MHCTUTYT SIAEPHOHN ®U3UKHA CO AH CCCP

B.V. CHIRIKOV and V.V. VECHESLAVOV

THE STRUCTURE OF A WEAKLY NONLINEAR
RESONANCE

PREPRINT 91-92

==

HOBOCHBHUPCK




THE STRUCTURE OF A WEAKLY NONLINEAR.
RESONANCE

Dedicated to Professor Péter Szépfalusy.

B.V.CHIRIKOV and V.V.VECHESLAVOV

Institute of Nuclear Physics, 630090, Novosibirsk, USSR

ABSTRACT
An example of the weakly nonlinear resonance is considered. The
unbounded resonance structure is described in detail, and is shown
to be unstable against weak perturbations. Peculiarities of diffusive
motion within the intricate chaotic component are discussed.
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1. INTRODUCTION

A colorfu world of nonlinear phenomena, one of whose architects and
masters is I rofessor Péter Szépfalusy, continues to attract ever growing army
of researchers from all the sciences and around. In this paper we hope to
put a tiny new touch on this international painting by describing a peculiar
phenomenon of the weakly nonlinear resonance (WNR). The most striking
feature of nonlinear phenomena is complete rebuilding of the motion structure
under a weak perturbation. An excellent example is the KAM theory (see,
e.g., Ref. 1 and generalization in Ref. 2) with its subtle everywhere dense
chaotic web. 3+*

Dynamical chaos — another fascinating discovery in nonlinear mechanics
—- is almost never just the plain dull disorder but has a highly organized
and beautiful structure whose pictures have become common by now on the
conference advertisements. A new example we are going to discuss below
presents one more type of such a structure. This is intricate interplay of
nonlinear resonances wich control dynamics in Hamiltonian systems.

Let us start with the fundamental Poincaré problem defined by the Hamil-
tonian

H(I,6,t) = Ho(I) +€V(I,0,1) (1)

where I,8 are N-dimensional action-angle variables, and € — 0 is perturba-
tion parameter.

The unperturbed system Hj is supposed to be ‘trivial’ that is completely
integrable (for good texts in nonlinear dynamics see, e.g., Refs. 1, 5). If,
moreover, it is nonlinear that is the determinant

- |d®H/dI?| # 0 (2)



we call this strong nonlinearity. That nonlinearity does not depend on a weak
perturbation and remains finite when the latter vanishes. _

A single sirongly nonlinear resonance (SNR) is then also completely inte-
grable and, hence, trivial. Its phase-space picture is now also well known as a
‘chain of 1slands’ framed by the separatrix (Fig. 1a) which is the most unsta-
ble and chaotic place in the phase space, and which forms that Arnold web
mentioned above. This picture is universal and structurally stable that is it
remains topologically unchanged under sufficiently weak additional Hamilto-
nian (nondissipative) perturbation. Moreover, the effect of resonant pertur-
bation vanishes with € (e.g., the separatrix swing AT ~ /) even though it
cosiderably exceeds that off the resonance (A I ~ €). The sirong nonlinearity
suppresses resonant periurbation if the latter is sufficiently weak. This is one

of the principal phenomena in nonlinear Hamiltonian dynamics underlying
the celebrated KAM theory.
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Fig. 1. Outline of the resonance phase-space structure for strong
nonlinearity (a), and for weak nonlinearity (b); arrows show the
direction of motion

Remember, that for the linear oscillator, that is when the whole Hamil-
tonian (1) is quadratic in Cartesian variables P, T any resonance, internal or
driving, produces a big effect no matter how weak is the perturbation € — 0,
Also, the resonance conditions depend on oscillator’s parameters only, and
not on the initial conditions of motion-like in nonlinear oscillator.

Now, an interesting 'question is what happens:in between? We call this
domain weak nonlinearity. In terms of Hamiltonian (1) it means that the

unperturbed Hamiltonian
Hﬂ(I) = W I : (3}

is linear in action variables or its frequencies wy = const, while perturbation
€V(I,0,t) remains arbitrary.

