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ABSTRACT

We show that the spacing distribution for eigenvalues of band ran
dom matrices is described by a single parameter 5 /N, where b is the
band half-width and N is the size of the matrices. It is also shown that
the eigenvalue’s density obeys the semicircle law. The found scaling
behaviour suggests that the fluctnation properties in the intermediate
regime, between Wigner-Dyson and Poisson, are universal.
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§1 INTRODUCTION

Random matrix ensembles are extensively used as models for describing
the statistical properties of levels of complex systems such as heavy nuclei and
many electron atoms. This idea, put forward by Wigner and Dyson [1], proves
to be effective for many physical systems and shows once more in physics,
that symmetries are the relevant features: the fluctuation properties seem
to be relatively insensitive to the details of the interaction. It has recently
become clear that classically chaotic dynamics is the underlying condition for
the random matrix analogy to apply, even for systems with a few degrees of
freedom (see e.g. [2]).

However in quite general situations, such as in discretized models of
solid state physics or in perturbed integrable systems, a band structure
in the Hamiltonian is a common occurrence [3]. Band Random Matrix
(BRM) ensembles may therefore prove to be more effective than the standard
random matrix ensembles. A general semiclassical argument has been given
by Feingold et al. [4] in support of this hypothesis, and some motivation may
be traced back to a paper by Chirikov [5].

The mathematical investigation of BRM ensembles is very difficult, since
they are not rotationally invariant. In these cases we must rely mostly
on numerical computations, with a few exceptions: apart the obvious limit
case of the Gaussian Orthogonal Ensemble (GOE), the simplest analytically
investigated case is provided by the other extreme, namely tridiagonal random
matrices. The latter describe disordered linear chains and the exact formula
for the eigenvalue distribution was found by Dyson (6], and yet it is very
complicated. Another analytically studied model is that of “bordered mat
rices”, in which the off diagonal elements take randomly the values +1 [7].
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Only recently are BRM being given a great attention. They were investiga-
ted by Seligman et al. [8] as a model for interpolating between Poissonian and
Wigner-Dyson statistics, Along this line, Cheon [9] numerically examined the
low moments of the level spacing distribution. The small spacing behaviour of
the joint distribution of eigenvalues for small matrices has been investigated
in [10,11].

In our previous paper [12] we studied the properties of localization of
the eigenvectors of BRM. The motivation for such analysis was based on the
analogy with the quantum dynamics of the well known model of the kicked
rotator, for which the band structure appears in the time—evolution operator
[13,14]. We have shown that, unlike the case of GOE matrices, for which the
eigenvectors uniformly distribute on the unit sphere (as a consequence of the
rotational invariance), for BRM the eigenvectors display a scaling behaviour.
More precisely, our main result is the following: the average localization
length divided by the size N of the matrices is a function of b2 /N, where b is
the band half-width.

A natural question is whether this scaling behaviour is valid also for the
statistical properties of the eigenvalues. This paper provides a positive answer
to this question, together with the numerical evidence that the level spacing
distribution for b and N — oo only depends on the same scaling parameter

b2/N.
§2 THE EIGENVALUE DENSITY

A BRM ensemble is defined as the set of real symmeiric N x N matrices
with matrix elements A;; = 0 for |i — j["> b. The parameter 1 < b< N is
therefore the number of nonzero elements in the first row. The number of
independent nonzero matrix elements is

F= %b(2N~b+1}. (1)

They are chosen as independent random variables with gaussian distribu
tions:

P[A,:i.] = Jw/mexp(~wAL)P{Ai;) = V2w/7 exp(—2wAj;) 1< 4, {(2)

The ensemble is fully characierized by the three parameters w, b and N;
however, the first parameter only determines the size of the eigenvalues and
is not relevant for describing statistical properties. For b = N the mairix
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ensemble coincides with GOE, while for b = 2 and 1 we have tridiagonal and
diagonal random matrices respectively.

In order to gain some insight in the properties of the eigenvalue density
p()) of BRM, we start with the analysis of its low moments, which may be
evalnated analytically as ensemble averages:

)y = [ 3mpyar = 27t [AG A exp(-w DA, ()

where

dAl= ] Ay, - &= f [dA] exp(—wTrA?). (4)
Sadeh oo .

The odd moments are evidently zero. The case n = 1 is not of particular

interest, since it merely amounts to a counting of the nonzero matrix elements

Ny =g |
e e e ety (5)

The higher moments involve some combinatorial work and expliciily take into
account the band structure. The result for n = 2 is:

y
w?{11F+G~5N) (6)

A=

where

s {2N(b —1)(2b - 3) - 2b(b— 1)(56 - 7) 2b< N
T | N(N =1)(N -2) - E(N-b)(N—b—I—l)(ZN-I—b—E) 26> N~
(1)
The twofold behaviour arises because of corner and finite size effects. To
avoid them, we shall restrict, in the following, to the case b < N/2.
It is interesting to investigate the adimensional (i.e. w-independent) ratio

e )(;22)3 ) y : (8)

Tf'('b: N) e

This ratio can be shown to be identically zero for a semicircle distribution
of the eigenvalues and has value one for a gaussian distribution, which is
the case b = 1. For the GOE ensemble it is equal to (N + 3)/(N + 1)* and
therefore it vanishes for increasing N, consistently with the semicircular hmit
distribution for GOE.



