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ABSTRACT

We present analytical and numerical results for the level density
of a certain class of random non-Hermitian matrices H = H + I
The conservative part H belongs to the Gaussian orthogonal ensemble
while the damping piece T' is quadratic in Gaussian random numbers
and may describe the decay of resonances through various channels.
In the limit of a large matrix dimension the level density assumes a

surprisingly simple dependence on the relative strength of the damping
and the number of channels.
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Even though quantum mechanics is based on the notion of the
Hamiltonian as a Hermitian operator, non-Hermitian operators are also
enjoying applications. They are all related to damping or decay processes.
While a microscopic treatment of dissipative motion always involves.
Hermitian Hamiltonlans, it is often convenient to give a reduced descnptmn
using generalized, non-Hermitian "Hamiltonians”.

Roughly speaking, non-Hermitian generalizations of Hamiltonians H find
three classes of applications. One arises in master equations of dissipative
quantum systems'~2, ihip(t) = Hp(t), as generators of infinitesimal time
translations for the density operator p(t). While the Hermitian part of
H refers to free undamped motion, the remainder describes a damping
imposed on the system by some external "heat bath” which has otherwise
been eliminated. Probability conservation is respected as tr Hp = 0. The
eigenvalues £ = z+4iy of H are in general complex; their imaginary parts must
be non-positive for damped systems and give the life times of the corresonding
eigenmodes as 1/y; the real parts z, on the other hand, become the differences
of pairs of eigenenergies in the limit of zero damping. Such generators H can
often be constructed by adiabatically eliminating the heat bath from the
underlying microscopic description. The damped harmonic oscillator and
spin relaxation are well-known examples of this kind*~3.

A second type of application is concerned with the evolution of incomplete
state vectors rather than density operators. To explain a typical such situation
let us consider an state vector 9, its representation in a complete basis, and its
Schrodinger equation thy = Ht. A subset of basis vectors may have special
significance and the correspondingly truncated part ¥irync of 1 merit separate
consideration. In some such cases Yirunc Obeys, at least approximately, an
evolution equation of the form A rune = Htirunc where H is non-Hermitian
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and, of course, smaller in dimension than H. Probability conservation is then

not respected by ¥iunc and H since there will in general be a probability
flow connecting the two parts of the Hilbert space. The decomposition of
in YPirune and an irrelevant remainder ¥ — ¥yrun. may be suggested by the
structure of the original Hamiltonian: an unperturbed part Ho of H may have
a discrete and a continuous part in its spectrum, and the discrete part may
furnish the truncated Hilbert space of interest. Excited atoms, decaying to
their stable ground states through spontaneous radiation, can be described
in this fashion®. Long-lived resonances in the continuum of nuclei, atoms,
and molecules provide other examples®.

A third, highly interesting class of applications is met with in scattering
problems. Resonance structures in the energy dependence of scattering cross
sections can be related to poles of the scattering matrix in the complex energy
plane. In certain phenomenological representations® 7 of the S matzix such
complex poles appear as the eigenvalues of some non-Hermitian matrix H.
The real part = of a complex eigenvalue £ = z + ity of H specifies the location
of the resonance along the real energy axis while the imaginary part gives
the width.

Our reason for mentioning the above three types of non-Hermitian
operators lies in the suspicion that they have certain statistical properties
of their spectra in common. For instance, cubic level repulsion is expected in
general, provided ‘the respective dynamics are fully chaotic in the classical
limit. This behavior is characteristic for Gaussian ensembles of non-
Hermitian matrices® and has been verified for generators of strongly damped
quantum systems under conditions of classical chaos”~1!; more recently, it has
been seen for the poles of the S matrix in irregular scattering’®. Anticipating
some degree of universality in the statistics of levels and eigenvectors of non-
Hermitian operators we consider appropriate the study of various ensembles
of random matrices. - -

We propose to discuss a particular class of random N x N matrices,

H=H+il' (1)

where H is drawn from the Gaussian orthogonal ensemble (GOE)!* ! and
I' a real symmetric matrix of the form