On the first glance, this problem may appear simpler, as compared fo that
for strong nonlinearity, due to another small parameter, nonlinearity v ~ e,
to which only the perturbation term contributes now. Yet, that is not the
case! A simple explanation is in that the weak nonlinearity may not suppress
the resonance perturbation whose effect now depends on the ratio e/v of
the two small parameters. Particularly, the extension of the KAM theory on
weakly nonlinear systems is only possible under the additional requirement
of the absence of unperturbed resonances. :

Well, the physicists are always trying to go ahead of mathematicians. So,
consider, on the contrary, the unperturbed resonance! This is certainly a
more interesting case. But also a more difficult. Therefore, we choose the
model as simple as possible. One of those is specified by the Hamiltonian:

2 3.2
Hipizii) = E,,"_;___UE_ —€cos(z — Q) =wol — € cos(p cos 8 — Qt) (4)
where p = (21 /wg)}/? is the amplitude of unperturbed oscillations.

This model has been extensively studied in plasma physics where it rep-
resents the motion of a charged particle in both the magnetic field (Larmor’s
frequency wy) and the plane wave electric field of strength ¢ (see, e.g., Ref. 5).

If we put wo = 0 the model describes a single SNR (d®H/dp® = 1) which

is completely integrable, as well as H o(p), with no trace of chaos. Moreover,
the p variation is strictly bounded:

|ap| < 446 (5)

Yet, for any wg # 0 nonlinearity becomes weak (as € — 0), and the motion
drastically changes.

2. THE FIRST ORDER THEORY

The first approximation of the conventional resonant perturbation theory ®
for model (4) and related models was thoroughly studied in a series of pa-
pers by Sagdeev, Zaslavsky and coworkers (see, e.g., Refs. 6, 7, and also
Refs. 8-10).

To reveal the resonance structure we first get rid of unperturbed part wy I
of the Hamiltonian (4) by introducing new phase ¢ = 6 — wot, and expand



the perturbation in Bessel functions:

o k
H(I,8,t) = —¢ E Ji(p) cos [k @ — (02— kwo)t + %] (6)

k=—00

All terms of this Hamiltonian satisfying k < p are of the same order b‘ut 1.:11ﬁ‘er
in the frequency of time-dependence. This difference bemme§ crucial if we
fix a resonance condition: = nwg with any integer n # 0 (in case n = 0
the system is completely integrable). Unlike the linear resonance with only
one resonance condition ( 8 = wq for driving perturbation or 2 = 2wy for
parametric one ) the WNR is much richer.
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Fig. 2. An example of the phase-space structure of a single weakly
nonlinear resonance in model (4): wo =1; 2 =12; e=1. Scat-
tered points belong to a single chaotic trajectory bounded by a gap
between third and fourth rows of resonant cells. Insert: an enlarged
part of this gap near ¢ = v /4.

Now we can introduce the new unperturbed Hamiltonian

Ho(I,p) = —€J,(p) cos (n o+ ?) (7)

the rest of the sum in Eq.(6) being a new perturbation. We emphasize again

~ that the two parts of the new Hamiltonian differ in frequency only, and this

difference increases as € — 0. In other words, the perturbation is no longer
small but is a high-frequency one (see Eq.(23) below). Hence, the unperturbed
motion p(t) is ediabatic with respect to the perturbation. We call the whole
situation inverse adiabaticity.

The most interesting is the global structure of unperturbed motion (7)
which is outlined in Fig. 1b in coordinates

P = np + n/2, R=p—7mnf2-7/4,

the latter representing the asymptotics of Bessel function (p > n)

Ju(p) ~ \/g cos R (8)

A real example of this resonance structure, which we are going to discuss in
detail below, is presented in Fig. 2. Plane p, @ here is Poincaré’s surface of
section at ¢ = 0 mod 27 /wg that is system’s position plotted in each period
Ty of the unperturbed linear oscillation.

