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ABSTRACT

Statistical properties of spectra and eigenfunctions are studied for
the model of quantum chaos in the presence of dynamical localization.
The main attention is paid to the scaling properties of localization
length and level spacing distribution in the intermediate region between
Poissonian and Wigner-Dyson statistics. It is shown that main features
of such localized quantum chaos are well discribed by the introduced
ensemble of Band Random Matrices. The latter may be regarded as a
generalization of the known ensemble of fully random matrices.
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INTRODUCTION

Nowadays, much attention is paid to the properties of the so-called ”quan-
tum chaos” (see, e.g. [1-3]). The latter term is commonly used for dynamical
quantum systems which are chaotic in the classical limit. Since properties
of quantum systems turned out to be different from classical ones even in
a deep semiclassical region (see [4-5]), one of the important problems of
quantum chaos is to find proper quantities to describe the degree of chaos
in quantum systems. The most known approach in this direction is related
to the study of fluctuations in energy spectra in dependence of properties of
correspondent classical systems. It is now well established that for systems
which are integrable in the classical limit the spectrum statistics is close
to uncorrelated one.- Unlike, for classically completely chaotic systems the
fluctuations in energy spectra are of the specific form and may be compared
to that ones of eigenvalues of random matrices.

One of the quantities used to distinguish between these two limit cases is
the distribution P(s) of spacings between neighbouring energy levels in the
spectrum. For classically integrable systems it was conjectured [6] that P(s)
is close to the Poissonian law '

P(s) ~ exp(—s). _ (1)

Numerical experiments with some models give good evidence to this
statement, also, clear deviations are known for some cases (see, e.g. discussion
in [7]). In the other limit of strongly chaotic systems this distribution was
found [8] to be very close to the so-called Wigner—-Dyson surmise

Pls) = Aa‘ﬁ&_B’z, : . (2)




‘where A and B are normalizing constants, and § is a parameter depending
on the symmetry of the system and characterizing the repulsion between
neighboring levels (8 = 1, 2, or 4 for the Gaussian Orthogonal Ensemble of
random matrices (GOE), Gaussian Unitary Ensemble (GUE) and Gaussmn
Symplectic Ensemble (GSE), respectively, see [9-10]).

Both above distributions (1) and (2) are assumed to be universal in a
sense that they are not dependent on density of states which changes from
one system to another. It should be stressed that spacings s are normalized
to local mean value, therefore, the distribution P(s) is, in essense, some
characteristic of local statistical properties of spectrum. This is in accordance
to the conjecture of Wigner-Dyson approach that spectrum statistics of very
complex systems is universal and can be well descnbed by Random Matrix
Theory (RMT) [9- 1{}]

Nevertheless, it is clear that there are situations where the distribution
P(s) is intermediate between Poissonian and Wigner-Dyson ones. The known
example is studied in [11] where the influence of stable regions in the phase
space of correspondent classical systems on the spectrum statistics has been
established. The only parameter in the proposed expression for P(s) (the
so-called Berry—Robnik distribution) is exactly the ratio of the area with
stable motion to that of chaotic motion. There are many numerical data
related to this situation (see, discussion in {2]) but the correspondence of
these data to Berry—Robnik distribution turns out to be strongly dependent
on the parameters of the chosen model. '

To our opinion, the explanation of this fact is that the influence of quantum
effects on spectrum statisctics could be very strong. In this sense, it is
naturally to assume that the distribution P(s) depends not on classical
properties only but also on quantum ones. In the simplest case; when the
model is essentially discribed by two parameters only, one of which is classical
one, K, and another is of pure quantum nature, f, the distribution P(s) seems
to depend on K and h both, P(s, K, k). Therefore, only in the very deep
semiclassical region, i — 0, one may expect the \rahdaty of BeIr}'-Robnlk
dependence. :

Here, we show that there is another type of intermediate statistics which is -

entirely related to the quantum effects of localization. This situation appears
in the case K > 1 when in the classical limit stable regions are very small
and may be neglected. The level spacing distribution P(s) in this situation

seems to be universal and can be described by generalized ensemble of Band
Random Matrices (BRM).

QUANTUM CHAOS AND DYNAMICAL LOCALIZATION
The Model of Kicked Rotator on a Torus

To study the influence of quantum effects on statistical properties of
energy (or quasienergy) spectrum and eigenfunctions (EF) we consider the
kicked rotator model on a torus. This model is a modification of the well
known kicked rotator (KR) whose Hamiltonian has the form (see, e.g.,

[4-5]): - :
5 B2 92 L
| H = CErey + g cos @ - o7 (t). (3)
Here é67(t)y =Y.~ i 6(t — mT) is-a periodic delta function with the period

T, the parameter g is the perturbation strength and I is the moment of
inertia.