M
Tre=—v) AfA; . (2)
g=1

Since I' consists of M separable pieces, each defined by a real N component
vector A%, one speaks of M open decay channels. This model was recently
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studied!® *° for applications to nuclei where M yields the poles of some S
matrix. We shall take the A} as independent random numbers with identical
Gaussian distributions of zero mean. The widths of the various Gaussians
are chosen as
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First attempts at describing the spectrum of H as given by (1-3) have
either assumed M = 1,2 or employed perturbation theory® ° in the limits
v — 0 (the near conservative case) and ¥ — oo (the limit of strongly
overlapping resonances). We shall now present rigorous results for arbitrary
4. Some remarks on the method of derivation will be given further below.
Denoting the eigenvalues of H by £ = = + iy we discuss the level density
p(z, y) in the complex plane in the limit when both the dimension’ N and
the number of channels M are large, keeping the ratio m = M/N finite. The
density is then nonzero only within a finite region defined by

9 4dm 1 m 1)’
T E—fy;‘"— '——“'—lh_y‘i";—; ; y<0o, (4)

the equality sign in the first of these inequalities yielding the boundary, Inside
that region the density turns out independent of the real part = of the complex
"energy” £ and takes the form

dmp(z, y) =1+ g i G = y)ﬁz- | (5)

For the weakest of dampings, v — 0, the eigenvalues populate a narrow strip
immediately below the real axis (center at £ = 0, § = —my; half widths
§z = 2, §y = 2my?). Note the overlapping of resonances, éz/N < |7|.

For very strong damping, ¥ — oo, the region defined by (4) actually
consists of two separate ones. The fraction m of eigenvalues takes off down
the lower half plane, forming a cloud with center £ =0, § = —y(1 + m) and
half widths 6z = min(1/4, 2/m/v(1—m)), éy = 2v4/m. The other N(1—m)
eigenvalues, however, remain in a cloud which approaches an interval of the

real axis as Z = 0,7 = —m/y(1 —m), 6z = 2(1—m)3, 6y = 2m/y*(1—m)3.

Fig. 1 illustrates the transition between the two limits just mentioned;
especially, the segmentation of the single cloud (for 4=3 +ms > 1) into two
clouds (for v~ 5 4+ m3 < 1) may be visualized from the sequence of portraits
(a—c). The curves in these portraits depict boundaries according to (4). The
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Pig. 1. Eigenvalues of 50 random matrices of the structure (2.3
with N=100, M=50 and v=2.5 {a), y=4.0 (b), v=5.0 (¢). The closed
curves represent the contour (4). The separation of one cloud into two
takes place for vy 224.44, i.e. in between case (b) and case(c).

clouds of points represent eigenvalues of 50 matrices of the structure (1,2)
with N = 200, M = 50, and v = 2.5 (case a), ¥ = 4 (case b), v = 5 (case
c); the matrix elements were drawn from the ensembles described above, and
the eigenvalues determined numerically. Obviously, the asymptotic formulas
(4,5) begin to work well at moderately large values of N, M.

The foregoing conclusion is further corroborated by Fig. 2 where we
display the projection of the level density onto the imaginary axis, [ dzp(z, y)
for the situation of Fig. 1(). The dip of the reduced density rear y ~ —0.5 is
a precursor of the desegregation of one cloud into two which would arise
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Fig. 2. Level density projected on the imaginary axis. Histogram
from random matrices as in Fig. 1(b}, smooth curve from (4, 5).

at a shightly larger value of 7. Incidentally, the analytic result for the
desegregation point, y~% + m¥ = 1, is well respected by all of our data.
Fig. 3 refers to N = M channels open. The eigenvalues then form but
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Fig. 3. Asin Fig. 1, but M = N = 200, v = 0.5. Only a single
cloud of eigenvalues arises since all decay channels are open.

a single cloud, irrespective of the value of v. The cloud was again obtained
numerically for N = 200 and fits reasonably into the interior of the contour
derived from (4). The damping strength was chosen as v = 0.5, :