This resonance structure is characterized by an infinite(!) lattice of peri-
odic trajectories (fixed points on plane R, $) both stable (sin® =~ sin R ~ 0)
and unstable (cos @ ~ cos R ~ 0), the latter being connected by separatri-
ces. The striking difference from a strongly nonlinear resonance (cf. Fig. 1a)!
Instead of a narrow restricted chain of islands we have now the unbounded
lattice of resonance cells. :

The discovery of this structure was very exciting. It took over 10 years
to understand and evaluate the phenomenon. Moreover, in monograph ®
(see also Refs. 8, 9) the resonance lattice is now(!) obvious in Fig. 2.11 (cf.
Figs. 1b and 2 in this paper). Yet, it was missed in both the monograph and
its translation into Russian by the present authors! One motivation of this
paper 1s to show that this story is still not over (see Section 3),

- Belore to proceed let us see how the transition from SNR (wo = 0, Fig. 1a)
to WNR (any wo # 0, Fig. 1b) is organized. As wy — 0 being resonant the

parameter n = {l/wy — oo (f2 is fixed), and the first zero p1 of Ju(p) in
Eq. (7) grows indefinitely:

T
;B —— | T 9
Pr 2 + & y (9)



where k is zero’s number. Thus, the WNR lattice shifts up, the first row of
resonance cells (0, p;) expanding indefinitely. For the initial condition inside
SNR(z ~ 1,2 ~ f, p ~ Q/wg = n) coordinate ¢ ~ it grows with time,
as well as p, until p reachs p;. Around this time the SNR picture completely
desintegrates, and only the WNR structure remains.

Already our first numerical experiments with model (4) revealed that
WNR structure is not as simple as it is outlined in Fig. 1b. Besides distor-
tion of separatrices (a routine perturbation effect) and their chaotic layers (a
universal nonlinear phenomenon, see below, Section 4) we noticed an intricate
structure at the intersections of separairices (see insert in Fig. 2). Further
studies showed that the resonance lattice is not a connected formation but
cut through by many narrow gaps.

3. INSTABILITY OF THE RESONANCE LATTICE

Unlike the SNR chain the WNR lattice proved to be structurally unstable.
We shall analyze this problem using the asymptotic representation (8) of
unperturbed Hamiltonian (7):

- 2 :
Ho(l,p) = —€4f/— cos Rcos ® + V(I, ) (10)
V 7o

where we introduced additional time-independent perturbation V. Remem-

ber, that we are studying the stability of the unperturbed WNR structure.

The impact of the high-frequency perturbation will be considered later {Sec-

tion 4). :
Introducing new time and dynamical variables

-
T =tey]— (p = const)
Tp
r = R— Ry; s =& &, (11)

and keeping only linear terms of perturbation V in new variables we drrive
at the new Hamiltonian:

ffg(l,qo):—sinrsins-{—ar-l-ﬁs (12)

Here Ry,®; are the coordinates of a certain fixed point (see Fig. 1b), and
canonical variables remain I, ¢ as before.

Consider first a simpler case § = 0 (for o, § # 0 see Section 7). Then
horizontal separatrices (r =const) all remain unchanged but vertical ones

(s =const) are destroyed because of the difference in Hy between the two
nf:ighbouring fixed points (AHo = x |a|). The new structure is outlined in
Fig. 3. Remarkably, an arbitrarily small perturbation (a — 0) qualitatively
changes the structure making all the rows of resonance cells disconnected by
narrow horizontal gaps. For small @ > 0 the width of a gap at s = 7/2 and
r = 0 mod 27 is:
AHy

dHo/or
Actually, each of such gaps consists of twe nearly equal parts at both sides

of the horizontal separatrix. The position of a gap in s is determined by the
condition:

Ap =~ 2 & 27 |al ' (13)

acosrsins <0 or ap >0 (14)

Particularly, for a given « the direction of motion is the same in all gaps.
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The perturbation shifts the fixed points whose position is determined by
the equations:

cosrsins —a = 0; sinr coss = 0 (15)
with two solutions
cos 51 = 0; cosr; = ta
sin 82 — :Eﬂ:; sin_rg =10 . (15)

for stable and unstable fixed points iespect__ivel_v, If
la|] > 1 | _ (7). |




the WNR structure is completely destroyed, and all the gaps unite,
Consider, as an example, the model with Hamiltonian 117

2
H{p,#1) = %— —cos(wg x) — € cos(z — Qt) (18)

Globally, this model describes the interaction of the two SNRs which results
in the formation of relatively narrow chaotic layers around resonance separa-
trices. But near the center of the stronger resonance (z a 0) the model (18)
is close to our basic model (4) of WNR. If 2 # nwo the resonance center is
stable for ¢ — 0. But for = nwy a WNR lattice is formed inside the SNR.
However, the former is destroyed at sufficiently large « as the nonlinearity in
Eq. (18) is strong. For |wgz| < 1 the nonlinearity is described by the term