By integrating between succesive kicks the motion of this model can be
described by the mapping for the ¢ function in one period of the perturbation:

$(6,¢+T) = 04(6,%) | (4
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In the above expressions the ¢ function is determined in the middle of the
rotations, between two successive kicks. As is seen from (4), the dynamics
of our model entlrel}' depends (apart from the initial state (6,0)) on two
parameters :

: £0 T
=t = 5
- : 5)

Since without perturbation (k = 0) the Hamiltonian (1) is time independent,
the solution %(6,1) is convenient fo represent in the form of an expansion in
eigenfunctions of the angular momentum, '

O

$(0,1) = v’l_ S Au(t) exp(ind). ' (6)

=00

As a result, the mapping for the Fourier coefficients of i is

A ETY= Y Upmdn(d): - (7)
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U.m = exp (z%) (=) " Tu—m(k) exp ( TT ) :

For the comparison with the classical model, it is convenient to introduce
the parameter:

K:*rk=T—§9; | (8)

which does not depend on h , therefore, it is a classical one. As the second
independent parameter we will use k ~ :,1;, which is of a purely quantum
nature. Therefore, the classical limit corresponds to K = const. with k — oo,
T — 0.

The classical counterpart of KR is known as the "standard mapping” (see,
e.g., [12-13])

Pi+T = Pt +Eosinfp, (9)

8 5
Orpr = 60; + EPHT,

which can be obtained from the classical Hamiltonian corresponding to (3).
It can be shown that the phase space of this classical model is periodic in
momentum with period ETE.

By a rescaling of the momentum P = %p, we have the standard mapping
in its ”standard form” where the dynamics depends, unlike the quantum
model, on one parameter K only.

It is known (see [12-13] and references therein) that for sufficiently small
perturbation X < 1 in (9) the chaotic motion occurs only in small regions of
phase space, in so-called stochastic layers surrounding nonlinear resonances
of different harmonics. When K exceeds the critical value K. ~ 1, the
unbounded diffusion arises in momentum space for the initial conditions P,, 6,
outside of non-destroyed stable regions. With further increase of K, these
regions are decreasing and for K25 they appear to be so small that for
almost all initial conditions the motion turns out to be strongly chaotic.
An essential property of chaotic motion, in view of comparison with the
behavior of the quantum model (3), is the diffusive growth of momentum,

< (P — P,)* >= D,t. Here, Dy = %—2- is the classical diffusion coefficient,

and the averaging is performed over the set of trajectories initially located in
a small region of phase space.

The numerical experiments [4-5] have shown that, in contrast with the
classical model, for a large value of the classical parameter K = 5 and
a large parameter £ >> 1, therefore, in a deep semiclassical region, the
correspondence of the quantum behavior to the classical diffusion holds only
for some characteristic time $2t*. After this time, for ¢<t* the growth of
the rotator energy is decreasing in time, and for sufficiently large time the
diffusion appears to be completely suppressed. This phenomenon, termed in
[5] ”quantum suppression” of the classical chaos, was found to be a generic'
property and results in weak statistical properties both of quasienergy spectra
and eigenfunctions [7]).

Unlike the above model with infinite number of states (the momentum
space is unbounded), we pass to the model with finite number of states. It
allows to follow the whole transition from weak to strong statistical properties
of quantum chaos. This model can be deduced from (3) (see details in [7]) and
corresponds, in the classical limit, to the standard mapping on a torus of size
Ezr,%_n,g in the momentum p. The quantization conditions are N = 1’%'1 and
7 = I where N is the total number of states (N7 = const when N — oo)

and mg is an integer.
As a result, the evolution unitary matrix U,,, is finite of size N and has

the form [7]

2

U‘I‘Lm = 614 Ll Z E_‘kC{)H 2 I %’I{ﬂ.—m)eiim : (10}
L.—Nl
where n,m = —Ny,..., Ny and N = 2N; + 1.
Our main interest is in the study of statistical properties of the quasienergy
spectrum ¢ and eigenfunctions ¢, (€) which are defined by the equation

e 0n(e) = Y Unm(k, 7)om(e), (11)
where U,,,, is given by (10)
Maximal Statistical Properties of Quantum Chaos