In Fig. 4 we explore the limits of validity of the asymptotic formulas (4, 5),
taking N = 200 as before but allowing for only two open channels, M = 2.
For the damping strength chosen, ¥ = 2.5, we encounter two well separated
clouds'® (see Fig. 4(a)). The lower one contains 100 points, two for each of
the 50 random matrices picked; this cloud is faithful to the asymptotic (I
and M large!) result beyond resonable expectation, as is especially obvious
from the reduced density fdzp(z, y) in Fig. 4(c). Even the upper cloud,
nestled against the real axis, has its center and half width not too badly
approximated by the asymptotic prediction. An interesting discrepancy is
visible in Fig. 4(), though: While the (not applicable) asymptotic resuit
(4) implies an empty gap between the allowable region for m = .01 and
the real axis, the reduced density [ dzp(z,y) of the cloud seems to increase
exponentially towards a finite value at the real axis. That discrepancy is
expected on perturbative grounds since for the value of ¥ chosen H is a small
perturbation to :I'. The latter operator has M = 2 imaginary eigenvalues
EE?E.} of order 7 and the eigenvalue 0 which is (N — M) fold degenerate.
Diagonalization of H in the degeneraie subspace yields real approximants

E,ED} of order v to the previously vanishing eigenvalues. The next corrections
arise in second order, SE” = 12 Hﬁ“/(ff,ﬁ} - E,{lm), whose real parts are

of the order 1/4* and thus hardly important., The ima inary parts yiz),
: / : P g i

however, are o« 1/y and determine the separation of the cloud in question

from the real axis. Now inasmuch as the —-yf} are the sums of squares
of two independent random numbers, one expects the —Y, to have a yps-
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Fig. 4. (a) As Fig. 1, but N = 200, M = 2, v = 2.5. Note that the
upper cloud does not respect the gap from the real axis predicted by
the asymptotic formula (4). (b) The projected eigenvalue density of the
upper cloud approches an exponential (smooth curve) close to the real
axis, y — 0; parameters as in (a). (c) The projected eigenvalue density

of the lower cloud conforms to the asymptotic prediction (smooth
curve) of (4, 5).

square distribution with M = 2. The logarithm of that distribution displays
a linear approach towards a finite value as y — 0. The latter behaviour is
indeed borne out by the histogram in Fig. 4(b). It may be well to add that
the foregoing perturbative argument is in accord with other predictions'® 1°:
In the case of large ¥ and for one open channel the width distribution for
N —1 long-lived states obeys the xr-square distribution with M = 1 (Porter-
Thomas distribution). Reasoning similarly, one predicts the density going to
zero for y — 0 if M > 3. To summarize, the asymptotic results begin. to be
quantitatively reliable for M > 3, i.e. rather earlier than could be hoped.

Two special limits of (4, 5) merit mention due to their simplicity and
since they constitute immediate generalizations of the perturbative results.
First, for small damping and /or a small fraction m of open channels one finds
semicircle laws for the reduced densities of the upper cloud

2ﬂrfdyp(m; y) = V4i-—z?

“

ZWfdmp[m, ) = E\/zi— (—TE+T+$)Z -te}

1 2
for m & (1-—--) :
T

The result for the density projected onto the real axis is identical to the
GOE result for the Hermitian part of the Hamiltonian above. On the other

hand, for large damping we have

27rf dyp(z, y) = +/4(1—m)— =22
upper cloud
1 (y x
Zfrf deplz,y) = ——{/4m— (—+1+m) (7)
~ Jlower cloud Y i 4
2 s
for — & (1—m)2
g §

Again, the density for the lower cloud projected onto the imaginary axis is
identical to the density of the non-zero eigenvalues of the non-Hermitian part
of the Hamiltonian above. This density i1s an interesting new result by itself.

We would like to conclude with a remark on the derivation of (4, 5).
As in Refs. 14, 15, 18 we employ a formal analogy to a two dimensional
electrostatic problem, 4wp{z, y) = —Ad(z, y), and an identity relating
the potential ¢ to the ensemble-averaged Green’s function through ¢ =

= {(—(1/N)Indet [(* - E)(H - «!i']]L + 0*]). The potential can be evaluated
with the help of the replica trick or supersymmetric methods. The method
of Ref. 18 is extended here to a non-Gaussian distribution of matrix elements
of the Hamiltonian . It may be worth mentioning that the boundary (4)
results from a careful consideration of the positive infinitesimal 07 in the
definition of ¢. Outside the boundary ¢ becomes the real part of an analytic
function of £ = = + 1. :
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