We now consider the ratio (8) for BRM in the limit of large N and b.
Taking the limit such that b/N — 0, the ratio n goes to zero with the
asymptotics

1 b
R e T 9
! (2b * :m) )

The next adimensional ratio {A®)/{A%)2 has a much more complicated depen
dence on the band structure. Nevertheless it can be shown that for both N
and b going to infinity, 5/N — 0, the ratio approaches the value 5, which
corresponds to the semicircular distribution.

The above discussion leads us to conjecture a semicircle distribution for

BRM ensembles for large N and b. The normalized semicircle distribution
can be written in the form :

A= i\!ri’ — A2, (10)

e

It has second moment (A\?) = r?/4; therefore, from expression (5) one obtains
r? = 2F/(Nw). :

For finite but large N we have numerically found that the eigenvalue’s
distribution is very close to the semicircle law (10). An example is given in
Fig. 1, where the distribution p()) is computed from the eigenvalues of 6
matrices of size N = 3200 and b = 69.

A more accurate comparison can be made by computing the moments of
the numerically found eigenvalue distribution. In Table we give the values of
the adimensional ratios
{(A2"}/{A*)" for different N at the fixed value 42 /N = 3/2, together with the
corresponding values which result from the semicircle law.

Table
n | N=400 | N=800 | N =1600 | N = 3200 | semicircle
2 2.042 2.029 - 2.022 2.016 2
3 5.276 5.198 5.144 5.100 5
4 15.42 15.02 14.72 14.50 14
5 48.67 46.75 45.27 44.28 42
6 162.1 153.2 146.2 142.0 132

As it is seen from the table, for large N, these two ratios are quite close. Notice
that the convergence to the semicircle values becomes worse as n increases,
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Fig. 1. Hystogram of the computed density of states p(:i) as a function of
the rescaled parameter A = A/r. Here 6 matrices with N=3200, b=69, w = 1
have been used. The curve for the semicircle law (10) is also shown.

thus indicating that, for finite N, higher moments are more sensitive to the
edges of the distribution.

§3 THE SPACING DISTRIBUTION

As mentioned in the introduction, the investigation of the structure of
the eigenfunctions of BRM has led to the discovery of the scaling parameter
z = b?/N [12]. Moze precisely, by an appropriate definition of localization
length, the so called “entropy localization length” Iy, it has been found
numerically that the ratio Iy /N is a function of the scaling parameter z only.



On intuitive grounds, one may expect the existence of the scaling property
due to the random structure of the eigenstates. Indeed, numerical data show
that in the case of strong localization (1 < lg & N), the eigenstates are
random on the scale of their localization length [12,15]. It was also found
that for = > 1 all eigenstates may be regarded as completely random, as in
the case of full random matrices, even if b < N.

The same scaling properties of eigenfunctions have been earlier found in a

model with no random parameters: the kicked rotator on the torus [13-16]. In
spite of the strong difference in global properties like thé density of states, it
was established that this dynamical model and BRM have strong similarities
in the statistical properties of spectra and in the structure of eigenfunctions.
This similarity is related to the band structure of the band structure of the
unitary time evolution operator of the quantum kicked rotator and to the
fact that some sort of pseudorandomness appears in the matrix elements of
this operator, due to strong chaotic properties of the corresponding classical
motion. : :
The extensive study of this dynamical model [14,17] has shown that
the scaling properties of eigenfunctions are strongly related to the universal
fluctuation properties in the quasienergy spectrum. This conjecture has
been confirmed in recent numerical experiments [14-15] on the kicked rotator
model. As'a consequence, it is natural to expect that the distribution P(s) of

spacings between neighbouring eigenvalues of BRM is essentially dependent

on the parameter z only, rather than on b and N independently. As it is
known, in the extreme case of diagonal matrices {b = 1) the spacings between
eigenvalues are not correlated, resulting in the Poisson distribution for P(s).
On the other hand, in the opposite case of fully random matrices (b = N),
the RMT predicts a specific form of P(s) which is approximately described
by the well known Wigner surmise [15] |

P(s) = %se—%*”. (11)

An important question is how to describe the intermediate situation for BRM
where P(s) changes from Poisson to Wigner-Dyson distribution. Taking
advantage of the analogy with the kicked rotator model, we follow the ap
proach developed in [14,15] and assume that the distribution P(s) may be
described by the phenomenological formula [18] '

P(s) = As® (1 + BBs) A exp [*2;332 - 31'-(1 - ‘g-]s] : (12)
L

2

where A and B are normalizing parameters and
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- Fig. 2. The level spacing distribution P(s) for z = b*/N ~ 1 with N=400 (+),
. N=800 {A), N=1600 ($). The full curve corresponds to the expression (12)

with the best fitting value 8 = 0.703 found for N=800. The dashed curves
give the lower and upper bounds for 1% confidence level with 5. = 0.620
and B, = 0.759 respectively.