-‘.:.—'4 wip-i
6H = 2 <gf>= 2
54 <% > i (19)

Linearizing this nonlinear perturbation in p we arrive, for p 2 n, at Hamil-
tonian (12) with § = 0 and

4 7/2
T Wg
= — fonil |
3 2 16e - (20)

The latter equality determines the border between WNR structure (with
gaps, o < 1) and SNR behavior (a > 1). Particularly, the size p, of the
former is given by the relation

- e\ 2/ -
22 = 0.66 e (21)
Ps Wo

where p, = w/wg i1s the SNR separatrix size in z. This estimate holds in the
interval

ns Pw ) l/w{} (22]

1 2 €En
= -=4/-—5=z %1 23
A T wi p3/2 ( )

This adiabaticity parameter is going to play important role in what follows
(see Section 4). At the border p = p, (see Eq. (21))

provided (see Egs. (6), (7))
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as wg — 0 with fixed  and €. Inequalities (22) imply that 0 X 1.

Comparison with numerical results in Refs. 11, 7 shows that the accuracy
of Eq. (23) is about 10 per cent even for p,, /n ~ 1.5.

The unbounded WNR lattice is related to periodicity in p of unperturbed
Hamiltonian (7) due to the special structure of perturbation in Eq. (4).
Again, unlike the SNR behavior the WNR one is not universal. For example,
if the additional nonlinear term (19) would be proportional to ¢, hence would
belong to the weak nonlinearity according to our definition above, parameter
a were independent of €, while the resonance structure would vary in a broad
range, from WNR one (wg — 0) to that of SNR (wg — o0).

Another simple example is a detuning 6Q = néwg from the resonance
8 = nwo. The additional term in Hamiltonian (4) is §H = wqéwg p?/2,
hence the perturbation parameter

3/2
“\EW“” by = A 22 (24)
£

Wy

in agreement with the previous result in Ref. 8. Notice, that for a fixed

- 96 # 0 the WNR structure is always destroyed as A — oo (€ — 0 ). This

1s a simple explanation of the KAM integrability for weak nonlinearity.
Coming back to model (4) we wonder what would be the origin of gaps
revealed in our numerical experiments? Apparently, it is the effect of higher-
order perturbation, namely, the second-order correction to unperturbed Hamil-
tonian (7). It can be evaluated as follows.
First, we rewrite the original Hamiltonian (4) in the form (wo =1, 2 = n)

- H(I,8,1) = I — € cos(p cosB) + € [cos(p cos 8) — cos(p cos @ — nt)] (25)

Expanding it in Bessel functions we, then, change variables I, § — I, 6, in
such a way to eliminate all first-order terms in brackets but the resonant one
(7). Finally, we introduce a new phase p; = 6; —t. As is easily verified the
time-independed part of the result is given up to terms ~ € by the expression

5 d

- o ekie) TG ks i
Ho(l,p) = —eJn(p) cos (nso+ : ) e ;:1 d.p«f 2m(P)
£ < s -

m#ZEn

11



where we dropped sub 1. Asymptotically, the second sum can be neglected
as it decreases faster (~ p~!) than the first one

5 27 am(p) = ~3 U(26) - 203(0)ole)] —
m>1 .

2\;__‘0 cos (2.0 s 3—:') (27)

On all horizontal separatrices (Fig. 1b) cos(2p; — 37/4) = cos(wn + w/4) =
= (—1)"*+!/+/2 is approximately the same, and we arrive at Hamiltonian (12)
with i
€
= ——(-1)"— 28
a=-3-1"-5 (29
From Eq. (13) the gap width is

3% £
70 0 Pl RO il 29

4. CHAOTIC WEB

Without high-frequency perturbation (see Eq. (6)) all separatrices are
lines on the surface of section p, p and all rows of resonance cells are separated
by the gaps. As is well known, the perturbation destroys separatrices and
produces chaotic layers. If the width of a layer exceeds that of the adjacent
gap the rows get connected and the global motion drastically changes.