In the limit case of small perturbation, k < 1, the level spacing distribution
P(s) was found [7] to be very close to the Poissonian distribution (2). In
other limit case of very strong perturbation, k — oo, we may expect that the
distribution P(s) approaches the Wigner-Dyson distribution (2). However, as
it was shown in [14] (see also [15]), the physical parameter which determines




the validaty of the expression (2) is not the strength parameter k but the

ratio of the localization length [, to the total number of states N

loo
— = - . 12
e | (e

Here, the average localization length I, characterizes the exponential

localization of eigenvectors ¢, (¢) of the evolution operator (7) in the unbounded

momentum space, @, ~ exp(—|n — n,|/lx) for |n| — oo (see e.g. [7]).

~ One of the most important results of numerical simulations is the remarkable
relation between the average localization length Im and the classical diffusion

coefficient D_;:

DGI{K) k2
2712 4 (1)

Here, the relation Dy ~ 5'*;— is used which is valid for large K > 1 (also,
for K ~/ 5, see [12-13]) and [, is given in number of unperturbed levels.

Extensive numerical data have shown [14,16-17] that under the condition
of strong classical chaos, K > 1, and for delocalization of all eigenfunctions
(EF), A > 1, statistical properties of quasienergy spectrum and EFs are well
described by Random Matrix Theory [9-10]. In particular, the level spacing
distribution P(s) is very close to the Wigner-Dyson dependence (2). Also,
the distribution of components ¢, of EF in the unperturbed ba,51s for large
N > 11is very close to Gaussian distribution

N g
Wirlpa) = 4 e $75. )

It is important to emphasize that our unitary matrix (10) is not random
by construction and depends on two dynamical parameters, 7 and k, only.
Nevertheless, under two conditions (strong classical chaos and delocalization
of quantum states) the maximal statistical properties of quantum chaos are
similar to that known for eigenvalues and eigenvectors of random matricies.

Intermediate Statistics for Level Spacing Distribution

To illustrate the influence of quantum effects on the quasienergy statistics,
we present here the data for P(s) when classical parameter K is fixed, K =5

but quantum parameter k ranges in such a way that A goes to zero. In Fig.1

typical examples of P(s) are given for three values of k. Here s stands for the
normalized spacings s; = 4-(g; 41 —€;) which are found from the eigenvalues
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Fig. 1. Three examples of the intermediate statistics for P(s) for the model
(10) with N =398 and K = 5. The total number of quasienergy levels is
M = 1592. The staggered curve is the numerical data. The smooth curve
is the dependence (15). a) k =~ 39.8;8 ~ 0.76;A ~ 1.0; b) k ~ 21.1;8 ~

0.48; A =~ 0.3;¢c) k=~ 9.1;8 =~ 0.22; A = 0.05;




A; = exp(ic;) of the unitary matrix (10). To improve the statistics, the

distributions P(s) for four matrices (10) of size N = 398 have been summed

with slightly different values of k (6% < k). The total number of spacings in
each histogram is M = 1592. It is clearly seen that with the decrease of A
the distribution P(s) approaches the Poissonian law.

The full lines in Fig.1 correspond to the distribution

2
i3 T B
P — As? e e i {15
(s) 5 exp[ 16;‘35 - (B _2> 3} , (15)
- which has been introduced in [18] to describe the intermediate statistics for
P(s). Here, the parameters A and B are determined by the normalization
conditions '

Lm P(s) c;'fs e | Lﬁo sP(s)ds = 1. (16-)

The expression (15) has the only unknown parameter which can be
non-integer, unlike the Wigner-Dyson distribution (2). Peculiarity of the
dependence (15) is that it appears to be quite close to the Wigner-Dyson
dependence (2) for 8 = 1; 2; 4 in (2) (see [7,18]). In addition, for § =01t is
exactly a Poissonian distribution. Therefore, this expression can be used to

approximately describe the whole transiton from uncorrelated (Pc:-issr&:-nian) _.

statistics to the limiting Wigner-Dyson statistics (2) with the specific value
of B which is defined by the symmetry of the system. The values of (3 for
the data of Fig.1 are taken to correspond to the mean localization length Iy
of eigenfunctions defined in [18] for the systems with finite number of states
(see below). Good numerical agreement between the mumerical data and the
expression (15) is clearly seen, which is also supported by the x? approach.
Specifically, for A &2 1.0,0.3 and 0.05 (8 ~ 0.76,0.48 and 0.22, respectively),

the x2 values for 23 subintervals are y2, 7 15.6,27.2 and 28.5, which gives

for the confidence levels 90%,30% and 35%, respectively.