B(1—8
(o) = %Jl —0.16874

For B = 0 the expression (12) reduces to the Poisson distribution. For
B = 1,2,4 it approximates very closely the P(s) distribution for Gaussian
orthogonal, unitary and symplectic ensembles (GOE, GUE, GSE). Expression
(12) is more complicated than the one used in [12,14], but it gives a much
better correspondence with RMT predictions. For examiple, for § = 1 the




deviation from the exact dependence of P(s) (see [19]) is less than 0.3 % for
small (s < 0.1) and large (s > 2) spacings; it is less than 0.02 % in the most
important intermediate region 0.5 < s < 1.6. This distribution is thus closer
to the exact one than Wigner’s distribution (11) itself. The agreement with
RMT is very good also for 8 = 2,4. In addition, the dependence (12) seems
to be more suitable to fit the numerical data for the intermediate statistics
P(s) than the commonly used Brody distribution [19]. Indeed, the latter
dependence has definitely a wrong limit for 8 = 1 and large spacings s >> 1.
Moreover, when using the Brody distribution to fit GOE, one obtains the
wrong value £ = 0.95, instead of 8 = 1. Also, Brody’s distribution is not
valid to describe situations where the repulsion is larger than 1 (for example,
for GUE and GSE). : .

~ In our numerical experiments we used BRM with sizes N = 400,800, 1600
and different band sizes b > 1. The distribution P(s) is obtained by averaging
over the P(s) for ¢ different random matrices with the same N and b (Q =
=50, 25, 12 for N = 400, 800, 1600, respectively). Since the eigenvalue density
is not uniform, the spacings have been normalized to the local density. To
avoid the influence of large fluctuations caused by the finite size of matrices,
a number of eigenvalues at the edges of the semicircle distribution (3) has
not been taken into account. As a result, for each N and b, the total nu mber
of spacings in the final distribution of P(s) is approximately equal to M =
=16000-17000,

A few examples of P(s) with the best fit (full curve) of the proposed
dependence (12) are presented in Fig.2. Here, the parameter x is taken to
be approximately constant, z ~ 1.0, while the band size b and the size N of
the matrices vary. The data give good evidence for the scaling behaviour of
the spacing distribution P(s). To show the accuracy of the fit, two curves
are also drawn, corresponding to the the 1%-confidence level.

The summarized data for different values of x are given in Fig.3. It is seen
that the scaling behaviour for the repulsion parameter B occurs in a large
range of the parameter z.

This result indicates that fluctuations in the eigenvalue spectra of BRM

appear to have universal properties which can be described by a single parameter

.
§4 CONCLUSIONS

In this paper we have studied the statistical properties of eigenvalues of

BRM in the limit of large b and N. The numerical analysis leads to two main
conclusions:
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Fig. 3. The repulsion parameter 3 for intermediate statistics P(s) versus
z = b*/N, for different values of N and b. N=400 (+), N=800 (A) and
N=1600 ({). Each value of 8 was obtained by fitting the numerical data for
level spacing distribution with the expression (12). All values of 8 are within
a 1% confidence level. '

a) The density of the eigenvalues obeys the semicircle law. The conditions

under which this result can be rigorously proven is currently under investiga
tion by [21,22].

b} The eigenvalue spacing distribution P(s) depends only on the scaling para
meter z = b?®/N. A similar scaling behaviour is displayed by the localization
length of eigenvectors [12]. It would be very important to find an analytical
support for this scaling property.
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Several other interesting questions arise. One would like for example to have
an analytical derivation for the distribution P(s). Indeed the expression we
used (eq. 12) to describe P(s) is empirical and has no rigorous support. It
would also be very interesting to relate the repulsion parameter § with the
normalized entropy localization length Sy = lg /N which exhibits a similar
scaling behaviour with the same parameter z [12].

Scabng properties similar to those described here and in previous papers
[12,13] should be expected in the more realistic situations where the sharp
band structure is replaced by a sufficiently fast decay of matrix elements away
from the diagonal. A support to the above conclusion can be found in refs.
(8,9].

To conclude this paper, we would like to make an important remark.
According to Wigner—Dyson, the fluctuations of spectra of full random mat
rices have universal properties in the sense that they are shared by different
complex quantum systems in spite of the fact that they have, for example,
different density of states. On the other hand, full random matrices deseribe
limit situations. Indeed, as mentioned in the introduction, most physical
systems are described by matrices with a band structure which reflects the
finite range of the interaction. The results presented in this paper lead us
to conjecture that in the intermediate case, corresponding to a level spacing
distribution between Poissonian and Wigner-Dyson, fluctuation properties
have a universal character. For example, as we have shown, the kicked
rotator model on the torus and BRM have similar fluctuation properties
both for spectra and eigenfunctions, in spite of the fact that the density of
states is completely different (semicircle for BRM and uniform distribution
of quasi-energies of KR).
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