gm (W2 0) (3)
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Other models which have largely been studied in this context are characterized
by a non-random potential, specified by a periodic function whose period is
incommensurate with the lattice spacing. Two examples are Harper’s (or
Mathieu) equation [8] and the “Maryland model” [9].

It is mathematically proven that the above random models in the large
N limit display exponentially localized eigenfunctions, no matier how small
is the disorder; the rate of decay is measured by the Lyapounov exponent
which may be evaluated by Thouless’ formula [10] or by the transfer matrix
method [11]. The latter is a convenient method for translating the recurrence
relation for the eigenfunction into a multiplicative procedure

unH [H E~Y; -1)] (HD) (4')

Since ug = 0, with u; = 1 this is precisely the recurrency property for
the determinants of the Jacobi submatrices of H, and therefore: uy.,.; =
= Det(F — H); which shows that the eigenvalues are determined by the
boundary condition uxy; = 0. Although v for a finite N depends on the
realization of the disorder, in the limit N — oo it converges to a non-random
value, the inverse of which is known as the localization lengih €. In the
Anderson case, the dependence of the localization length on energy is rather
complicated. For small disorder (small W) it has been evaluated in [12, 13]
for different energy ranges. For example, at F=1 it was found:

21 = (W2/12)[1 — (2/3)W2/3 + (1/60)W? +...] (5a)
In the opposite case of large disorder (£ < W) the behaviour is

¢ = log(W/2) -1 (59)

For the intermediate range one has to compute numerically the rate of
exponential growth of vectors under repeated application of the transfer
matrices for very long samples.

As for the Lloyd model, the Lyapunov exponent can be found analytically
in the limit N — ooz

fr:Armsh.(;i—s/(2+E)3+Wﬁ+%¢(2—E)2+W2) (6) .

The scaling theory for the metal-insulator transition has received an elegant
formulation in the formalism of tight-binding models, where it relates the




inverse Lyapunov exponent £y for finite samples of size N to the localization
ratio %.“-;ﬁr The scaling assumption is [7] '

EN ém
o) (7
where f(z) is a scaling function. The form of this function is very important,
because it is directly related to the behaviour of the conductance as a function
of the sample size [7]. : '
In this paper we characterize the structure of eigenfunctions by means
of a different parameter: the information, or entropic localization length [4],
which is defined in terms of the Shannon entropy, as follows. The Shannon
entropy of a normalized state (u1, uz, ..., uy) is: :

w .
H[ul,...,uN]_—.—Zufloguf - (8)
tr=d

In our study we consider ensembles of states specified by the value of the
energy E and by different realizations of the random potential. For such
ensembles, we define the average normalized information length:

B(E, N, W) = 'EIPIF — Hpet] (9)

where H is the entropy of the state of energy F, averaged over disorder, and
H,.; is a normalization entropy computed as the average entropy in some
reference ensemble.

The great advantage of this definition is the applicability in both the
situations of extended or localized states; moreover, it has been shown to
correspond to the common intuition of the fraction of unperturbed states
which, on the average, are significantly populated by eigenstates with the
given energy [7, 14, 15]. '

In our case, we choose as reference ensemble, which by definition will have

B = 1, that which corresponds to maximally delocalized states. These are
obtained in the limit of vanishing disorder and have the form of plane waves.
The eigenvalues are E*) = 2cos(kn/(N+1)), k = 1... N with eigenfunctions

2 ke
(k) — 1 —1 0
Uy, N+151n(nﬁ+l), m=d.N (10)

These eigenfunctions represent the limit situation of infinite localization ratio;
no randomness survives in them. Their entropy for large N has the same value
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Fig. 1. Numerically computed localization length £, vs. disorder

for the Anderson model for E=1. The dashed lines represent

_respectively the theoretical limits at low disorder (eq. 5a) and high

disorder (eq. 5b). The experimental line is obtained by averaging over

disorder and for 2 sample of length 2 - 10° for In(W) < —2 (where
fluctuations are larger) and length 10° for In(W) > —2.

irrespectively of the label k of the eigenvalue: H,, § = log(2N)—1. This is an
important point of difference from the case of band random matrices, where
the maximally extended states are completely random ones. In that case, the -
reference ensemble is the microcanonical ensemble and the reference entropy
has to be computed accordingly (Iz).

§3 Numerical Results

The numerical work reported here was aimed at investigating how does
the information length (9) scale with the disorder and with the sample
size. The scaling law (7) suggests that B(N, E, W) (which for any given
N, E, W yields a measure of the spread of the eigenvectors) may be
essentially determined by the sample size N and by the localization ratio
fﬁ+ As a matter of fact, this sort of scaling has been actually found to hold
for the Kicked Rotator model [5] and for Band Random Matrices [6]. Our
present results for the Anderson model (Fig. 1) provide evidence of a scaling
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law of the form:

C -1
14+ eCt N2

The same scaling is also made apparent by the log-log plot in Fig. 3a, which
demonstrates the following dependence equivalent to (11): -

B
e
In our computations on the Anderson model, F was taken in two different

“energy windows” of width AE = 0.1, centered at E = 0.1 and at E = 1.0
respectively. The value of B was obtained by statistically averaging over an

b=

log = log(%o) +C (12)

ensemble of random samples of size N = 400 — 3200. For every fixed sample

size, a large number of realizations (up to 1000) were generated. For every
sample we computed the average entropy of the cigenstates whose energies
were found to lie in the chosen window; the result was further averaged over
the different samples of the same size and finally substituted into (9).