Localizcd chaotic states

=

As it was shown in [18], the intermediate statistics is closely related to
the structure of eigenstates. In particular, with the decrease of the quantum

parameter k "the effective size” of eigenstates in the momentum space decreases.

It is illustrated in Fig.2 where typical form of EFs is given for two values of A.
The important peculiarity is that on some scale, all eigenstates seem to have

10
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Fig. 2. Ten out of N = 398 eigenstates of the model (15) are shown. On the
vertical axis the probability w, = |¢,|%; on the horizontal axis the number
of unperturbed state, n. The parameters are (a) K ~ 5,k ~ 32.0,7 ~
0.158, A ~ 0.64; (b) K ~ 5,k ~ 10.6, 7 ~ 047, A ~ 0.07.
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chaotic structure. To measure this scale, in [18] new definition of localization
length has been introduced (see also [7] and references therein):

Iy = Nexp (< H > —Hpg), : (17)

which is based on computing the spectral entropy of eigenstates:

- |
H=—Y w,nw,;  w,=]|pnl’. (18)
i b ;

The averaging of (18) in (17) is performed over all eigenstates of one
matrix U,,, or over an ensemble of matrices with slightly different values of
A. The normalizing coefficient Hp in (17) is, in essence, the limiting entropy
which corresponds to the completely chaotic eigenstates (see (14)). In this
definition the averaged localization length Iy scales from 1 to N with the
increase of A. This definition is closely related to the simple approach that
measures localization length as an effective size on which the main probability
of EF is concentrated. . ; '

F

Scaling Properties of Eigenfunctions and Spectrum Statistics

The main idea of our approach is that the intermediate statistics due
to localizaiion has universal scaling properties. More exactly, in [19] was
numerically proved that in large range of values A the level spacing distribution
depends on the scaling parameter A only, rather than on two parameters k
and I séparately. It means that for the same value A but different values
of k and N in the model (10) the distribution P(s) is the same. Numerical
evidence for this statement is presented in Fig.3 where two distributions
P(s) are compared with fixed value A ~ 0.8 and different k, N. The fit
to the dependence (15) by the x? approach has been used to obtain the
effective repulsion 8. The dached lines are 1% deviations (for the x?* value)
from the best fit. A few matrices (10) were used to improve statistics, with
slightly different values of k. The numerical data show that the fit repulsion
parameter (3 in the expression (15) is approximately the same. ;

The localization length Iy introduced by (17) may be associated with the
localization length £ in solid state models for finite samples of size N. Then,
according to the approach developed in [20], some scaling for Iy can be also
expected. Indeed, the localization in solid state physics in finite samples is
related to the residual conductance of the samples themselves. The corner of
the scaling theory of localization is the assumption that conductance depends

12

Pig. 3. The scaling distribution P(s) for the model (10) with different sizes N
of the basis for K = 5 and k* /N =~ 2.5. The solid lines correspond to the best
fit to relation (15) by the x2 approach. The value of rescaled period Tis T =

47r/(2N + 1). (a) N = 600,k ~ 35.0,r = 14,8 =~ 067 Do 2= 0:50; By 22

0.83; (b) N = 200,k ~ 22.8,7 = 7,3 ~ 0.70, Bin ~ 0.55,Brnac ~ 0.86.
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only on the ratio between the localization length for the infinite sample and
the size of the sample. This conjecture can be formulated (see details in [20])
in the way that there is a universal function g(z) such that

Ene _ R
g""g(z)'l e EDD (19)

where £, has the same meaning as (13), namely, the localization length for
an infinite sample. In the approach of Ref. [20] the quantity &y is directly
related to the residual conductance via Landauer’s formula and can be defined
by means of the transfer-matrix formalism. Therefore, the scaling

*_IN__ f} : . "_Dcl’ |
ﬁ—},.?—f(‘ﬁr‘): D= (20)

72

is expected to exist for the KR-model (10) where D,; stands in place of I,.
Numerical simulation with the model (10) has been performed fo check this
conjecture (see details in [19]), For this, the quantity Iy has been computed
through (17-18) for many different values of N and k in the ranges 200 <
N < 860 and 1 < k < 239. The classical parameter was taken in all cases as
K ~ 5, therefore, D ~ f?; The data are shown in Fig.4 which gives a good
evidence of scaling in the mean. The insert in Fig.4 is also shown to follow
the linear dependence fg* ~ fv—: which has to hold for 1 €« I, <« N. It is

seen that the latter condition is quite a strong restriction for the numerical

simulation in this region and it causes the deviation of 8* from the straight
line. ' :

It is now clear that there is relation betweeen the repulsion parameter 6}
“in (15) and the normilized localization length 8*. The analytical form of this
relation is still not etablished but, according to the data [19], for the model
(10) of kicked rotator on a torus it is close to linear one, 8 a2 3*.