The unperturbed motion on a separatrix can be found from the first-order
Hamiltonian (7), and for a horizontal (p ~const) separatrix is described by
the equation

P, = ? cos P, (30)
The solution %
t 5
EE— = In tan (-E;— + E) (31)

1s the same as for the SNR separatrix. Hence, the well developed theory of
the chaotic layer (see, e.g., Ref. 3) is applicable. Particularly, the amplitude
of Hamiltonian (7) variation, or separatrix’s splitting, is given by the relation

o

cos(k p(t) + wot)wodt =

AH, = eJu(p) /

=00

12

!\

(2 }t}ﬂ‘l
I'(m)
where I'(m) is gamma-function and the latter expression holds for A > 1.
Notice, that the effect is exponentially small in A which is characteristic for
the adiabatic processes.

Of all perturbation terms in Hamiltonian (6) only two with the lower
frequency are operative

o0
2 ka(p]f cos(m® + wot)wodt = 27e Ji(p) exp(—mA/2) (32)

11
k=n+1; m:f”'n (33)

with corresponding values of parameter m. Of these two the main contribu-

tion comes from one for which ¢ (n — k) > 0. Taking account of Eqs. (14)
and (28) we have

: 1 -1
s , T even; m="—", n odd (34)
n n

In the first case the chaotic layer is considerably wider than in the second
(see Eq. (32)). We mention that our result is somewhat different from that
in Refs. 6,7.

As X ~ p¥? the nonadiabatic effect Eq. (32) exponentially decreases with
growth of p by a factor of

372 )\

i) ¢, o9

for each period Ap = 7 of the resonance lattice. Particularly, this implies
that in evaluating AH, the minimal p should be taken within a connected
chaotic layer. For the upper half of a gap (see Fig. 3 ) it is gap’s p = pg but
for the lower part p = p; — m. As a result the latter is closed at a smaller
perturbation.

Another interesting implication is the competition of the two mechanisms
of closing the upper half of the gap. One is related to the width of its chaotic
layer

AH, = AAH, (36)

taken at p = p;. The second one corresponds to a single change AH, but
taken at a smaller p = p; — w. Their ratio

AH,(p)
AT, Ag (37)

13




asymptotically drops with p. Thus, for sufficiently large p the second mech-

anism is decisive. _
Using Eqgs. (29), (32) and the relation |AH,| = Ap,
we obtain for the ratio (wg=1)

&p{{. }_i 4 T - ’
Apy - 3T(m) (") ny/Pg A" (pg) exp[—A (p;)] (38)

e

where new parameters are

20,212 :
fe "4 A (Py:' =A(pg —=%) (39)

T
Alpy) = ”2'}‘{109} ~2 e

The second one is the main (but not only) parameter of gap’s elosure which
roughly corresponds to Ap, ~ Apy.

5. NUMERICAL EXPERIMENTS

The gaps discussed above are typically very narrow, and this was ap-
parently the reason why they were missed in previous studies. %" Also, to
compute the width of a gap and check relation (29) a high accuracy of com-
putation is required. Instead of time-dependent Hamiltonian (4) we made
use of the equivalent model

H(I,K,8,¢) =1+ nK —ecos[z(8, I) — 4] = const (40)

where we put wg = 1; = n. This Hamiltonian is conserved which allows
the efficient control of computation errors. The equations of motion were rep-
resented as the third-order implicit map which provided exact conservation
of the phase-space volume. *?

At first, the width of the gaps were measured for several values of Ok
(Jalpx) = 0, n =2, ¢ =0, 85 < pp < 49.5) and sufficiently weak
perturbation strength ¢ when the chaotic layers could be neglected. The top
and bottom borders of the gap were located via the transition of the border
trajectory from rotation to oscillation, or vice versa, during one period of slow
motion. In all computations the time-step value provided the conservation
of Hamiltonian (40) better then 10 per cent of its variation over the gap.

If the perturbation parameter ¢ increases, the chaotic layer occupies some
part of the gap, and, finally, closes the gap completely. We studied this pro-
cess by running 16 frajectories equidistributed across the gap for a hundred
of slow motion periods. The number of trajectories which persisted in the gap

14

dﬁg/dp]-ﬁ Apg eJn(p)

and did not deviate into the adjacent chaotic layers determined the remaining
width of the gap Ap,.
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Fig. 4. The dependence of reduced gap width Ap, Eq. (41), on
~ chaotic layer parameter A, Eq. (39): diamonds are numerical re-
sults, crosses are theoretical estimate (42). Logarithm is decimal.