Since no analytical expression of £ is available for the whole range of
disorder covered by our computations, we resorted to a numerical computation
of £ via the transfer matrix method, except for the case of very weak

localization, were the theoretical weak-disorder expansion (5a) was used. A

plot of the numerically computed £, versus W at F = 1.0 is shown in Fig. 2,
together with the theoretical results (5a), (5b) for the cases of weak and
strong disorder respectively.

For the constant C in (12) our data yield C = 1 for both the windows
at £ = 0.1 and F = 1.0. It is interesting to compare these numerical values
with an approximate estimate of C that can be obtained as follows. In
the limit of very small localization ratio one can assume the eigenvectors to
decay exponentially away from a single peak, with the average shape u, =
~ exp{—£2t|n — nol). In the limit of large N, this average dependence can
be used to compute the average entropy of eigenfunctions corresponding to
a given energy and then the corresponding f3; in this way one finds

_Ezfm
fe o

Upon substituting this result in eq. (9) one gets C = 1.307... The discrepancy
with the actual value of C found from numerical data is due to the fact that
the assumed average exponential form of the eigenfunction does not account
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Fig. 2. Scaling of B vs the localization ratio £ = £. /N for the
Anderson model for 0.05 < E < 0.15 and N=3200 ( ¢ ), N=1600
($), N=800 (A) and N=400 (+). The same symbols are used in the
following figures.

for unknown fluctuations that change the numerical factor in the expression

of .

Similar computations were made on the Lloyd model. Also in this case a

scaling law of the form (12) was found. Fig. 3c shows resulis for an energy

window centered at F = 1.0 For matrices of- rank 3200 the disorder parameter
W ranges from W = 12 to W = 7-107°, so that the scaling actually holds
in a very large interval. In this case the data give C ~ 1.4.

§4 A model-independent form of the scaling law

Because the value of the constant C in the scaling law (12) depends on the
model (Anderson or Lloyd) and on the energy window as well, the scaling law

as expressed in (12) is not the same in all those cases. However, the fact that

this law is linear in all cases allows for an interesting invariant reformulation.
In all cases we found a scaling relation that, upon substituting in (11) the
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Fig. 3. The scaling of 8 vs the localization ratio s waN in the

variables In(8/1 —

— ) and In(z):

a — Anderson model, with energy window 0.05 < E < 0.15
b — Anderson model, with energy window 0.95 < E <1.05
¢ — Lloyd model, with energy window 0.95 < E < 1.05.
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deﬁmtmn ( ) of B, takes the general form:

EHH"(NS w) e iref (N) (W)

1— eHWN, W) o~

where W is a measure of disorder, #(W) is an “intensive” (i.e. N-independent)
parameter like £, for Anderson and Lloyd or W2 for band random matrices
(in that case W is the bandwidth), and finally N is the size of the system.
The energy dependence is here inessential and we have dropped it. The value
of K depends on the model and on the energy. In any case, one has the large-
N asymptotics Hy.5(N) ~ log(N/c) (with c a model-dependent constant) or
exp(—H,.;(N)) ~ ¢/N. Upon substituting this in (13) and taking the limit
N — oo one finds '
cefl (o W) _ K¢(W)

that can be used to eliminate K¢ from (13), in this way the constant c also
drops out and one finally finds

e~ HWN, W) _ —H(co;, W) + e~ HW,0) (14)

The sample size N now enters through exp [H,.;(N)] which may be
thought as an effective size of the sample. By defining the length d(N, W) =
= exp H(N, W) for the sample of N sites and disorder parameter W, we
therefore obtain:

i i !
AN, W) - (oo, W) T AW, 0) 15

§56 Conclusions

The phenomenon of Quantum Localization is common to several models,
including some that are not directly related to electronic transport in
disordered solids and are quite different from the tight-binding models where
that phenomenon was first identified. This is the case of models of “quantam
chaos”, where important progress was made possible by the use of ideas
and concepts from the theory of the Anderson localization. In particular, a
scaling property was found in the Kicked Rotator model for the “information
length” of localized eigenstates. In order to precisely assess to what extent
is this sort of scaling similar fo the scaling in 1d tight binding models, we
set out to investigate the scaling properties, if any, of the same quantity in

B




- the Anderson and the Lloyd model. We have found numerical evidence that
also these models display a scaling law for the information length; moreover,
this scaling law assumes a universal form as soon as i is formulated in terms
of “informational” quantities. The simple and elegant form of this law (15)
calls for a theoretical explanation and also raises a question, as to whether it
can be expected to hold in any 1d localization problem. S
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