STATISTICAL PROPERTIES OF BAND RANDOM MATRICES
Definition of the Ensemble of Band Random Matrices

The unitary matrix U,,,, for the KR-model on the torus appears to have a
band structure with the size of the band (~ 2k) determined by the quantum
parameter k (see (10)). At the same time, the classical parameter K seems
to be responsible for the degree of randomness of matrix elements inside this
band. It leads to the conjecture that statistical properties of the KR-model
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Fig. 4. The parameter (3* versus the variable z = k?/N for N =~
400 (O ), N =~ 600 (A) and N = 800 (x) is plotted for ﬂ.le I}’mdﬂl (10).
The dashed lines correspond to the expression d ~ 2el,, which is expeci_;ed
for ¢ < 1 (see [7]). The dotted curve gives the fit in the intermediate region
when passing from localized to delocalized states.
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(10) for large K > 1 are also typical for the ensemble of Band Random

Maitrices.

The structure of such real symmetric matrices is given by the parameter
b determining the band size, b equals 1 for diagonal, 2 for tridiagonal and N
for GOE matrices. Inside the band, for |i — j| < b, matrix elements aij are

independent gaunssian numbers with the mean equal to zero and the variance
corresponding to the probability density

= \Hw/Tre}[p(-wA?i}, | (21)

P(A;;) = /2w /m exp(—zwﬂfj) 1<
while ouiside the band all matrix elements equal zero.
The ensemble is fully characterized by the three parameters w, b and N;
however, the first parameter only determines the size of the eigenvalues and is
not relevant for describing statistical properties. As it was shown numerically

in [21] and proved analytically in [22], the eigenvalue density p(A) of BRM
in the limit case of large N — oo has the semicircle form :

B (22)

It has second moment (A*) = r?/4 where r? = 2F/(Nw) and F = 5b(2N —
b+ 1) is the number of independent nonzero matrix elements.
One should note that such band matrices seem to be very convenient in

describing the statistical properties of different physical systems, for example,
complex atoms and nuclei (see [23-24]).

Scaling Properties of Eigenvectors of BRM

Numerical simulation [21] has given good evidence that the structure of
EF is very similar to that found for the KR on the torus. In particular, for 7
sufficiently large (2210), all eigenfunctions have chaotic structure with the
distribution of components very close to (14). But the most important is
that in the intermediate situation, for not large A structure of eigenvectors is
also very similar to that found for the kicked rotator model (10) on a torus
when K > 1 (see Fig.2).

As for the kicked rotator, numerical experiments have pmved the similar
scaling for the localization length Iz (see details in [7]). One of the essential
results of this study is represented in Fig.5 where the dependence of 5* is

plotted versus the scaling parameter b*/N for different values of N and b.
The smooth curve is here the function
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Fig. 5. The scaled localization length §* = 4 versus & = “ 2 for N = 200 (+),
N = 400 (A), N = 600 (), N = 800 (x) and N = 1{}0{] (O ). The dashed
curve corresponds to the expression (23). -
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Cz
Dis 1+C%’
where the parameter C is taken to be C ~ 1.4 from the data for the KR-

model (see Fig.3) with the correspondence of b to k. It is seen that the scaling
behavior

(23)

e it B?
e F(z); o | (24)

is very impressive. However, one should note that, unlike the parameter k£ in
the KR-model, the parameter b in BRM is restricted by the maximal value
N. For this reason the scaling 5*(Z) holds only for XN /2. For b — N, the
similarity with KR disappears and another behavior of §* occurs [21].