Our main numerical results are represented in Fig. 4 by diamonds for 23
gaps with different p and € (8.5 < p < 49.5; 0.5 < € < 7). This figure shows
the dependence Ap(A) where

A A #
A Pr Pk (41)

Ap= -
“ Apr  (37/4)e

is the ratio of actual gap’s width Ap, to the asymptotic value (29) without
chaotic layers which depend on parameter A = pp%/?/e (see Eq. (38)). For
large A values the chaotic layers can be neglected, and Ap — 1 as expected.
Higher values of Ap for smaller A are apparently due to deviations from
asymptotical dependence (29). The sharp cut-off in Ap(A) at A = 20 is the
effect of chaotic layers which close the gaps. This effect can be estimated

15



using Eq. (38) as

Ap,

Af=1-— == 4.3./px A% % exp(—yA) (42)
&

where we put the values n = 2; m = 3/2 used in numerical experiments.
The theoretical values of Aj are also plotted in Fig. 4 by small crosses. Notice
the scattering of the latter which is explained by the dependence of Ap on
the two different variables, p; and e. To agree numerical and theoretical
values of Ap we had to introduce fitting parameter y 2 0.78. This deviation
from theoretical estimate (38) is apparently related to a poor approximation
(30) where the unperturbed separatrix is used. With this correction the
agreement seems to be satisfactory for such a delicate phenomenon as the
separatrix chaotic layer.

6. DIFFUSION PECULIARITIES IN RESONANCE WED

Now we are going to compare the motion within the WNR web and the
Arnold diffusion (AD) in a strongly nonlinear system. One thing in common
1s the network of chaotic layers of a similar structurée as we have seen in
Section 4. An important difference is the minimal dimensionality to support
diffusion: N = 2 freedoms for WNR web and N = 3 for AD (in conservative
systems). Also, the former is not universal as AD is. First, the WNR struc-
ture itself is not universal as discussed above (see Section 3), and second,
even such WNR web is structurally unstable (Section 3) so that the diffusion
is restricted by the gaps.

Farther, within the allowed region the WNR. diffusion is very peculiar.

The local diffusion rate averaged over many resonance cells (not a good ap-

proximation because of a small factor g < 1, Eq. (35), see below) is according
to Refs. 4, 13

LA {ApIT S > nd
ol t ST
that is very fast compared to AD which is 'expnnentially small in A. This
is because in the present case the diffusion proceeds in big jumps {Ap = )
instead of Ap ~ exp(—mA/2) for AD. Yet, it does not mean that the global

diffusion is always fast.®7° The point is that the general Fokker — Planck
— Kolmogorov diffusion equation has two terms °

of(pt) _ 18 _ Of 8

D

WETE - (43)

D

ot s "2"5:0' o) 3p S é‘F;BIJ(P) f (44)
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the second one describing the drift

= = B, + —~ 45)
VP(P) = ; i dp (

Function B,(p) can be derived from Einstein’s relation using the steady-state
distribution, or invariant measure

fs ~ exp(—mA/2) (46)

which is roughly proportional to chaotic layer’s width (36). From Eqs. (44),
(45) we have

B, = & d_h”lé' o _EZni
2. dp wyp
v £3n3 7 fzﬂg 2 _fz'ﬂg (47}
R T O T T
Term B, in Eq. (45) dominates as the ratio
dDj;i L % < 1 (48)

The drift acts as a damping even though the system is Hamiltonian.

This 1s a peculiar effect of the specific structure of chaotic component. Notice,

that if its measure f,{p) would grow with p the blow-up occured ( V, > 0}

instead of damping. _
In any case, the diffusion is fast but in one direction only, do‘:vnwards

in our case. The average motion in this direction becomes dynamical (the

'secondary dynamics’ we use to say) described by the equation

dp e’n® ,.
v e Y e —~C (49)
dt o(#) wgpt

where C ~ 1 is a constant. Particularly, the 'fall’ time is

3.5
ty 8 waOf0 (50)
5Ce?n?

where pp is the initial value. vy
A better approximation for £ is simply to sum up the life times at each

row (see Eq. (43))

kKo o po b ] @D
e Z 5 P Cl./(; n3 ’ ap 11 en3 0 o8
k=1 ;

17



where C] ~ 1 is some constant and ko stands for the initial value,

The motion upwards, forbidden in dynamical approximation, is only pos-
sible due to statistical fluctuations of a chaotic trajectory. A crude estimate
for the ’ascension’ time t; can be obtained from the statistical balance of

transitions between the lower part of the steady state with measure Mo =~ 1.

and an upper part { p > p, ) of a small measure y; = fo ~ exp(—w)/2)
(see Eq. (46))

ol G o
T iy
whence :
ta ~ ty exp(wA/2) (52)

This mechanism of dynamical-si;atistical transport is also typical for AD in
a SNR chaotic web (see, e.g., Refs. 3-5, 10). It increases numerical factor in
the exponent for the mean Ciffusion rate.

7. LINEAR RESONA_LNCE IN NONLINEAR WEB

Now we consider the effect of the second perturbation in Hamiltonian
(12) that is the case 3 # 0. If @ = 0 the resonance structure simple turns
by the angle x/2 due to the symmetry of Hamiltonian in this approxima-
tion.Particularly, the gaps become vertical that is along r rather than along
s before. For the original system this would be a crucial change implying a
fast energy growth for the initial conditions in gaps i § < 0 (cf. Eq. (14),

the opposite sign is due to canonical conjugation in Hamiltonian systems).

Since s is angle the perturbation is periodic in ¢, and parameter £ has both
signs at different ¢. The linear approximation (12} makes sense for n > 1
only. :
A more interesting resonance structure arises when both « and B are
nonzero. In this case all unperturbed separatrices are destroyed or, better to
say, drastically transformed. If lal, 18] < 1 the fixed points are shifted only
slightly but the shape of four separatrices (two ingoing and two outgoing)
per unstable fixed point are now completely different. As outlined in Fig. 5
(cf. Figs. 1b and 3) two of them unite and frame a cell of closed trajectories
around the stable fixed point while the two remaining (unclosed) determine

the gaps. In the infinite lattice in both r and s the unclosed separatrices are

also infinite for irrational a/f which is the typical case. For rational o /0 the
unclosed separatrix ends at some other fixed point.

At average (over many resonance cells) the unclosed separatrices follow
the perturbation levels (ar + Bs =const in linear approximation (12)). The
global behavior of gaps is not universal and crucially depends on a particular
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perturbation. To get an idea what it could be like, we consider the additional
perturbation to Hamiltonian (4) in the form

§H(p,z,t) = vz cos i (53)

which is the linear driving perturbation. It becomes resonant if we Put ]?1 s
= wq which is the second resonance in addition to 2 = nWo. With linear
perturbation (53) and second-order term (26) the Hamiltonian (7) becomes

L *n (—1)* ¢ vp ‘4
Ho(I,p) = —eJu(p) cos(ncp+T)+2mpﬂz—i— 5 Cosp (54)

As is easily verified the high-frequency term in pertul‘:ba.tian (53) results, liio
order of +?, in a constant change of Hamiltonian which does not affect the

motion. The gap trajectories p{y) approximately satisfy the conservation law

(=1)* ¢ LR
2V2x p2 2

as was explained above.

cos ¢ A2 const (55)

Fig. 5. Outline of the WNR structure with
perturbation (12) for o = 0.041; B =0.L
One of the unclosed separatrices is shown
by the fat line.

Analysis of this equation shows that there exsists a ceriiain :critical value
of p = p. such that for p > p. the gap trajectories go to }nﬁmty (p — c;c}
while below p. their oscillations are bounded. Approximation (55) holds for

v < € only when p > 1, and

3 2/9 2\ 2/9 '
e (o) woss(2) (56)
© o \2127)y| vl
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In the opposite limiting case (v 3 €?) all the gap trajectories are apparently
unbounded but this case requires further analysis.

In conclusion we would like to emphasize again the richness of nonlinear
dynamics even in fairly simple models discussed above,
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