Scaling Properties of Level Spacing Distribution

In analogy with kicked roatator model (10) it is natural to expect that
the distribution P(s) of spacings between neighbouring eigenvalues of BRM
is essentially dependent on the parameter Z only, rather than on b and N
‘independently. As it is known, in the extreme case of diagonal matrices
(b = 1) the spacings between eigenvalues are not correlated, resulting in the
Poisson distribution for P(s). On the other hand, in the opposite case of
fully random matrices (b = N), the RMT predicts the Wigner—-Dyson form
(2)- |

To describe the intermediate statistics P(s) for BRM where P(s) changes
from Poisson to Wigner-Dyson distribution, in [25] the improved version of
the phenomenological dependence (15) has been used

L | T 6] :
P(s) = AsP(1 + BBs)!® exp —Eﬁsz - E(l - E)S ; (25)
where A and B are normalizing parameters and
9B(1 _ &
£(8) = 2 - 1) _ 0.16874 (26)

is some characteristic function. .
For B = 0 the expression (25) reduces to the Poisson distribution and

for 8 = 1,2,4 it approximates very closely the P(s) distribution for Gaussian
orthogonal, unitary and symplectic ensembles (GOE, GUE, GSE). Expression

(25) is more complicated than (15), but it gives a much better correspondence
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Fig. 6. The level spacing distribution P(s) for ¢ = b’ /N = 1 with N =
400 (+), N = 800 (A),N = 1600 (& ). The full curve corresponds to the
expression (25) with the best fitting value 8 = 0.703 found for N = 800. The

dashed curves give the lower and upper bounds for 1% confidence level with
B_ = 0.620 and B, = 0.759 respectively.
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with RMT predictions. For example, for 8 = 1 the deviation from the exact
. dependence of P(s) is less than 0.3 % for small (s < 0.1) and large (s > 2)
spacings; it is less than 0.02 % in the most important intermediate region
0.5 < s < 1.6. This distribution is thus closer to the exact one than Wigner’s
distribution (2) itself. The agreement with RMT is very good also for 8 =
2,4. In addition, the dependence (25) seems to be more suitable to fit the
numerical data for the intermediate statistics P(s) than the commonly used
Brody distribution [26] (see discussion in [7,18]).

In numerical experiments [25] BRM-matrices have been used with sizes
N = 400,800, 1600 and different band sizes b >> 1. The distribution P(s) was
obtained by averaging over the P(s) for @ different random matrices with

the same N and b (@ = 50, 25,12 for N = 400,800, 1600, respectively). Since
 the eigenvalue density is not uniform, the spacings have been normalized to
the local density. To avoid the influence of large fluctuations caused by the
finite size of matrices, a number of eigenvalues at the edges of the semicircle
distribution (22) has not been taken into account. As a result, for each
N and b, the total number of spacings in the final distribution of P( ) is
approximately equal to M = 16000 — 17000.

A few examples of P(s) with the best fit (full curve) of the proposed
dependence (25} are presented in Fig.6. Here, the parameter Z is taken to
be approximately constant, & & 1.0, while the band size b and the size N of
the matrices vary. The data give good evidence for the scaling behaviour of
the spacing distribution P(s). To show the accuracy of the fit, two curves
are also drawn, corresponding to the the 1%-confidence level.

The summarized data for different values of £ are given in Fig.7. It is
seen that the scaling behaviour for the repulsion parameter 8 occurs in a
large range of the parameter #. This result indicates that fluctuations in the
eigenvalue spectra of BRM appear to have universal properties which can be
described by a single parameter &

CONCLUSIONS

All these results show a very deep similarity of the statistical properties
of localized quantum chaos in dynamical models to that existing in random
models, like the BRM ensemble. The most important result is that both
properties of localized chaotic eigenstates and level spacing distribution P(s)
have very similar scaling.

Scaling properties similar to those described h :re should be expected in
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Fig. 7. The repulsion parameter 8 for intermediate statistics P(s) versus
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for level spacing distribution with the expression (25). All values of § are
within a 1% confidence level.
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more realistic situations where the sharp band structure is replaced by a
sufficiently fast decay of matrix elements away from the diagonal. A support
to the above conclusion can be found in [22,27,28].

According to Wigner-Dyson approach, the fluctuations of spectra of full
random matrices have universal properties in the sense that they appear in
different complex quantum systems in spite of different density of states.
Nevertheless, it is clear that full random matrices can be used to describe
only limiting situation of maximal statistical properties. At the same time,
most physical systems seem to relate to matrices with a band structure
- reflecting the finite range of interaction between unperturbed states. The
results presented here lead us to the conjecture that in the intermediate case
of localized quantum chaos with level spacing distribution between Poisson
and Wigner—-Dyson, fluctuation properties may also have universal character.
For example, as it was shown, the kicked rotator model on a torus and BRM
have similar fluctuation properties both for spectra and eigenfunctions, in
spite of the fact that the density of states is completely different (semicircle
for BRM and uniform distribution of quasienergies for kicked rotator).
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